1
|
Badaut J, Blochet C, Obenaus A, Hirt L. Physiological and pathological roles of caveolins in the central nervous system. Trends Neurosci 2024; 47:651-664. [PMID: 38972795 PMCID: PMC11324375 DOI: 10.1016/j.tins.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 05/14/2024] [Accepted: 06/12/2024] [Indexed: 07/09/2024]
Abstract
Caveolins are a family of transmembrane proteins located in caveolae, small lipid raft invaginations of the plasma membrane. The roles of caveolin-enriched lipid rafts are diverse, and include mechano-protection, lipid homeostasis, metabolism, transport, and cell signaling. Caveolin-1 (Cav-1) and other caveolins were described in endothelial cells and later in other cell types of the central nervous system (CNS), including neurons, astrocytes, oligodendrocytes, microglia, and pericytes. This pancellular presence of caveolins demands a better understanding of their functional roles in each cell type. In this review we describe the various functions of Cav-1 in the cells of normal and pathological brains. Several emerging preclinical findings suggest that Cav-1 could represent a potential therapeutic target in brain disorders.
Collapse
Affiliation(s)
- Jérôme Badaut
- CNRS UMR 5536 RMSB-University of Bordeaux, Bordeaux, France; Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA.
| | - Camille Blochet
- Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland; Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| | - André Obenaus
- Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA; Division of Biomedical Sciences, University of California Riverside, Riverside, CA, USA
| | - Lorenz Hirt
- Department of Clinical Neurosciences, CHUV, Lausanne, Switzerland; Department of Fundamental Neuroscience, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
2
|
Jozic I, Abujamra BA, Elliott MH, Wikramanayake TC, Marjanovic J, Stone RC, Head CR, Pastar I, Kirsner RS, Andreopoulos FM, Musi JP, Tomic-Canic M. Glucocorticoid-mediated induction of caveolin-1 disrupts cytoskeletal organization, inhibits cell migration and re-epithelialization of non-healing wounds. Commun Biol 2021; 4:757. [PMID: 34145387 PMCID: PMC8213848 DOI: 10.1038/s42003-021-02298-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/28/2021] [Indexed: 12/17/2022] Open
Abstract
Although impaired keratinocyte migration is a recognized hallmark of chronic wounds, the molecular mechanisms underpinning impaired cell movement are poorly understood. Here, we demonstrate that both diabetic foot ulcers (DFUs) and venous leg ulcers (VLUs) exhibit global deregulation of cytoskeletal organization in genomic comparison to normal skin and acute wounds. Interestingly, we found that DFUs and VLUs exhibited downregulation of ArhGAP35, which serves both as an inactivator of RhoA and as a glucocorticoid repressor. Since chronic wounds exhibit elevated levels of cortisol and caveolin-1 (Cav1), we posited that observed elevation of Cav1 expression may contribute to impaired actin-cytoskeletal signaling, manifesting in aberrant keratinocyte migration. We showed that Cav1 indeed antagonizes ArhGAP35, resulting in increased activation of RhoA and diminished activation of Cdc42, which can be rescued by Cav1 disruption. Furthermore, we demonstrate that both inducible keratinocyte specific Cav1 knockout mice, and MβCD treated diabetic mice, exhibit accelerated wound closure. Taken together, our findings provide a previously unreported mechanism by which Cav1-mediated cytoskeletal organization prevents wound closure in patients with chronic wounds.
Collapse
Affiliation(s)
- Ivan Jozic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Beatriz Abdo Abujamra
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Michael H Elliott
- Departments of Ophthalmology, Physiology, and Oklahoma Center for Neuroscience, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Tongyu C Wikramanayake
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jelena Marjanovic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Rivka C Stone
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Cheyanne R Head
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Robert S Kirsner
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Fotios M Andreopoulos
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Juan P Musi
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA.
