1
|
Sánchez Montero JM, Agis-Torres A, Solano D, Söllhuber M, Fernandez M, Villaro W, Gómez-Cañas M, García-Arencibia M, Fernández-Ruiz J, Egea J, Martín MI, Girón R. Analogues of cannabinoids as multitarget drugs in the treatment of Alzheimer's disease. Eur J Pharmacol 2021; 895:173875. [PMID: 33460612 DOI: 10.1016/j.ejphar.2021.173875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/19/2020] [Accepted: 01/11/2021] [Indexed: 10/22/2022]
Abstract
Given that neuronal degeneration in Alzheimer's disease (AD) is caused by the combination of multiple neurotoxic insults, current directions in the research of novel therapies to treat this disease attempts to design multitarget strategies that could be more effective than the simply use of acetylcholinesterase inhibitors; currently, the most used therapy for AD. One option, explored recently, is the synthesis of new analogues of cannabinoids that could competitively inhibit the acetylcholinesterase (AChE) enzyme and showing the classic neuroprotective profile of cannabinoid compounds. In this work, molecular docking has been used to design some cannabinoid analogues with such multitarget properties, based on the similarities of donepezil and Δ9-tetrahydrocannabinol. The analogues synthesized, compounds 1 and 2, demonstrated to have two interesting characteristics in different in vitro assays: competitive inhibition of AChE and competitive antagonism at the CB1/CB2 receptors. They are highly lipophilic, highlighting that they could easily reach the CNS, and apparently presented a low toxicity. These results open the door to the synthesis of new compounds for a more effective treatment of AD.
Collapse
Affiliation(s)
- José María Sánchez Montero
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia. Grupo de Biotransformaciones. Universidad Complutense, 28040, Madrid, Spain.
| | - Angel Agis-Torres
- Departamento de Fisiología. Facultad de Farmacia. Universidad Complutense, 28040, Madrid, Spain
| | - David Solano
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia. Grupo de Biotransformaciones. Universidad Complutense, 28040, Madrid, Spain
| | - Monica Söllhuber
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia. Grupo de Biotransformaciones. Universidad Complutense, 28040, Madrid, Spain
| | - María Fernandez
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia. Grupo de Biotransformaciones. Universidad Complutense, 28040, Madrid, Spain
| | - Wilma Villaro
- Departamento de Fisiología. Facultad de Farmacia. Universidad Complutense, 28040, Madrid, Spain
| | - María Gómez-Cañas
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, 28040, Madrid, Spain; Campus de Excelencia Internacional (CEI-Moncloa), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Moisés García-Arencibia
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, 28040, Madrid, Spain; Campus de Excelencia Internacional (CEI-Moncloa), Madrid, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Javier Fernández-Ruiz
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica, Facultad de Medicina, Universidad Complutense, 28040, Madrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Javier Egea
- Unidad de Investigación, Hospital Universitario Santa Cristina. Instituto de Investigación Sanitaria Del Hospital Universitario La Princesa. Madrid, Spain
| | - María Isabel Martín
- Departamento de Ciencias Básicas de La Salud, Área de Farmacología y Nutrición, Unidad Asociada de I+D+i Al CSIC, Facultad de Ciencias de La Salud, Universidad Rey Juan Carlos, Avda. Atenas S/N, 28922 Alcorcón, Madrid, Spain
| | - Rocío Girón
- Departamento de Ciencias Básicas de La Salud, Área de Farmacología y Nutrición, Unidad Asociada de I+D+i Al CSIC, Facultad de Ciencias de La Salud, Universidad Rey Juan Carlos, Avda. Atenas S/N, 28922 Alcorcón, Madrid, Spain
| |
Collapse
|
2
|
Guler EM, Bektay MY, Akyildiz AG, Sisman BH, Izzettin FV, Kocyigit A. Investigation of DNA damage, oxidative stress, and inflammation in synthetic cannabinoid users. Hum Exp Toxicol 2020; 39:1454-1462. [PMID: 32508150 DOI: 10.1177/0960327120930057] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
BACKGROUND The widespread use of synthetic cannabinoids (SCs) among youth has become an important public health problem. Several life-threatening side effects of SC have been reported, including cardiovascular, gastrointestinal, neurological, renal, metabolic, ophthalmologic, and pulmonary effects, besides skin toxicity and hepatotoxicity. METHODS Given that high levels of SC can lead to oxidative stress, DNA damage, and inflammation, it has been aimed in this study to investigate the effects of SC in aspects of primary DNA damage, plasma total oxidant status (TOS)/total antioxidant status (TAS), thiol-disulfide homeostasis, myeloperoxidase (MPO) level, and cytokine levels (interleukin 1 beta (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor-alpha (TNF-α)) of 40 SC users (SCUs) in Turkey. RESULTS Mean plasma TOS levels were significantly higher in the SCUs group than in the healthy group (HG). Similarly, mononuclear leukocyte DNA damage, plasma TOS, MPO activity, disulfide, oxidative stress index levels, IL-1β, IL-6, and TNF-α levels were significantly higher in the SCU group than in the HG, whereas plasma TAS, total, and native thiol levels were significantly lower in the SCU group than in the HG. CONCLUSION It is concluded that SC can cause increase in oxidative stress and in inflammatory processes in addition to its potential for DNA damage. Additional studies with larger sample sizes and longer durations should be held to understand more specific outcomes of SC use.
