1
|
Phenylephrine increases tear cathepsin S secretion in healthy murine lacrimal gland acinar cells through an alternative secretory pathway. Exp Eye Res 2021; 211:108760. [PMID: 34487726 DOI: 10.1016/j.exer.2021.108760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 08/02/2021] [Accepted: 09/02/2021] [Indexed: 12/13/2022]
Abstract
Little is known about the relationship between stimulation of lacrimal gland (LG) tear protein secretion by parasympathetic versus sympathetic nerves, particularly whether the spectrum of tear proteins evoked through each innervation pathway varies. We have previously shown that activity and abundance of cathepsin S (CTSS), a cysteine protease, is greatly increased in tears of Sjögren's syndrome (SS) patients and in tears from the male NOD mouse of autoimmune dacryoadenitis that recapitulates SS-associated dry eye disease. Beyond the increased synthesis of CTSS detected in the diseased NOD mouse LG, increased tear CTSS secretion in NOD mouse tears was recently linked to increased exocytosis from a novel endolysosomal secretory pathway. Here, we have compared secretion and trafficking of CTSS in healthy mouse LG acinar cells stimulated with either the parasympathetic acetylcholine receptor agonist, carbachol (CCh), or the sympathetic α1-adrenergic agonist, phenylephrine (PE). In situ secretion studies show that PE significantly increases CTSS activity and protein in tears relative to CCh stimulation by 1.2-fold (***, p = 0.0009) and ∼5-fold (*, p-0.0319), respectively. A similar significant increase in CTSS activity with PE relative to CCh is observed when cultured LGAC are stimulated in vitro. CCh stimulation significantly elevates intracellular [Ca2+], an effect associated with increases in the size of Rab3D-enriched vesicles consistent with compound fusion, and subsequently decreases in their intensity of labeling consistent with their exocytosis. PE stimulation induces a lower [Ca2+] response and has minimal effects on Rab3D-enriched SV diameter or the intensity of Rab3D-enriched SV labeling. LG deficient in Rab3D exhibit a higher sensitivity to PE stimulation, and secrete more CTSS activity. Significant increases in the colocalization of endolysosomal vesicle markers (Lamp1, Lamp2, Rab7) with the subapical actin suggestive of fusion of endolysosomal vesicles at the apical membrane occur both with CCh and PE stimulation, but PE demonstrates increased colocalization. In conclusion, the α1-adrenergic agonist, PE, increases CTSS secretion into tears through a pathway independent of the exocytosis of Rab3D-enriched mature SV, possibly representing an alternative endolysosomal secretory pathway.
Collapse
|
2
|
Neuman SD, Lee AR, Selegue JE, Cavanagh AT, Bashirullah A. A novel function for Rab1 and Rab11 during secretory granule maturation. J Cell Sci 2021; 134:jcs259037. [PMID: 34342349 PMCID: PMC8353522 DOI: 10.1242/jcs.259037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 01/15/2023] Open
Abstract
Regulated exocytosis is an essential process whereby specific cargo proteins are secreted in a stimulus-dependent manner. Cargo-containing secretory granules are synthesized in the trans-Golgi network (TGN); after budding from the TGN, granules undergo modifications, including an increase in size. These changes occur during a poorly understood process called secretory granule maturation. Here, we leverage the Drosophila larval salivary glands as a model to characterize a novel role for Rab GTPases during granule maturation. We find that secretory granules increase in size ∼300-fold between biogenesis and release, and loss of Rab1 or Rab11 reduces granule size. Surprisingly, we find that Rab1 and Rab11 localize to secretory granule membranes. Rab11 associates with granule membranes throughout maturation, and Rab11 recruits Rab1. In turn, Rab1 associates specifically with immature granules and drives granule growth. In addition to roles in granule growth, both Rab1 and Rab11 appear to have additional functions during exocytosis; Rab11 function is necessary for exocytosis, while the presence of Rab1 on immature granules may prevent precocious exocytosis. Overall, these results highlight a new role for Rab GTPases in secretory granule maturation.