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
3
|
Abstract
Since the initial reports implicating caveolin-1 (CAV1) in neoplasia, the scientific community has made tremendous strides towards understanding how CAV1-dependent signaling and caveolae assembly modulate solid tumor growth. Once a solid neoplastic tumor reaches a certain size, it will increasingly rely on its stroma to meet the metabolic demands of the rapidly proliferating cancer cells, a limitation typically but not exclusively addressed via the formation of new blood vessels. Landmark studies using xenograft tumor models have highlighted the importance of stromal CAV1 during neoplastic blood vessel growth from preexisting vasculature, a process called angiogenesis, and helped identify endothelium-specific signaling events regulated by CAV1, such as vascular endothelial growth factor (VEGF) receptors as well as the endothelial nitric oxide (NO) synthase (eNOS) systems. This chapter provides a glimpse into the signaling events modulated by CAV1 and its scaffolding domain (CSD) during endothelial-specific aspects of neoplastic growth, such as vascular permeability, angiogenesis, and mechanotransduction.
Collapse
Affiliation(s)
- Pascal Bernatchez
- Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia (UBC), 2176 Health Sciences mall, room 217, Vancouver, BC, V6T 1Z3, Canada. .,Centre for Heart & Lung Innovation, St. Paul's Hospital, Vancouver, Canada.
| |
Collapse
|
4
|
Caveolin-1 Scaffolding Domain Peptide Regulates Colon Endothelial Cell Survival through JNK Pathway. Int J Inflam 2020; 2020:6150942. [PMID: 35013693 PMCID: PMC8742180 DOI: 10.1155/2020/6150942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 11/18/2022] Open
Abstract
It has been reported that pathological angiogenesis contributes to both experimental colitis and inflammatory bowel disease. Recently, we demonstrated that endothelial caveolin-1 plays a key role in the pathological angiogenesis of dextran sodium sulfate (DSS) colitis. However, the molecular mechanism of caveolin-1 regulation of endothelial function is unknown. In this study, we examined how the antennapedia- (AP-) conjugated caveolin-1 scaffolding domain (AP-Cav) modulates vascular endothelial growth factor- (VEGF-) dependent colon endothelial cell angiogenic responses, as seen during colitis. We used mouse colon endothelial cells and found that AP-Cav significantly inhibited VEGF-mediated bromodeoxyuridine (BrdU) incorporation into colon microvascular endothelial cells. AP-Cav significantly blunted VEGF-dependent extracellular signal-regulated kinase 1/2 (ERK 1/2) phosphorylation at 10 minutes and 2 hours after stimulation, compared with the AP control peptide. AP-Cav + VEGF-A treatment also significantly increased c-Jun N-terminal kinase (JNK) phosphorylation at 2 hours. AP-Cav + VEGF-A treatment significantly downregulated retinoblastoma (Rb) protein levels, upregulated cleaved caspase-3 protein levels at 4 hours, and induced apoptosis. Thus, our study suggests that disruption of endothelial caveolin-1 function via the AP-Cav diverts VEGF signaling responses away from endothelial cell proliferation and toward apoptosis through the inhibition of mitogen-activated protein (MAP) kinase signaling and the induction of JNK-associated apoptosis.
Collapse
|
5
|
Shi YB, Li J, Lai XN, Jiang R, Zhao RC, Xiong LX. Multifaceted Roles of Caveolin-1 in Lung Cancer: A New Investigation Focused on Tumor Occurrence, Development and Therapy. Cancers (Basel) 2020; 12:cancers12020291. [PMID: 31991790 PMCID: PMC7073165 DOI: 10.3390/cancers12020291] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/13/2020] [Accepted: 01/22/2020] [Indexed: 12/26/2022] Open
Abstract
Lung cancer is one of the most common and malignant cancers with extremely high morbidity and mortality in both males and females. Although traditional lung cancer treatments are fast progressing, there are still limitations. Caveolin-1 (Cav-1), a main component of caveolae, participates in multiple cellular events such as immune responses, endocytosis, membrane trafficking, cellular signaling and cancer progression. It has been found tightly associated with lung cancer cell proliferation, migration, apoptosis resistance and drug resistance. In addition to this, multiple bioactive molecules have been confirmed to target Cav-1 to carry on their anti-tumor functions in lung cancers. Cav-1 can also be a predictor for lung cancer patients’ prognosis. In this review, we have summarized the valuable research on Cav-1 and lung cancer in recent years and discussed the multifaceted roles of Cav-1 on lung cancer occurrence, development and therapy, hoping to provide new insights into lung cancer treatment.
