1
|
Thangaraj MP, Furber KL, Sobchishin L, Ji S, Doucette JR, Nazarali AJ. Does Sirt2 Regulate Cholesterol Biosynthesis During Oligodendroglial Differentiation In Vitro and In Vivo? Cell Mol Neurobiol 2018; 38:329-340. [PMID: 28828594 DOI: 10.1007/s10571-017-0537-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 08/10/2017] [Indexed: 12/25/2022]
Abstract
Sirtuin2 (SIRT2) is a deacetylase enzyme predominantly expressed in myelinating glia of the central nervous system (CNS). We have previously demonstrated that Sirt2 expression enhances oligodendrocyte (OL) differentiation and arborization in vitro, but the molecular targets of SIRT2 in OLs remain speculative. SIRT2 has been implicated in cholesterol biosynthesis by promoting the nuclear translocation of sterol regulatory element binding protein (SREBP)-2. We investigated this further in CNS myelination by examining the role of Sirt2 in cholesterol biosynthesis in vivo and in vitro employing Sirt2 -/- mice, primary OL cells and CG4-OL cells. Our results demonstrate that expression of cholesterol biosynthetic genes in the CNS white matter or cholesterol content in purified myelin fractions did not differ between Sirt2 -/- and age-matched wild-type mice. Cholesterol biosynthetic gene expression profiles and total cholesterol content were not altered in primary OLs from Sirt2 -/- mice and in CG4-OLs when Sirt2 was either down-regulated with RNAi or overexpressed. In addition, Sirt2 knockdown or overexpression in CG4-OLs had no effect on SREBP-2 nuclear translocation. Our results indicate that Sirt2 does not impact the expression of genes encoding enzymes involved in cholesterol biosynthesis, total cholesterol content, or nuclear translocation of SREBP-2 during OL differentiation and myelination.
Collapse
Affiliation(s)
- Merlin P Thangaraj
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada.
- Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada.
| | - Kendra L Furber
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
- Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada
| | - LaRhonda Sobchishin
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
- Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada
| | - Shaoping Ji
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
- Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Biochemistry and Molecular Biology, Medical School, Henan University, Kaifeng, China
| | - J Ronald Doucette
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada
- Cameco Multiple Sclerosis Neuroscience Research Center, City Hospital, Saskatoon, SK, Canada
| | - Adil J Nazarali
- Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
- Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, SK, Canada
- Cameco Multiple Sclerosis Neuroscience Research Center, City Hospital, Saskatoon, SK, Canada
| |
Collapse
|
2
|
Thangaraj MP, Furber KL, Gan JK, Ji S, Sobchishin L, Doucette JR, Nazarali AJ. RNA-binding Protein Quaking Stabilizes Sirt2 mRNA during Oligodendroglial Differentiation. J Biol Chem 2017; 292:5166-5182. [PMID: 28188285 DOI: 10.1074/jbc.m117.775544] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Indexed: 11/06/2022] Open
Abstract
Myelination is controlled by timely expression of genes involved in the differentiation of oligodendrocyte precursor cells (OPCs) into myelinating oligodendrocytes (OLs). Sirtuin 2 (SIRT2), a NAD+-dependent deacetylase, plays a critical role in OL differentiation by promoting both arborization and downstream expression of myelin-specific genes. However, the mechanisms involved in regulating SIRT2 expression during OL development are largely unknown. The RNA-binding protein quaking (QKI) plays an important role in myelination by post-transcriptionally regulating the expression of several myelin specific genes. In quaking viable (qkv/qkv ) mutant mice, SIRT2 protein is severely reduced; however, it is not known whether these genes interact to regulate OL differentiation. Here, we report for the first time that QKI directly binds to Sirt2 mRNA via a common quaking response element (QRE) located in the 3' untranslated region (UTR) to control SIRT2 expression in OL lineage cells. This interaction is associated with increased stability and longer half-lives of Sirt2.1 and Sirt2.2 transcripts leading to increased accumulation of Sirt2 transcripts. Consistent with this, overexpression of qkI promoted the expression of Sirt2 mRNA and protein. However, overexpression of the nuclear isoform qkI-5 promoted the expression of Sirt2 mRNA, but not SIRT2 protein, and delayed OL differentiation. These results suggest that the balance in the subcellular distribution and temporal expression of QKI isoforms control the availability of Sirt2 mRNA for translation. Collectively, our study demonstrates that QKI directly plays a crucial role in the post-transcriptional regulation and expression of Sirt2 to facilitate OL differentiation.
