1
|
Štepihar D, Florke Gee RR, Hoyos Sanchez MC, Fon Tacer K. Cell-specific secretory granule sorting mechanisms: the role of MAGEL2 and retromer in hypothalamic regulated secretion. Front Cell Dev Biol 2023; 11:1243038. [PMID: 37799273 PMCID: PMC10548473 DOI: 10.3389/fcell.2023.1243038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023] Open
Abstract
Intracellular protein trafficking and sorting are extremely arduous in endocrine and neuroendocrine cells, which synthesize and secrete on-demand substantial quantities of proteins. To ensure that neuroendocrine secretion operates correctly, each step in the secretion pathways is tightly regulated and coordinated both spatially and temporally. At the trans-Golgi network (TGN), intrinsic structural features of proteins and several sorting mechanisms and distinct signals direct newly synthesized proteins into proper membrane vesicles that enter either constitutive or regulated secretion pathways. Furthermore, this anterograde transport is counterbalanced by retrograde transport, which not only maintains membrane homeostasis but also recycles various proteins that function in the sorting of secretory cargo, formation of transport intermediates, or retrieval of resident proteins of secretory organelles. The retromer complex recycles proteins from the endocytic pathway back to the plasma membrane or TGN and was recently identified as a critical player in regulated secretion in the hypothalamus. Furthermore, melanoma antigen protein L2 (MAGEL2) was discovered to act as a tissue-specific regulator of the retromer-dependent endosomal protein recycling pathway and, by doing so, ensures proper secretory granule formation and maturation. MAGEL2 is a mammalian-specific and maternally imprinted gene implicated in Prader-Willi and Schaaf-Yang neurodevelopmental syndromes. In this review, we will briefly discuss the current understanding of the regulated secretion pathway, encompassing anterograde and retrograde traffic. Although our understanding of the retrograde trafficking and sorting in regulated secretion is not yet complete, we will review recent insights into the molecular role of MAGEL2 in hypothalamic neuroendocrine secretion and how its dysregulation contributes to the symptoms of Prader-Willi and Schaaf-Yang patients. Given that the activation of many secreted proteins occurs after they enter secretory granules, modulation of the sorting efficiency in a tissue-specific manner may represent an evolutionary adaptation to environmental cues.
Collapse
Affiliation(s)
- Denis Štepihar
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Rebecca R. Florke Gee
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Maria Camila Hoyos Sanchez
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| | - Klementina Fon Tacer
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX, United States
| |
Collapse
|
2
|
Dembla E, Becherer U. Biogenesis of large dense core vesicles in mouse chromaffin cells. Traffic 2021; 22:78-93. [PMID: 33369005 DOI: 10.1111/tra.12783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 12/21/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022]
Abstract
Large dense core vesicle (LDCVs) biogenesis in neuroendocrine cells involves: (a) production of cargo peptides processed in the Golgi; (b) fission of cargo loaded LDCVs undergoing maturation steps; (c) movement of these LDCVs to the plasma membrane. These steps have been resolved over several decades in PC12 cells and in bovine chromaffin cells. More recently, the molecular machinery involved in LDCV biogenesis has been examined using genetically modified mice, generating contradictory results. To address these contradictions, we have used NPY-mCherry electroporation combined with immunolabeling and super-resolution structured illumination microscopy. We show that LDCVs separate from an intermediate Golgi compartment, mature in its proximity for about 1 hour and then travel to the plasma membrane. The exocytotic machinery composed of vSNAREs and synaptotagmin1, which originate from either de novo synthesis or recycling, is most likely acquired via fusion with precursor vesicles during maturation. Finally, recycling of LDCV membrane protein is achieved in less than 2 hours. With this comprehensive scheme of LDCV biogenesis we have established a framework for future studies in mouse chromaffin cells.