Collapse
Affiliation(s)
- Yu-Bo Shi
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Y.-B.S.); (J.L.); (X.-N.L.); (R.-C.Z.)
- Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang 330006, China;
| | - Jun Li
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Y.-B.S.); (J.L.); (X.-N.L.); (R.-C.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Xing-Ning Lai
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Y.-B.S.); (J.L.); (X.-N.L.); (R.-C.Z.)
- Second Clinical Medical College, Nanchang University, Nanchang 330006, China
| | - Rui Jiang
- Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang 330006, China;
| | - Rui-Chen Zhao
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Y.-B.S.); (J.L.); (X.-N.L.); (R.-C.Z.)
- Queen Mary School, Jiangxi Medical College of Nanchang University, Nanchang 330006, China;
| | - Li-Xia Xiong
- Department of Pathophysiology, Basic Medical College, Nanchang University, Nanchang 330006, China; (Y.-B.S.); (J.L.); (X.-N.L.); (R.-C.Z.)
- Jiangxi Province Key Laboratory of Tumor Pathogenesis and Molecular Pathology, Nanchang 330006, China
- Correspondence: ; Tel.: +86-791-8636-0556
| |
Collapse
|
6
|
Okada S, Raja SA, Okerblom J, Boddu A, Horikawa Y, Ray S, Okada H, Kawamura I, Murofushi Y, Murray F, Patel HH. Deletion of caveolin scaffolding domain alters cancer cell migration. Cell Cycle 2019; 18:1268-1280. [PMID: 31116089 DOI: 10.1080/15384101.2019.1618118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Caveolin-1 (Cav-1) is an integral membrane protein that plays an important role in proliferative and terminally differentiated cells. As a structural component of Caveolae, Cav-1 interacts with signaling molecules via a caveolin scaffolding domain (CSD) regulating cell signaling. Recent reports have shown that Cav-1 is a negative regulator in tumor metastasis. Therefore, we hypothesize that Cav-1 inhibits cell migration through its CSD. HeLa cells were engineered to overexpress Cav-1 (Cav-1 OE), Cav-1 without a functional CSD (∆CSD), or enhanced green fluorescent protein (EGFP) as a control. HeLa cell migration was suppressed in Cav-1 OE cells while ∆CSD showed increased migration, which corresponded to a decrease in the tight junction protein, zonula occludens (ZO-1). The migration phenotype was confirmed in multiple cancer cell lines. Phosphorylated STAT-3 was decreased in Cav-1 OE cells compared to control and ∆CSD cells; reducing STAT-3 expression alone decreased cell migration. ∆CSD blunted HeLa proliferation by increasing the number of cells in the G2/M phase of the cell cycle. Overexpressing the CSD peptide alone suppressed HeLa cell migration and inhibited pSTAT3. These findings suggest that Cav-1 CSD may be critical in controlling the dynamic phenotype of cancer cells by facilitating the interaction of specific signal transduction pathways, regulating STAT3 and participating in a G2/M checkpoint. Modulating the CSD and targeting specific proteins may offer potential new therapies in the treatment of cancer metastasis.