Collapse
Affiliation(s)
- Merlin P Thangaraj
- From the Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition and.,the Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Kendra L Furber
- From the Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition and.,the Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Jotham K Gan
- From the Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition and.,the Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - Shaoping Ji
- From the Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition and.,the Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.,the Department of Biochemistry and Molecular Biology, Medical School, Henan University, Kaifeng 475004, China
| | - Larhonda Sobchishin
- From the Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition and.,the Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - J Ronald Doucette
- the Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.,Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.,the Cameco Multiple Sclerosis Neuroscience Research Center, City Hospital, Saskatoon, Saskatchewan S7K 0M7, Canada, and
| | - Adil J Nazarali
- From the Laboratory of Molecular Cell Biology, College of Pharmacy and Nutrition and .,the Neuroscience Research Cluster, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada.,the Cameco Multiple Sclerosis Neuroscience Research Center, City Hospital, Saskatoon, Saskatchewan S7K 0M7, Canada, and
| |
Collapse
|
3
|
Bergiers I, Bridoux L, Nguyen N, Twizere JC, Rezsöhazy R. The homeodomain transcription factor Hoxa2 interacts with and promotes the proteasomal degradation of the E3 ubiquitin protein ligase RCHY1. PLoS One 2013; 8:e80387. [PMID: 24244684 PMCID: PMC3820564 DOI: 10.1371/journal.pone.0080387] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 10/02/2013] [Indexed: 12/19/2022] Open
Abstract
Hox proteins are conserved homeodomain transcription factors known to be crucial regulators of animal development. As transcription factors, the functions and modes of action (co-factors, target genes) of Hox proteins have been very well studied in a multitude of animal models. However, a handful of reports established that Hox proteins may display molecular activities distinct from gene transcription regulation. Here, we reveal that Hoxa2 interacts with 20S proteasome subunits and RCHY1 (also known as PIRH2), an E3 ubiquitin ligase that targets p53 for degradation. We further show that Hoxa2 promotes proteasome-dependent degradation of RCHY1 in an ubiquitin-independent manner. Correlatively, Hoxa2 alters the RCHY1-mediated ubiquitination of p53 and promotes p53 stabilization. Together, our data establish that Hoxa2 can regulate the proteasomal degradation of RCHY1 and stabilization of p53.
Collapse
Affiliation(s)
- Isabelle Bergiers
- Molecular and Cellular Animal Embryology Group, Life Sciences Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Laure Bridoux
- Molecular and Cellular Animal Embryology Group, Life Sciences Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Nathan Nguyen
- Molecular and Cellular Animal Embryology Group, Life Sciences Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jean-Claude Twizere
- Laboratory of Signaling and Protein Interactions, GIGA-R, University of Liege, Liège, Belgium
| | - René Rezsöhazy
- Molecular and Cellular Animal Embryology Group, Life Sciences Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
- * E-mail:
| |
Collapse
|
4
|
Cervellini I, Annenkov A, Brenton T, Chernajovsky Y, Ghezzi P, Mengozzi M. Erythropoietin (EPO) increases myelin gene expression in CG4 oligodendrocyte cells through the classical EPO receptor. Mol Med 2013; 19:223-9. [PMID: 23821361 DOI: 10.2119/molmed.2013.00013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 06/27/2013] [Indexed: 11/06/2022] Open
Abstract
Erythropoietin (EPO) has protective effects in neurodegenerative and neuroinflammatory diseases, including in animal models of multiple sclerosis, where EPO decreases disease severity. EPO also promotes neurogenesis and is protective in models of toxic demyelination. In this study, we asked whether EPO could promote neurorepair by also inducing remyelination. In addition, we investigated whether the effect of EPO could be mediated by the classical erythropoietic EPO receptor (EPOR), since it is still questioned if EPOR is functional in nonhematopoietic cells. Using CG4 cells, a line of rat oligodendrocyte precursor cells, we found that EPO increases the expression of myelin genes (myelin oligodendrocyte glycoprotein [MOG] and myelin basic protein [MBP]). EPO had no effect in wild-type CG4 cells, which do not express EPOR, whereas it increased MOG and MBP expression in cells engineered to overexpress EPOR (CG4-EPOR). This was reflected in a marked increase in MOG protein levels, as detected by Western blot. In these cells, EPO induced by 10-fold the early growth response gene 2 (Egr2), which is required for peripheral myelination. However, Egr2 silencing with a siRNA did not reverse the effect of EPO, indicating that EPO acts through other pathways. In conclusion, EPO induces the expression of myelin genes in oligodendrocytes and this effect requires the presence of EPOR. This study demonstrates that EPOR can mediate neuroreparative effects.
Collapse
|