Collapse
Affiliation(s)
- E M Guler
- Faculty of Medicine, Department of Medical Biochemistry, Bezmialem Vakif University, Istanbul, Turkey.,Traditional and Complementary Medicine, Advanced Research and Application Center, Bezmialem Vakif University, Istanbul, Turkey
| | - M Y Bektay
- Faculty of Pharmacy, Department of Clinical Pharmacy, Bezmialem Vakif University, Istanbul, Turkey.,Faculty of Pharmacy, Department of Clinical Pharmacy, Marmara University, Istanbul, Turkey
| | - A G Akyildiz
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Bezmialem Vakif University, Istanbul, Turkey.,Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Istanbul University, Istanbul, Turkey
| | - B H Sisman
- Department of Emergency Medicine, Fatih Sultan Mehmet Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - F V Izzettin
- Faculty of Pharmacy, Department of Clinical Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - A Kocyigit
- Faculty of Medicine, Department of Medical Biochemistry, Bezmialem Vakif University, Istanbul, Turkey.,Traditional and Complementary Medicine, Advanced Research and Application Center, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
3
|
Sarne Y. Beneficial and deleterious effects of cannabinoids in the brain: the case of ultra-low dose THC. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2019; 45:551-562. [PMID: 30864864 DOI: 10.1080/00952990.2019.1578366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
This article reviews the neurocognitive advantages and drawbacks of cannabinoid substances, and discusses the possible physiological mechanisms that underlie their dual activity. The article further reviews the neurocognitive effects of ultra-low doses of ∆9-tetrahydrocannabinol (THC; 3-4 orders of magnitude lower than the conventional doses) in mice, and proposes such low doses of THC as a possible remedy for various brain injuries and for the treatment of age-related cognitive decline.
Collapse
Affiliation(s)
- Yosef Sarne
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Inflammation and oxidative stress are key mediators in AKB48-induced neurotoxicity in vitro. Toxicol In Vitro 2018; 55:101-107. [PMID: 30550854 DOI: 10.1016/j.tiv.2018.12.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 11/15/2018] [Accepted: 12/10/2018] [Indexed: 12/24/2022]
Abstract
Synthetic cannabinoids were introduced into market in early 2000s; since these "legal highs" are dramatically popular among youth, it becomes a deadly problem. Synthetic cannabinoids have high affinity to cannabinoid receptors; leading to various clinical symptoms. AKB48 (Apinaca) has been classified as a third-generation synthetic cannabinoid for the first time in 2014. The toxicity profile of AKB48 is unclear due to little information that mainly obtained from clinical and forensic cases; however, it is believed to be similar with other psychoactive substances. Thus, we aimed to investigate the possible toxicity mechanisms of AKB48 in SH-SY5Y (human bone marrow neuroblastoma) cell line. IC50 value of AKB48 was calculated as 160.91 μM by MTT assay. AKB48 treatment enhanced (≥1.2-fold) the fluorescence intensity indicating increased reactive oxygen species production; however, glutathione levels did not changed in the range of 25-200 μM exposure concentrations. Cannabinoid type-1 receptor (CB1) expression was increased ≥15-fold in the range of 25-50 μM of AKB48, while cannabinoid type-2 receptor (CB2) did not expressed in SH-SY5Y cells. Interleukin-6 (IL-6) and tumor necrosis factor-α (TNF- α) were up-regulated with a dose-dependent manner, and the profiles were almost identical; however, mitogen-activated protein kinase 8 (MAPK 8) was only upregulated with 25 μM of AKB48 and nuclear factor kappa B (NF-ĸB) did not change. Our results should raise the concerns about the safety associated with synthetic cannabinoids uses.