Collapse
Affiliation(s)
- Sunaho Okada
- a Veterans Administration San Diego Healthcare System , San Diego , CA , USA.,b Department of Anesthesiology and UCSD School of Medicine , San Diego , CA , USA
| | - Sadaf A Raja
- c Department of Biosciences , COMSATS Institute of Information Technology , Islamabad , Pakistan
| | - Jonathan Okerblom
- a Veterans Administration San Diego Healthcare System , San Diego , CA , USA.,b Department of Anesthesiology and UCSD School of Medicine , San Diego , CA , USA
| | - Aayush Boddu
- a Veterans Administration San Diego Healthcare System , San Diego , CA , USA.,b Department of Anesthesiology and UCSD School of Medicine , San Diego , CA , USA
| | - Yousuke Horikawa
- d Department of Pediatrics , Sharp Rees-Stealy Medical Group , San Diego , CA , USA.,e Department of Anesthesiology , Tokushima University , Tokushima , Japan
| | | | - Hideshi Okada
- a Veterans Administration San Diego Healthcare System , San Diego , CA , USA.,g Department of Anesthesiology and Medicine , UCSD School of Medicine , San Diego , CA , USA.,h Department of Emergency and Disaster Medicine , Gifu University Graduate School of Medicine , Gifu , Japan
| | - Itta Kawamura
- i Department of Cardiovascular Medicine , Gifu Heart Center , Gifu , Japan
| | - Yoshiteru Murofushi
- g Department of Anesthesiology and Medicine , UCSD School of Medicine , San Diego , CA , USA
| | - Fiona Murray
- j Aberdeen Cardiovascular & Diabetes Centre, School of Medicine, Medical Sciences & Nutrition, Institute of Medical Sciences , University of Aberdeen , Aberdeen , Scotland
| | - Hemal H Patel
- a Veterans Administration San Diego Healthcare System , San Diego , CA , USA.,b Department of Anesthesiology and UCSD School of Medicine , San Diego , CA , USA
| |
Collapse
|
7
|
Caveolin-1 Protects Retinal Ganglion Cells against Acute Ocular Hypertension Injury via Modulating Microglial Phenotypes and Distribution and Activating AKT pathway. Sci Rep 2017; 7:10716. [PMID: 28878269 PMCID: PMC5587691 DOI: 10.1038/s41598-017-10719-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/14/2017] [Indexed: 01/08/2023] Open
Abstract
Glaucoma, a group of eye diseases, causes gradual loss of retinal ganglion cells (RGCs) and ultimately results in irreversible blindness. Studies of the underlying mechanisms of glaucoma and clinical trial are far from satisfactory. Results from a genome-wide association study have suggested that the CAV1/CAV2 locus is associated with glaucoma, but this association and its potential underlying mechanisms need to be confirmed and further explored. Here, we studied the function of caveolin-1 (Cav1) in an acute ocular hypertension glaucoma model. Cav1 deficiency caused an aggregated lesion in the retina. In addition, treatment with cavtratin, a membrane permeable Cav1 scaffolding domain peptide, enhanced RGC survival. After cavtratin treatment, microglial numbers decreased significantly, and the majority of them migrated from the inner retinal layer to the outer retinal layers. Furthermore, cavtratin promoted a change in the microglia phenotype from the neurotoxic pro-inflammatory M1 to the neuroprotective anti-inflammatory M2. In a molecular mechanism experiment, we found that cavtratin activated the phosphorylation of both AKT and PTEN in cultured N9 cells. Our data highlights the neuroprotective effect of Cav1 on acute ocular hypertension and suggests that Cav1 may serve as a novel therapeutic target for the treatment of glaucoma. We further propose that cavtratin is a therapeutic candidate for glaucoma clinical trials.
Collapse
|
8
|
Liao L, Zheng B, Yi B, Liu C, Chen L, Zeng Z, Gao J. Annexin A2-modulated proliferation of pulmonary arterial smooth muscle cells depends on caveolae and caveolin-1 in hepatopulmonary syndrome. Exp Cell Res 2017; 359:266-274. [PMID: 28729092 DOI: 10.1016/j.yexcr.2017.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/14/2017] [Accepted: 07/15/2017] [Indexed: 11/25/2022]
Abstract
We have established that annexin A2 (ANXA2) is an important factor in the experimental hepatopulmonary syndrome (HPS) serum-induced proliferation of pulmonary arterial smooth muscle cells (PASMCs). However, the detailed mechanism remains unclear. ANXA2 translocated to the caveolin-enriched microdomains (caveolae) in PASMCs upon HPS serum stimulation. The disruption of caveolae by Methyl-β-cyclodextrin (MβCD) alleviated the caveolae recruitment of ANXA2 and the ANXA2-mediated activation of ERK1/2 and NF-κB, so that ANXA2-modulated PASMC proliferation was suppressed. The over-expression of Cav-1 resulted in the relocation of ANXA2 from caveolae and negatively regulated ERK1/2 and NF-κB activation, which inhibited the ANXA2-modulated PASMC proliferative behavior. These data indicate that caveolae function as a signaling platform for ANXA2-induced proliferative behavior and Cav-1 participates upstream of ANXA2 in the activation of ERK1/2 and NF-κB.