Collapse
Affiliation(s)
- Ekta Dembla
- Cellular Neurophysiology, CIPMM, Saarland University, Homburg, Germany
| | - Ute Becherer
- Cellular Neurophysiology, CIPMM, Saarland University, Homburg, Germany
| |
Collapse
|
3
|
Yao Q, Tong Y, Peng R, Liu Z, Li Y. Associations of serum chromogranin A with depressive symptoms in men with unipolar depressive disorder. Gen Hosp Psychiatry 2020; 66:120-124. [PMID: 32829062 DOI: 10.1016/j.genhosppsych.2020.08.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The aim of the present study was to determine the changes of serum chromogranin A (CgA) levels upon depression by investigating the relationship between serum CgA levels and the depressive symptoms assessed by 24-item Hamilton Rating Scale for Depression (HRSD-24). METHOD Serum CgA levels were measured by enzyme-linked immunosorbent assay in 133 male patients with major depressive disorder (MDD) and were compared with those of 47 healthy controls. Then generalized linear regression, logistic regression and restricted cubic spline models were performed to examine the association between serum CgA levels and depressive symptoms. RESULTS Serum CgA levels were lower in MDD patients than in controls (P < 0.001) and were inversely associated with scores on HRSD-24 in unadjusted, age, smoking, alcohol consumption, traumatic life events and family history of depression-adjusted and fully adjusted linear regression model. The fully adjusted regression coefficient with 95% confidence intervals was -0.028 (-0.045, -0.010) for serum CgA levels and HRSD-24 score. Serum CgA levels were inversely associated with depressive symptoms (HRSD ≥20) in each logistic regression model. CONCLUSION Serum CgA decrease was noted in male patients of MDD and may be inversely associated with depressive symptoms.
Collapse
Affiliation(s)
- Qian Yao
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan 430060, China
| | - Yongqing Tong
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan 430060, China
| | - Rui Peng
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan 430060, China
| | - Zhongchun Liu
- Department of Psychiatry, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan 430060, China.
| | - Yan Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, No. 99 Zhangzhidong Road, Wuchang District, Wuhan 430060, China.
| |
Collapse
|
4
|
Carmon O, Laguerre F, Riachy L, Delestre-Delacour C, Wang Q, Tanguy E, Jeandel L, Cartier D, Thahouly T, Haeberlé AM, Fouillen L, Rezazgui O, Schapman D, Haefelé A, Goumon Y, Galas L, Renard PY, Alexandre S, Vitale N, Anouar Y, Montero-Hadjadje M. Chromogranin A preferential interaction with Golgi phosphatidic acid induces membrane deformation and contributes to secretory granule biogenesis. FASEB J 2020; 34:6769-6790. [PMID: 32227388 DOI: 10.1096/fj.202000074r] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/28/2020] [Accepted: 03/14/2020] [Indexed: 12/14/2022]
Abstract
Chromogranin A (CgA) is a key luminal actor of secretory granule biogenesis at the trans-Golgi network (TGN) level but the molecular mechanisms involved remain obscure. Here, we investigated the possibility that CgA acts synergistically with specific membrane lipids to trigger secretory granule formation. We show that CgA preferentially interacts with the anionic glycerophospholipid phosphatidic acid (PA). In accordance, bioinformatic analysis predicted a PA-binding domain (PABD) in CgA sequence that effectively bound PA (36:1) or PA (40:6) in membrane models. We identified PA (36:1) and PA (40:6) as predominant species in Golgi and granule membranes of secretory cells, and we found that CgA interaction with these PA species promotes artificial membrane deformation and remodeling. Furthermore, we demonstrated that disruption of either CgA PABD or phospholipase D (PLD) activity significantly alters secretory granule formation in secretory cells. Our findings show for the first time the ability of CgA to interact with PLD-generated PA, which allows membrane remodeling and curvature, key processes necessary to initiate secretory granule budding.