Collapse
|
5
|
Calabrese EJ, Rubio-Casillas A. Biphasic effects of THC in memory and cognition. Eur J Clin Invest 2018; 48:e12920. [PMID: 29574698 DOI: 10.1111/eci.12920] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 03/11/2018] [Indexed: 12/20/2022]
Abstract
A generally undesired effect of cannabis smoking is a reversible disruption of short-term memory induced by delta-9-tetrahydrocannabinol (THC), the primary psychoactive component of cannabis. However, this paradigm has been recently challenged by a group of scientists who have shown that THC is also able to improve neurological function in old animals when chronically administered at low concentrations. Moreover, recent studies demonstrated that THC paradoxically promotes hippocampal neurogenesis, prevents neurodegenerative processes occurring in animal models of Alzheimer's disease, protects from inflammation-induced cognitive damage and restores memory and cognitive function in old mice. With the aim to reconcile these seemingly contradictory facts, this work will show that such paradox can be explained within the framework of hormesis, defined as a biphasic dose-response.
Collapse
Affiliation(s)
- Edward J Calabrese
- Department of Environmental Health Sciences, University of Massachusetts, Amherst, MA, USA
| | - Alberto Rubio-Casillas
- Laboratorio de Biologia, Escuela Preparatoria Regional de Autlán, Universidad de Guadalajara, Jalisco, México
| |
Collapse
|
6
|
Wang L, Wang A, Supplee WW, Koffler K, Cheng Y, Quezado ZMN, Levy RJ. Carbon monoxide incompletely prevents isoflurane-induced defects in murine neurodevelopment. Neurotoxicol Teratol 2017; 61:92-103. [PMID: 28131877 DOI: 10.1016/j.ntt.2017.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 01/17/2017] [Accepted: 01/24/2017] [Indexed: 11/29/2022]
Abstract
BACKGROUND Commonly used anesthetics have been shown to disrupt neurodevelopment in preclinical models. It has been proposed that such anesthesia-induced neurotoxicity is mediated by apoptotic neurodegeneration in the immature brain. Low dose carbon monoxide (CO) exerts cytoprotective properties and we have previously demonstrated that CO inhibits isoflurane-induced apoptosis in the developing murine brain. Here we utilized anti-apoptotic concentrations of CO to delineate the role of apoptotic neurodegeneration in anesthesia-induced neurotoxicity by assessing the effect of CO on isoflurane-induced defects in neurodevelopment. METHODS C57Bl/6 mouse pups underwent 1-hour exposure to 0ppm (air), 5ppm, or 100ppm CO in air with or without isoflurane on postnatal day 7. Cohorts were evaluated 5-7weeks post exposure with T-maze cognitive testing followed by social behavior assessment. Brain size, whole brain cellular content, and neuronal density in primary somatosensory cortex and hippocampal CA3 region were measured as secondary outcomes 1-week or 5-7weeks post exposure along with 7-day old, unexposed controls. RESULTS Isoflurane impaired memory acquisition and resulted in abnormal social behavior. Low concentration CO abrogated anesthetic-induced defects in memory acquisition, however, it also resulted in impaired spatial reference memory and social behavior abnormalities. Changes in brain size, cellular content, and neuronal density over time related to the age of the animal and were unaffected by either isoflurane or CO. CONCLUSIONS Anti-apoptotic concentrations of CO incompletely prevented isoflurane-induced defects in neurodevelopment, lacked concentration-dependent effects, and only provided protection in certain domains suggesting that anesthesia-related neurotoxicity is not solely mediated by activation of the mitochondrial apoptosis pathway.