Collapse
Affiliation(s)
- Lin Liao
- Department of Anesthesia, People's Hospital of Qijiang District, Chongqing 401420, China
| | - Binwu Zheng
- Department of Anesthesia, People's Hospital of Rongchang County, Chongqing 402460, China
| | - Bin Yi
- Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Chang Liu
- Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Lin Chen
- Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China
| | - Ziyang Zeng
- Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China.
| | - Jing Gao
- Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038, China.
| |
Collapse
|
9
|
Xu H, Zhang L, Chen W, Xu J, Zhang R, Liu R, Zhou L, Hu W, Ju R, Lee C, Lu W, Kumar A, Li X, Tang Z. Inhibitory effect of caveolin-1 in vascular endothelial cells, pericytes and smooth muscle cells. Oncotarget 2017; 8:76165-76173. [PMID: 29100301 PMCID: PMC5652695 DOI: 10.18632/oncotarget.19191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 06/19/2017] [Indexed: 11/25/2022] Open
Abstract
Caveolin-1 (Cav1) is the principle structural protein of caveolae. It plays important roles in the vascular system under both physiological and pathological conditions. Although Cav1 has been shown to inhibit microvascular permeability and has been considered as a tumor-suppressor for years, the underlying cellular mechanism has yet to be discovered. Here, we systematically investigated Cav1 functions in the main types of vascular cells, including endothelial cells (ECs), pericytes (PCs) and smooth muscle cells (SMCs). We synthesized a cell-permeable peptide called cavtratin that is derived from the Cav1 scaffolding domain. We found that cavtratin inhibited ECs in all assays, including survival, proliferation, migration and permeability assays. It also inhibited the proliferation of PCs and SMCs but had no effect on their survival or migration. The inhibitory effect of cavtratin on the proliferation of all vascular cells suggests that Cav1 plays important roles in vascular development and angiogenesis. Under physiological condition, the main function of Cav1 is to inhibit EC permeability.
Collapse
Affiliation(s)
- Hongping Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Liwei Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Wei Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Jiazhou Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Ruting Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Ran Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Lan Zhou
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Wenjie Hu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Chunsik Lee
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Weisi Lu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Anil Kumar
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| | - Zhongshu Tang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, P. R. China
| |
Collapse
|
10
|
Kraehling JR, Sessa WC. Contemporary Approaches to Modulating the Nitric Oxide-cGMP Pathway in Cardiovascular Disease. Circ Res 2017; 120:1174-1182. [PMID: 28360348 DOI: 10.1161/circresaha.117.303776] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endothelial cells lining the vessel wall control important aspects of vascular homeostasis. In particular, the production of endothelium-derived nitric oxide and activation of soluble guanylate cyclase promotes endothelial quiescence and governs vasomotor function and proportional remodeling of blood vessels. Here, we discuss novel approaches to improve endothelial nitric oxide generation and preserve its bioavailability. We also discuss therapeutic opportunities aimed at activation of soluble guanylate cyclase for multiple cardiovascular indications.
Collapse
Affiliation(s)
- Jan R Kraehling
- From the Vascular Biology and Therapeutics Program (J.R.K.) and Department of Pharmacology (W.C.S.), Yale University, School of Medicine, New Haven, CT
| | - William C Sessa
- From the Vascular Biology and Therapeutics Program (J.R.K.) and Department of Pharmacology (W.C.S.), Yale University, School of Medicine, New Haven, CT.