Collapse
Affiliation(s)
- Ophélie Carmon
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Normandie University, UNIROUEN, INSERM, U1239, Rouen, France
| | - Fanny Laguerre
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Normandie University, UNIROUEN, INSERM, U1239, Rouen, France
| | - Lina Riachy
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Normandie University, UNIROUEN, INSERM, U1239, Rouen, France
| | - Charlène Delestre-Delacour
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Normandie University, UNIROUEN, INSERM, U1239, Rouen, France
| | - Qili Wang
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Emeline Tanguy
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Lydie Jeandel
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Normandie University, UNIROUEN, INSERM, U1239, Rouen, France
| | - Dorthe Cartier
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Normandie University, UNIROUEN, INSERM, U1239, Rouen, France
| | - Tamou Thahouly
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Anne-Marie Haeberlé
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Laetitia Fouillen
- Laboratoire de Biogénèse Membranaire, CNRS, Plateforme Métabolome, Université de Bordeaux, UMR-5200, Villenave D'Ornon, France
| | - Olivier Rezazgui
- INSA Rouen, CNRS, Normandie University, UNIROUEN, COBRA, UMR 6014 and FR 3038, Rouen, France
| | - Damien Schapman
- Normandie University, UNIROUEN, INSERM, PRIMACEN, Rouen, France
| | - Alexandre Haefelé
- INSA Rouen, CNRS, Normandie University, UNIROUEN, COBRA, UMR 6014 and FR 3038, Rouen, France
| | - Yannick Goumon
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Ludovic Galas
- Normandie University, UNIROUEN, INSERM, PRIMACEN, Rouen, France
| | - Pierre-Yves Renard
- INSA Rouen, CNRS, Normandie University, UNIROUEN, COBRA, UMR 6014 and FR 3038, Rouen, France
| | - Stéphane Alexandre
- Polymères, Biopolymères, Surfaces Laboratory, CNRS, Normandie University, UNIROUEN, UMR 6270, Rouen, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France
| | - Youssef Anouar
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Normandie University, UNIROUEN, INSERM, U1239, Rouen, France
| | - Maité Montero-Hadjadje
- Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Normandie University, UNIROUEN, INSERM, U1239, Rouen, France
| |
Collapse
|
5
|
Laguerre F, Anouar Y, Montero-Hadjadje M. Chromogranin A in the early steps of the neurosecretory pathway. IUBMB Life 2019; 72:524-532. [PMID: 31891241 DOI: 10.1002/iub.2218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
Chromogranin A (CgA) is a soluble glycoprotein stored with hormones and neuropeptides in secretory granules (SG) of most (neuro)endocrine cells and neurons. Since its discovery in 1967, many studies have reported its structural characteristics, biological roles, and mechanisms of action. Indeed, CgA is both a precursor of various biologically active peptides and a granulogenic protein regulating the storage and secretion of hormones and neuropeptides. This review emphasizes the findings and theoretical concepts around the CgA-linked molecular machinery controlling hormone/neuropeptide aggregation and the interaction of CgA-hormone/neuropeptide aggregates with the trans-Golgi membrane to allow hormone/neuropeptide targeting and SG biogenesis. We will also discuss the intriguing alteration of CgA expression and secretion in various neurological disorders, which could provide insights to elucidate the molecular mechanisms underlying these pathophysiological conditions.
Collapse
Affiliation(s)
- Fanny Laguerre
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Rouen, France
| | - Youssef Anouar
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Rouen, France
| | - Maité Montero-Hadjadje
- Normandie Univ, UNIROUEN, INSERM, U1239, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale de Normandie, Rouen, France
| |
Collapse
|
6
|
Morandi F, Cangemi G, Barco S, Amoroso L, Giuliano M, Gigliotti AR, Pistoia V, Corrias MV. Plasma levels of soluble HLA-E and HLA-F at diagnosis may predict overall survival of neuroblastoma patients. BIOMED RESEARCH INTERNATIONAL 2013; 2013:956878. [PMID: 24350297 PMCID: PMC3856218 DOI: 10.1155/2013/956878] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/24/2013] [Indexed: 12/17/2022]
Abstract
The purpose of this study was to identify the plasma/serum biomarkers that are able to predict overall survival (OS) of neuroblastoma (NB) patients. Concentration of soluble (s) biomarkers was evaluated in plasma (sHLA-E, sHLA-F, chromogranin, and B7H3) or serum (calprotectin) samples from NB patients or healthy children. The levels of biomarkers that were significantly higher in NB patients were then analyzed considering localized or metastatic subsets. Finally, biomarkers that were significantly different in these two subsets were correlated with patient's outcome. With the exception of B7H3, levels of all molecules were significantly higher in NB patients than those in controls. However, only chromogranin, sHLA-E, and sHLA-F levels were different between patients with metastatic and localized tumors. sHLA-E and -F levels correlated with each other but not chromogranin. Chromogranin levels correlated with different event-free survival (EFS), whereas sHLA-E and -F levels also correlated with different OS. Association with OS was also detected considering only patients with metastatic disease. In conclusion, low levels of sHLA-E and -F significantly associated with worse EFS/OS in the whole cohort of NB patients and in patients with metastatic NB. Thus, these molecules deserve to be tested in prospective studies to evaluate their predictive power for high-risk NB patients.