Collapse
Affiliation(s)
- Li Wang
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Division of Pain Medicine, Children's National Health System, Children's Research Institute, The George Washington University School of Medicine and Health Sciences, United States
| | - Aili Wang
- Department of Anesthesiology, Columbia University Medical Center, United States
| | | | - Kayla Koffler
- Department of Anesthesiology, Columbia University Medical Center, United States
| | - Ying Cheng
- Center for Genetic Medicine Research, Children's National Health System, Children's Research Institute, The George Washington University School of Medicine and Health Sciences, United States
| | - Zenaide M N Quezado
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Division of Pain Medicine, Children's National Health System, Children's Research Institute, The George Washington University School of Medicine and Health Sciences, United States
| | - Richard J Levy
- Department of Anesthesiology, Columbia University Medical Center, United States.
| |
Collapse
|
7
|
Levy RJ. Carbon monoxide and anesthesia-induced neurotoxicity. Neurotoxicol Teratol 2016; 60:50-58. [PMID: 27616667 DOI: 10.1016/j.ntt.2016.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Revised: 08/10/2016] [Accepted: 09/06/2016] [Indexed: 10/21/2022]
Abstract
The majority of commonly used anesthetic agents induce widespread neuronal degeneration in the developing mammalian brain. Downstream, the process appears to involve activation of the oxidative stress-associated mitochondrial apoptosis pathway. Targeting this pathway could result in prevention of anesthetic toxicity in the immature brain. Carbon monoxide (CO) is a gas that exerts biological activity in the developing brain and low dose exposures have the potential to provide neuroprotection. In recent work, low concentration CO exposures limited isoflurane-induced neuronal apoptosis in a dose-dependent manner in newborn mice and modulated oxidative stress within forebrain mitochondria. Because infants and children are routinely exposed to low levels of CO during low-flow general endotracheal anesthesia, such anti-oxidant and pro-survival cellular effects are clinically relevant. Here we provide an overview of anesthesia-related CO exposure, discuss the biological activity of low concentration CO, detail the effects of CO in the brain during development, and provide evidence for CO-mediated inhibition of anesthesia-induced neurotoxicity.
Collapse
Affiliation(s)
- Richard J Levy
- Department of Anesthesiology, Columbia University Medical Center, United States.
| |
Collapse
|
8
|
Tomas-Roig J, Wirths O, Salinas-Riester G, Havemann-Reinecke U. The Cannabinoid CB1/CB2 Agonist WIN55212.2 Promotes Oligodendrocyte Differentiation In Vitro and Neuroprotection During the Cuprizone-Induced Central Nervous System Demyelination. CNS Neurosci Ther 2016; 22:387-95. [PMID: 26842941 PMCID: PMC5067581 DOI: 10.1111/cns.12506] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 12/13/2022] Open
Abstract
Aim and methods Different types of insults to the CNS lead to axon demyelination. Remyelination occurs when the CNS attempts to recover from myelin loss and requires the activation of oligodendrocyte precursor cells. With the rationale that CB1 receptor is expressed in oligodendrocytes and marijuana consumption alters CNS myelination, we study the effects of the cannabinoid agonist WIN55212.2 in (1) an in vitro model of oligodendrocyte differentiation and (2) the cuprizone model for demyelination. Results The synthetic cannabinoid agonist WIN55212.2 at 1 μM increased the myelin basic protein mRNA and protein expression in vitro. During cuprizone‐induced acute demyelination, the administration of 0.5 mg/kg WIN55212.2 confers more myelinated axons, increased the expression of retinoid X receptor alpha, and declined nogo receptor expression. Controversially, 1 mg/kg of the drug increased the number of demyelinated axons and reduced the expression of nerve growth factor inducible, calreticulin and myelin‐related genes coupling specifically with a decrease in 2′,3′‐cyclic nucleotide 3′ phosphodiesterase expression. Conclusion The cannabinoid agonist WIN55212.2 promotes oligodendrocyte differentiation in vitro. Moreover, 0.5 mg/kg of the drug confers neuroprotection during cuprizone‐induced demyelination, while 1 mg/kg aggravates the demyelination process.