Collapse
Affiliation(s)
| | | | | | | | - Arash Bashirullah
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA
| |
Collapse
|
3
|
Bello OD, Cappa AI, de Paola M, Zanetti MN, Fukuda M, Fissore RA, Mayorga LS, Michaut MA. Rab3A, a possible marker of cortical granules, participates in cortical granule exocytosis in mouse eggs. Exp Cell Res 2016; 347:42-51. [PMID: 27423421 DOI: 10.1016/j.yexcr.2016.07.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 07/04/2016] [Accepted: 07/12/2016] [Indexed: 10/21/2022]
Abstract
Fusion of cortical granules with the oocyte plasma membrane is the most significant event to prevent polyspermy. This particular exocytosis, also known as cortical reaction, is regulated by calcium and its molecular mechanism is still not known. Rab3A, a member of the small GTP-binding protein superfamily, has been implicated in calcium-dependent exocytosis and is not yet clear whether Rab3A participates in cortical granules exocytosis. Here, we examine the involvement of Rab3A in the physiology of cortical granules, particularly, in their distribution during oocyte maturation and activation, and their participation in membrane fusion during cortical granule exocytosis. Immunofluorescence and Western blot analysis showed that Rab3A and cortical granules have a similar migration pattern during oocyte maturation, and that Rab3A is no longer detected after cortical granule exocytosis. These results suggested that Rab3A might be a marker of cortical granules. Overexpression of EGFP-Rab3A colocalized with cortical granules with a Pearson correlation coefficient of +0.967, indicating that Rab3A and cortical granules have almost a perfect colocalization in the egg cortical region. Using a functional assay, we demonstrated that microinjection of recombinant, prenylated and active GST-Rab3A triggered cortical granule exocytosis, indicating that Rab3A has an active role in this secretory pathway. To confirm this active role, we inhibited the function of endogenous Rab3A by microinjecting a polyclonal antibody raised against Rab3A prior to parthenogenetic activation. Our results showed that Rab3A antibody microinjection abolished cortical granule exocytosis in parthenogenetically activated oocytes. Altogether, our findings confirm that Rab3A might function as a marker of cortical granules and participates in cortical granule exocytosis in mouse eggs.
Collapse
Affiliation(s)
- Oscar Daniel Bello
- Instituto de Histología y Embriología, CONICET - Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza, Argentina
| | - Andrea Isabel Cappa
- Instituto de Histología y Embriología, CONICET - Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza, Argentina
| | - Matilde de Paola
- Instituto de Histología y Embriología, CONICET - Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza, Argentina
| | - María Natalia Zanetti
- Instituto de Histología y Embriología, CONICET - Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza, Argentina
| | - Mitsunori Fukuda
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi 980-8578, Japan
| | - Rafael A Fissore
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, 661 North Pleasant Street, Amherst, MA 01003, USA
| | - Luis S Mayorga
- Instituto de Histología y Embriología, CONICET - Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza, Argentina
| | - Marcela A Michaut
- Instituto de Histología y Embriología, CONICET - Universidad Nacional de Cuyo, Av. Libertador 80, 5500 Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Argentina.
| |
Collapse
|
4
|
Tanguy E, Carmon O, Wang Q, Jeandel L, Chasserot-Golaz S, Montero-Hadjadje M, Vitale N. Lipids implicated in the journey of a secretory granule: from biogenesis to fusion. J Neurochem 2016; 137:904-12. [PMID: 26877188 DOI: 10.1111/jnc.13577] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 01/20/2016] [Accepted: 02/03/2016] [Indexed: 01/01/2023]
Abstract
The regulated secretory pathway begins with the formation of secretory granules by budding from the Golgi apparatus and ends by their fusion with the plasma membrane leading to the release of their content into the extracellular space, generally following a rise in cytosolic calcium. Generation of these membrane-bound transport carriers can be classified into three steps: (i) cargo sorting that segregates the cargo from resident proteins of the Golgi apparatus, (ii) membrane budding that encloses the cargo and depends on the creation of appropriate membrane curvature, and (iii) membrane fission events allowing the nascent carrier to separate from the donor membrane. These secretory vesicles then mature as they are actively transported along microtubules toward the cortical actin network at the cell periphery. The final stage known as regulated exocytosis involves the docking and the priming of the mature granules, necessary for merging of vesicular and plasma membranes, and the subsequent partial or total release of the secretory vesicle content. Here, we review the latest evidence detailing the functional roles played by lipids during secretory granule biogenesis, recruitment, and exocytosis steps. In this review, we highlight evidence supporting the notion that lipids play important functions in secretory vesicle biogenesis, maturation, recruitment, and membrane fusion steps. These effects include regulating various protein distribution and activity, but also directly modulating membrane topology. The challenges ahead to understand the pleiotropic functions of lipids in a secretory granule's journey are also discussed. This article is part of a mini review series on Chromaffin cells (ISCCB Meeting, 2015).