Collapse
Affiliation(s)
- Fabio Morandi
- Laboratorio di Oncologia, Istituto Giannina Gaslini, Via G. Gaslini 5, 16148 Genova, Italy
| | - Giuliana Cangemi
- Laboratorio di Analisi, Istituto Giannina Gaslini, Via G. Gaslini 5, 16148 Genova, Italy
| | - Sebastiano Barco
- Laboratorio di Analisi, Istituto Giannina Gaslini, Via G. Gaslini 5, 16148 Genova, Italy
| | - Loredana Amoroso
- Oncologia Clinica, Istituto Giannina Gaslini, Via G. Gaslini 5, 16148 Genova, Italy
| | - Maria Giuliano
- Oncoematologia, Ospedale Pausillipon, Via Mario Fiore 6, 80123 Napoli, Italy
| | - Anna Rita Gigliotti
- Epidemiologia, Biostatistica e Comitati, Istituto Giannina Gaslini, Via G. Gaslini 5, 16148 Genova, Italy
| | - Vito Pistoia
- Laboratorio di Oncologia, Istituto Giannina Gaslini, Via G. Gaslini 5, 16148 Genova, Italy
| | - Maria Valeria Corrias
- Laboratorio di Oncologia, Istituto Giannina Gaslini, Via G. Gaslini 5, 16148 Genova, Italy
| |
Collapse
|
7
|
Han L, Zhang L, Zhao T, Wang Y, Nakagaki M. Analysis of a new type of major ampullate spider silk gene, MaSp1s. Int J Biol Macromol 2013; 56:156-61. [DOI: 10.1016/j.ijbiomac.2013.01.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 01/19/2013] [Accepted: 01/21/2013] [Indexed: 11/25/2022]
|
8
|
Becherer U, Medart MR, Schirra C, Krause E, Stevens D, Rettig J. Regulated exocytosis in chromaffin cells and cytotoxic T lymphocytes: How similar are they? Cell Calcium 2012; 52:303-12. [DOI: 10.1016/j.ceca.2012.04.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 03/27/2012] [Accepted: 04/09/2012] [Indexed: 10/28/2022]
|
9
|
Bartolomucci A, Possenti R, Mahata SK, Fischer-Colbrie R, Loh YP, Salton SRJ. The extended granin family: structure, function, and biomedical implications. Endocr Rev 2011; 32:755-97. [PMID: 21862681 PMCID: PMC3591675 DOI: 10.1210/er.2010-0027] [Citation(s) in RCA: 238] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The chromogranins (chromogranin A and chromogranin B), secretogranins (secretogranin II and secretogranin III), and additional related proteins (7B2, NESP55, proSAAS, and VGF) that together comprise the granin family subserve essential roles in the regulated secretory pathway that is responsible for controlled delivery of peptides, hormones, neurotransmitters, and growth factors. Here we review the structure and function of granins and granin-derived peptides and expansive new genetic evidence, including recent single-nucleotide polymorphism mapping, genomic sequence comparisons, and analysis of transgenic and knockout mice, which together support an important and evolutionarily conserved role for these proteins in large dense-core vesicle biogenesis and regulated secretion. Recent data further indicate that their processed peptides function prominently in metabolic and glucose homeostasis, emotional behavior, pain pathways, and blood pressure modulation, suggesting future utility of granins and granin-derived peptides as novel disease biomarkers.
Collapse
Affiliation(s)
- Alessandro Bartolomucci
- Department of Integrative Biology and Physiology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
PURPOSE OF REVIEW The review summarizes the past year's literature regarding the regulation of gastric exocrine and endocrine secretion, both basic science and clinical. RECENT FINDINGS Gastric acid secretion is an elaborate and dynamic process that is regulated by neural (efferent and afferent), hormonal (e.g. gastrin), and paracrine (e.g. histamine, ghrelin, somatostatin) pathways as well as mechanical (e.g. distension) and chemical (e.g. amino acids) stimuli. Secretion of hydrochloric acid (HCl) by parietal cells involves translocation of HK-ATPase-containing cytoplasmic tubulovesicles to the apical membrane with subsequent electroneutral transport of hydronium ions in exchange for potassium. The main apical potassium channel is KCNQ1 which, when activated, assembles with its β-subunit KCNE2 to function as a constitutively open, voltage-insensitive, and acid-resistant luminal potassium channel. Proton pump inhibitors block acid secretion by covalently binding to cysteine residues accessible from the luminal surface of the HK-ATPase. Potassium-competitive ATPase blockers (P-CABs) act by competing for K on the luminal surface of HK-ATPase. As they are acid-stable and do not require acid-dependent activation, P-CABs hold promise for rapid and prolonged inhibition of acid secretion. SUMMARY We continue to make progress in our understanding of the physiologic regulation of gastric acid secretion. A better understanding of the pathways and mechanisms regulating acid secretion should lead to improved management of patients with acid-induced disorders.
Collapse
|