Collapse
Affiliation(s)
- Jordi Tomas-Roig
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany.,Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Oliver Wirths
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Gabriela Salinas-Riester
- Department of Developmental Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Ursula Havemann-Reinecke
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany.,Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| |
Collapse
|
9
|
Metabolome disruption of the rat cerebrum induced by the acute toxic effects of the synthetic cannabinoid MAM-2201. Life Sci 2015; 137:49-55. [DOI: 10.1016/j.lfs.2015.05.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/17/2015] [Accepted: 05/07/2015] [Indexed: 11/17/2022]
|
10
|
Investigation of the in vitro toxicological properties of the synthetic cannabimimetic drug CP-47,497-C8. Toxicol Appl Pharmacol 2014; 277:164-71. [PMID: 24686252 DOI: 10.1016/j.taap.2014.03.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/14/2014] [Accepted: 03/19/2014] [Indexed: 12/20/2022]
Abstract
Cannabicyclohexanol (CP-47,497-C8) is a representative of a group of cannabimimetic cyclohexylphenols which is added to herbal mixtures as a cannabis substitute since 2008. Although in the beginning CP-47,497-C8 was the main ingredient of "Spice" and similar products, it was partly replaced by aminoalkylindole-type cannabinoid receptor agonists like JWH-018, JWH-073 or JWH-250, but never completely disappeared from the market. Since information on its toxicological properties is scarce, we investigated the effects of the drug in human derived cell lines. The cytotoxic effects were studied in a panel of assays (SRB, XTT, LDHe and NR tests) in a buccal derived (TR146) and a liver derived (HepG2) cell line. The strongest effects were seen in the two former assays at levels ≥ 7.5 μM indicating that the compound interferes with protein synthesis and causes membrane damage. In additional comet assays, DNA damage was detected at levels ≥10 μM. Experiments with lesion specific enzymes showed that these effects are not due to oxidative damage of DNA bases. The negative findings obtained in Salmonella/microsome assays and the positive results of micronucleus tests with the cell lines indicate that the compound does not cause gene mutations but acts on the chromosomal level. In contrast to other synthetic cannabinoids, no indication for estrogenic/antiestrogenic properties was seen in a luciferase assay with bone marrow derived U2-OS cells. In conclusion, our findings show that the drug has only weak cytotoxic properties. However, the induction of chromosomal damage indicates that it may cause adverse effects in users due to its impact on the stability of the genetic material.
Collapse
|
11
|
Anderson RL, Randall MD, Chan SLF. The complex effects of cannabinoids on insulin secretion from rat isolated islets of Langerhans. Eur J Pharmacol 2013; 706:56-62. [PMID: 23499687 DOI: 10.1016/j.ejphar.2013.02.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 02/14/2013] [Accepted: 02/24/2013] [Indexed: 12/12/2022]
Abstract
Recent interest in the endocrine pancreas has revealed the presence of a functional endocannabinoid system in pancreatic islets, however, the effects of endocannabinoids and cannabinoid CB receptor activation on downstream signalling and on insulin release still remains unclear. In the current study, a variety of purported cannabinoid CB receptor agonists and antagonists were evaluated for their effects on insulin secretion. In fresh rat isolated islets, the endocannabinoid anandamide caused a glucose-dependent, concentration-dependent inhibition of insulin release, with two populations of islets being identified based on their sensitivity to anandamide. Methanandamide (a non-hydrolysable analogue of anandamide) elicited similar inhibition of insulin secretion, comparable to the responses obtained with anandamide-sensitive islets, suggesting that the islet responsiveness may be due to differences in local metabolism of anandamide. The antagonists O-2050 (CB1) and AM630 (CB2) failed to reveal the involvement of cannabinoid receptors in the inhibitory activity of anandamide on insulin release. Inhibition of fatty acid amide hydrolase (FAAH) with URB597 did not alter basal or glucose-induced insulin secretion, suggesting that endogenous islet endocannabinoids do not affect insulin release, or that islet FAAH content is low. URB597 also failed to affect the inhibitory actions of anandamide on insulin release in fresh isolated islets. However, in islets following overnight culture, anandamide caused augmentation of basal and glucose-mediated insulin release. The effects of cannabinoid agents on insulin secretion described in this study does not identify a precise mode of action but points to important modulation which may be dependent on local metabolism and prevailing cellular conditions.