Collapse
Affiliation(s)
- Emeline Tanguy
- Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 Centre National de la Recherche Scientifique & Université de Strasbourg, Strasbourg, France
| | - Ophélie Carmon
- INSERM U982, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale, Université de Rouen, Mont-Saint-Aignan, France
| | - Qili Wang
- Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 Centre National de la Recherche Scientifique & Université de Strasbourg, Strasbourg, France
| | - Lydie Jeandel
- INSERM U982, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale, Université de Rouen, Mont-Saint-Aignan, France
| | - Sylvette Chasserot-Golaz
- Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 Centre National de la Recherche Scientifique & Université de Strasbourg, Strasbourg, France
| | - Maité Montero-Hadjadje
- INSERM U982, Laboratoire de Différenciation et Communication Neuronale et Neuroendocrine, Institut de Recherche et d'Innovation Biomédicale, Université de Rouen, Mont-Saint-Aignan, France
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives (INCI), UPR-3212 Centre National de la Recherche Scientifique & Université de Strasbourg, Strasbourg, France
| |
Collapse
|
5
|
Lindsay AJ, Jollivet F, Horgan CP, Khan AR, Raposo G, McCaffrey MW, Goud B. Identification and characterization of multiple novel Rab-myosin Va interactions. Mol Biol Cell 2013; 24:3420-34. [PMID: 24006491 PMCID: PMC3814135 DOI: 10.1091/mbc.e13-05-0236] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
A systematic screen of the entire human Rab GTPase family for interactions with myosin Va identified 10 novel Rab partners for myosin Va, all of which belong to the endocytic recycling and post-Golgi secretory membrane network. However, Rab10 and Rab11 appear to be the major determinants of its recruitment to intracellular membranes. Myosin Va is a widely expressed actin-based motor protein that binds members of the Rab GTPase family (3A, 8A, 10, 11A, 27A) and is implicated in many intracellular trafficking processes. To our knowledge, myosin Va has not been tested in a systematic screen for interactions with the entire Rab GTPase family. To that end, we report a yeast two-hybrid screen of all human Rabs for myosin Va-binding ability and reveal 10 novel interactions (3B, 3C, 3D, 6A, 6A′, 6B, 11B, 14, 25, 39B), which include interactions with three new Rab subfamilies (Rab6, Rab14, Rab39B). Of interest, myosin Va interacts with only a subset of the Rabs associated with the endocytic recycling and post-Golgi secretory systems. We demonstrate that myosin Va has three distinct Rab-binding domains on disparate regions of the motor (central stalk, an alternatively spliced exon, and the globular tail). Although the total pool of myosin Va is shared by several Rabs, Rab10 and Rab11 appear to be the major determinants of its recruitment to intracellular membranes. We also present evidence that myosin Va is necessary for maintaining a peripheral distribution of Rab11- and Rab14-positive endosomes.
Collapse
Affiliation(s)
- Andrew J Lindsay
- Molecular Cell Biology Laboratory, School of Biochemistry and Cell Biology, Biosciences Institute, University College Cork, Cork, Ireland Centre de Recherche, Molecular Mechanisms of Intracellular Transport, Institut Curie, CNRS UMR144, F-75248 Paris, France School of Biochemistry and Immunology, Trinity College, Dublin 2, Ireland Structure and Membrane Compartments, Institut Curie, CNRS UMR144, F-75248 Paris, France Cell and Tissue Imaging Facility (PICT-IBiSA), Institut Curie, CNRS UMR144, F-75248 Paris, France
| | | | | | | | | | | | | |
Collapse
|
6
|
Nightingale T, Cutler D. The secretion of von Willebrand factor from endothelial cells; an increasingly complicated story. J Thromb Haemost 2013; 11 Suppl 1:192-201. [PMID: 23809123 PMCID: PMC4255685 DOI: 10.1111/jth.12225] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
von Willebrand factor (VWF) plays key roles in both primary and secondary hemostasis by capturing platelets and chaperoning clotting factor VIII, respectively. It is stored within the Weibel-Palade bodies (WPBs) of endothelial cells as a highly prothrombotic protein, and its release is thus necessarily under tight control. Regulating the secretion of VWF involves multiple layers of cellular machinery that act together at different stages, leading to the exocytic fusion of WPBs with the plasma membrane and the consequent release of VWF. This review aims to provide a snapshot of the current understanding of those components, in particular the members of the Rab family, acting in the increasingly complex story of VWF secretion.