| |
Collapse
|
11
|
Caveolin proteins: a molecular insight into disease. Front Med 2016; 10:397-404. [DOI: 10.1007/s11684-016-0483-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 08/17/2016] [Indexed: 12/31/2022]
|
12
|
Trane AE, Hiob MA, Uy T, Pavlov D, Bernatchez P. Caveolin-1 scaffolding domain residue phenylalanine 92 modulates Akt signaling. Eur J Pharmacol 2015; 766:46-55. [DOI: 10.1016/j.ejphar.2015.09.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 09/18/2015] [Accepted: 09/21/2015] [Indexed: 02/02/2023]
|
13
|
Chang JYH, Stamer WD, Bertrand J, Read AT, Marando CM, Ethier CR, Overby DR. Role of nitric oxide in murine conventional outflow physiology. Am J Physiol Cell Physiol 2015; 309:C205-14. [PMID: 26040898 DOI: 10.1152/ajpcell.00347.2014] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 05/30/2015] [Indexed: 11/22/2022]
Abstract
Elevated intraocular pressure (IOP) is the main risk factor for glaucoma. Exogenous nitric oxide (NO) decreases IOP by increasing outflow facility, but whether endogenous NO production contributes to the physiological regulation of outflow facility is unclear. Outflow facility was measured by pressure-controlled perfusion in ex vivo eyes from C57BL/6 wild-type (WT) or transgenic mice expressing human endothelial NO synthase (eNOS) fused to green fluorescent protein (GFP) superimposed on the endogenously expressed murine eNOS (eNOS-GFPtg). In WT mice, exogenous NO delivered by 100 μM S-nitroso-N-acetylpenicillamine (SNAP) increased outflow facility by 62 ± 28% (SD) relative to control eyes perfused with the inactive SNAP analog N-acetyl-d-penicillamine (NAP; n = 5, P = 0.016). In contrast, in eyes from eNOS-GFPtg mice, SNAP had no effect on outflow facility relative to NAP (-9 ± 4%, P = 0.40). In WT mice, the nonselective NOS inhibitor N(G)-nitro-l-arginine methyl ester (l-NAME, 10 μM) decreased outflow facility by 36 ± 13% (n = 5 each, P = 0.012), but 100 μM l-NAME had no detectable effect on outflow facility (-16 ± 5%, P = 0.22). An eNOS-selective inhibitor (cavtratin, 50 μM) decreased outflow facility by 19 ± 12% in WT (P = 0.011) and 39 ± 25% in eNOS-GFPtg (P = 0.014) mice. In the conventional outflow pathway of eNOS-GFPtg mice, eNOS-GFP expression was localized to endothelial cells lining Schlemm's canal and the downstream vessels, with no apparent expression in the trabecular meshwork. These results suggest that endogenous NO production by eNOS within endothelial cells of Schlemm's canal or downstream vessels contributes to the physiological regulation of aqueous humor outflow facility in mice, representing a viable strategy to more successfully lower IOP in glaucoma.
Collapse
Affiliation(s)
- Jason Y H Chang
- Department of Bioengineering, Imperial College London, London, United Kingdom; Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - W Daniel Stamer
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Jacques Bertrand
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - A Thomas Read
- Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Ontario, Canada; and
| | - Catherine M Marando
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - C Ross Ethier
- Department of Bioengineering, Imperial College London, London, United Kingdom; Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Darryl R Overby
- Department of Bioengineering, Imperial College London, London, United Kingdom;
| |
Collapse
|
14
|
Plasmodium falciparum avoids change in erythrocytic surface expression of phagocytosis markers during inhibition of nitric oxide synthase activity. Mol Biochem Parasitol 2014; 198:29-36. [PMID: 25454716 DOI: 10.1016/j.molbiopara.2014.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 10/05/2014] [Accepted: 11/20/2014] [Indexed: 01/11/2023]
Abstract
Nitric oxide (NO) accumulates in Plasmodium falciparum-infected erythrocytes. It may be produced by a parasite NO synthase (NOS) or by nitrate reduction. The parasite's benefit of NO accumulation is not understood. We investigated if inhibiting the P. falciparum NOS with specific and unspecific NOS inhibitors led to a decrease in intraerythrocytic NO accumulation and if this was associated with a change in surface expression of the phagocytosis markers CD47 and phosphatidyl serine. The specific inducible NOS inhibitors l-canavanine and GW274150 dose-dependently decreased intraerythrocytic NO while l-NMMA (an unspecific NOS inhibitor) and caveolin-1 scaffolding domain peptide (a specific endothelial NOS inhibitor) did not affect NO levels. Phosphatidyl serine externalization markedly increased upon P. falciparum infection. l-canavanine did not modify this whereas caveolin-1 scaffolding domain peptide increased the fraction of phosphatidyl serine exposing cells significantly. The infection did not change the level of expression of neither total CD47 nor its oxidized form. Unrelated to NOS inhibition, incubation with caveolin-1 scaffolding domain peptide lead to a decrease in oxidized CD47. In conclusion, the data imply that NOS inhibitors decrease NO accumulation in P. falciparum-infected erythrocytes but this does not correlate with the level of two major erythrocytic phagocytosis markers.