Collapse
Affiliation(s)
- Richard L Anderson
- School of Biomedical Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, United Kingdom
| | | | | |
Collapse
|
12
|
Lara-Celador I, Castro-Ortega L, Alvarez A, Goñi-de-Cerio F, Lacalle J, Hilario E. Endocannabinoids reduce cerebral damage after hypoxic-ischemic injury in perinatal rats. Brain Res 2012; 1474:91-9. [PMID: 22841538 DOI: 10.1016/j.brainres.2012.07.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Revised: 06/25/2012] [Accepted: 07/23/2012] [Indexed: 12/19/2022]
Abstract
Hypoxic-ischemic (HI) insult during the perinatal period remains as one of the most common causes of brain injury and produces long-term neurological deficits, and there is a growing need for effective therapies. The aim of the present work was to perform a prospective study designed to assess the possible protector effect of two endocannabinoids: 2-arachidonoylglycerol (2AG) and anandamide (AEA) in the brain after HI injury in perinatal rat model. We evaluate their effects on cell death and check several cellular parameters. 7-days-old Wistar rats were assigned to four different experimental groups (n=7-10): Sham, HI, and HI treated with 2AG or AEA. The injury was induced by the left carotid artery ligature and subsequent exposure to 8% O(2) for 120 min. Immediately after the injury, treated groups received a single dose of 2AG (1mg/kg) or AEA (5mg/kg) and then animals were sacrificed 24, 72 h or 7 days after the HI event. Brains fixed by perfusion were stained with Nissl for morphological studies, and non-fixed brains were dissociated and analyzed by flow cytometry to quantify apoptosis, mitochondrial state, intracellular calcium and reactive oxygen species. Our results show that both 2AG and AEA have beneficial effects after HI injury in this rat model, producing a remarkable amelioration of brain injury, reducing apoptotic cell death, contributing to the maintenance of mitochondrial functionality, and improving cellular parameters such as the influx of calcium and ROS production.
Collapse
Affiliation(s)
- Idoia Lara-Celador
- Department of Cell Biology and Histology, School of Medicine and Dentistry, University of the Basque Country, E-48940 Leioa, Vizcaya, Spain.
| | | | | | | | | | | |
Collapse
|
13
|
Sarne Y, Asaf F, Fishbein M, Gafni M, Keren O. The dual neuroprotective-neurotoxic profile of cannabinoid drugs. Br J Pharmacol 2012; 163:1391-401. [PMID: 21323910 DOI: 10.1111/j.1476-5381.2011.01280.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Extensive in vitro and in vivo studies have shown that cannabinoid drugs have neuroprotective properties and suggested that the endocannabinoid system may be involved in endogenous neuroprotective mechanisms. On the other hand, neurotoxic effects of cannabinoids in vitro and in vivo were also described. Several possible explanations for these dual, opposite effects of cannabinoids on cellular fate were suggested, and it is conceivable that various factors may determine the final outcome of the cannabinoid effect in vivo. In the current review, we focus on one of the possible reasons for the dual neuroprotective/neurotoxic effects of cannabinoids in vivo, namely, the opposite effects of low versus high doses of cannabinoids. While many studies reported neuroprotective effects of the conventional doses of cannabinoids in various experimental models for acute brain injuries, we have shown that a single administration of an extremely low dose of Δ(9) -tetrahydrocannabinol (THC) (3-4 orders of magnitude lower than the conventional doses) to mice induced long-lasting mild cognitive deficits that affected various aspects of memory and learning. These findings led to the idea that this low dose of THC, which induces minor damage to the brain, may activate preconditioning and/or postconditioning mechanisms and thus will protect the brain from more severe insults. Indeed, our recent findings support this assumption and show that a pre- or a postconditioning treatment with extremely low doses of THC, several days before or after brain injury, provides effective long-term cognitive neuroprotection. The future therapeutical potential of these findings is discussed.
Collapse
Affiliation(s)
- Yosef Sarne
- The Adelson Center for the Biology of Addictive Diseases and The Mauerberger Chair in Neuropharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel.
| | | | | | | | | |
Collapse
|