Collapse
Affiliation(s)
- T Nightingale
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | | |
Collapse
|
7
|
Xu S, Ma L, Evans E, Okamoto CT, Hamm-Alvarez SF. Polymeric immunoglobulin receptor traffics through two distinct apically targeted pathways in primary lacrimal gland acinar cells. J Cell Sci 2013; 126:2704-17. [PMID: 23606742 DOI: 10.1242/jcs.122242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The polymeric immunoglobulin receptor (pIgR) mediates transcytosis of dimeric immunoglobulin A (dIgA) and its release into mucosal secretions. The present study reveals the complexity of the trafficking of pIgR to the apical plasma membrane in epithelial cells with exocrine secretory functions; in rabbit lacrimal gland acinar cells (LGACs), trafficking of pIgR involves both the transcytotic pathway and one arm of the regulated secretory pathway. By specifically tracking pIgR endocytosed from the basolateral membrane, we show here that the Rab11a-regulated transcytotic pathway mediates the basal-to-apical transport of pIgR, and that pIgR sorted into the transcytotic pathway does not access the regulated secretory pathway. However, previous work in LGACs expanded in the present study has shown that some pIgR is localized to Rab3D-enriched mature secretory vesicles (SVs). Myosin Vb and myosin Vc motors modulate release of proteins from the Rab11a-regulated transcytotic pathway and the Rab3D-enriched secretory pathway in LGACs, respectively. Confocal fluorescence microscopy and biochemical assays showed that inhibition of myosin Vb and myosin Vc activity by overexpression of their dominant-negative mutants each significantly but differentially impaired aspects of apically targeted pIgR trafficking and secretory component release, suggesting that these motors function to regulate pIgR trafficking in both the transcytotic and exocytotic pathways. Intriguingly, a second mature SV population enriched in Rab27b was devoid of pIgR cargo, suggesting the specialization of Rab3D-enriched mature SVs to carry a particular subset of cargo proteins from the trans-Golgi network to the apical plasma membrane.
Collapse
Affiliation(s)
- Shi Xu
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, USA
| | | | | | | | | |
Collapse
|
8
|
Bogan JS, Xu Y, Hao M. Cholesterol accumulation increases insulin granule size and impairs membrane trafficking. Traffic 2012; 13:1466-80. [PMID: 22889194 DOI: 10.1111/j.1600-0854.2012.01407.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 08/09/2012] [Accepted: 08/13/2012] [Indexed: 11/28/2022]
Abstract
The formation of mature secretory granules is essential for proper storage and regulated release of hormones and neuropeptides. In pancreatic β cells, cholesterol accumulation causes defects in insulin secretion and may participate in the pathogenesis of type 2 diabetes. Using a novel cholesterol analog, we show for the first time that insulin granules are the major sites of intracellular cholesterol accumulation in live β cells. This is distinct from other, non-secretory cell types, in which cholesterol is concentrated in the recycling endosomes and the trans-Golgi network. Excess cholesterol was delivered specifically to insulin granules, which caused granule enlargement and retention of syntaxin 6 and VAMP4 in granule membranes, with concurrent depletion of these proteins from the trans-Golgi network. Clathrin also accumulated in the granules of cholesterol-overloaded cells, consistent with a possible defect in the last stage of granule maturation, during which clathrin-coated vesicles bud from the immature granules. Excess cholesterol also reduced the docking and fusion of insulin granules at the plasma membrane. Together, the data support a model in which cholesterol accumulation in insulin secretory granules impairs the ability of these vesicles to respond to stimuli, and thus reduces insulin secretion.
Collapse
Affiliation(s)
- Jonathan S Bogan
- Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
9
|
The interplay between the Rab27A effectors Slp4-a and MyRIP controls hormone-evoked Weibel-Palade body exocytosis. Blood 2012; 120:2757-67. [PMID: 22898601 DOI: 10.1182/blood-2012-05-429936] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Weibel-Palade body (WPB) exocytosis underlies hormone-evoked VWF secretion from endothelial cells (ECs). We identify new endogenous components of the WPB: Rab3B, Rab3D, and the Rab27A/Rab3 effector Slp4-a (granuphilin), and determine their role in WPB exocytosis. We show that Rab3B, Rab3D, and Rab27A contribute to Slp4-a localization to WPBs. siRNA knockdown of Slp4-a, MyRIP, Rab3B, Rab3D, Rab27A, or Rab3B/Rab27A, or overexpression of EGFP-Slp4-a or EGFP-MyRIP showed that Slp4-a is a positive and MyRIP a negative regulator of WPB exocytosis and that Rab27A alone mediates these effects. We found that ECs maintain a constant amount of cellular Rab27A irrespective of the WPB pool size and that Rab27A (and Rab3s) cycle between WPBs and a cytosolic pool. The dynamic redistribution of Rab proteins markedly decreased the Rab27A concentration on individual WPBs with increasing WPB number per cell. Despite this, the probability of WPB release was independent of WPB pool size showing that WPB exocytosis is not determined simply by the absolute amount of Rab27A and its effectors on WPBs. Instead, we propose that the probability of release is determined by the fractional occupancy of WPB-Rab27A by Slp4-a and MyRIP, with the balance favoring exocytosis.
Collapse
|
10
|
Cellular Mechanisms for the Biogenesis and Transport of Synaptic and Dense-Core Vesicles. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 299:27-115. [DOI: 10.1016/b978-0-12-394310-1.00002-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|