Collapse
|
15
|
Schmitz M, Lüllmann K, Zafar S, Ebert E, Wohlhage M, Oikonomou P, Schlomm M, Mitrova E, Beekes M, Zerr I. Association of prion protein genotype and scrapie prion protein type with cellular prion protein charge isoform profiles in cerebrospinal fluid of humans with sporadic or familial prion diseases. Neurobiol Aging 2013; 35:1177-88. [PMID: 24360565 DOI: 10.1016/j.neurobiolaging.2013.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 10/31/2013] [Accepted: 11/10/2013] [Indexed: 01/03/2023]
Abstract
The present study investigates whether posttranslational modifications of cellular prion protein (PrP(C)) in the cerebrospinal fluid (CSF) of humans with prion diseases are associated with methionine (M) and/or valine (V) polymorphism at codon 129 of the prion protein gene (PRNP), scrapie prion protein (PrP(Sc)) type in sporadic Creutzfeldt-Jakob disease (sCJD), or PRNP mutations in familial Creutzfeldt-Jakob disease (fCJD/E200K), and fatal familial insomnia (FFI). We performed comparative 2-dimensional immunoblotting of PrP(C) charge isoforms in CSF samples from cohorts of diseased and control donors. Mean levels of total PrP(C) were significantly lower in the CSF from fCJD patients than from those with sCJD or FFI. Of the 12 most abundant PrP(C) isoforms in the examined CSF, one (IF12) was relatively decreased in (1) sCJD with VV (vs. MM or MV) at PRNP codon 129; (2) in sCJD with PrP(Sc) type 2 (vs. PrP(Sc) type 1); and (3) in FFI versus sCJD or fCJD. Furthermore, truncated PrP(C) species were detected in sCJD and control samples without discernible differences. Finally, serine 43 of PrP(C) in the CSF and brain tissue from CJD patients showed more pronounced phosphorylation than in control donors.
Collapse
Affiliation(s)
- Matthias Schmitz
- Department of Neurology, Clinical Dementia Center and DZNE Georg-August University, Göttingen, Germany.
| | - Katharina Lüllmann
- Department of Neurology, Clinical Dementia Center and DZNE Georg-August University, Göttingen, Germany
| | - Saima Zafar
- Department of Neurology, Clinical Dementia Center and DZNE Georg-August University, Göttingen, Germany
| | - Elisabeth Ebert
- Department of Neurology, Clinical Dementia Center and DZNE Georg-August University, Göttingen, Germany
| | - Marie Wohlhage
- Department of Neurology, Clinical Dementia Center and DZNE Georg-August University, Göttingen, Germany
| | - Panteleimon Oikonomou
- Department of Neurology, Clinical Dementia Center and DZNE Georg-August University, Göttingen, Germany
| | - Markus Schlomm
- Department of Neurology, Clinical Dementia Center and DZNE Georg-August University, Göttingen, Germany
| | - Eva Mitrova
- Slovak Medical University, Bratislava, Slovakia
| | - Michael Beekes
- Robert Koch-Institute, FG 14 - AG 5: Work Group Unconventional Pathogens and Their Inactivation, Division of Applied Infection Control and Nosocomial Hygiene, Berlin, Germany
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center and DZNE Georg-August University, Göttingen, Germany
| |
Collapse
|
16
|
Quann K, Gonzales DM, Mercier I, Wang C, Sotgia F, Pestell RG, Lisanti MP, Jasmin JF. Caveolin-1 is a negative regulator of tumor growth in glioblastoma and modulates chemosensitivity to temozolomide. Cell Cycle 2013; 12:1510-20. [PMID: 23598719 PMCID: PMC3680531 DOI: 10.4161/cc.24497] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Caveolin-1 (Cav-1) is a critical regulator of tumor progression in a variety of cancers where it has been shown to act as either a tumor suppressor or tumor promoter. In glioblastoma multiforme, it has been previously demonstrated to function as a putative tumor suppressor. Our studies here, using the human glioblastoma-derived cell line U-87MG, further support the role of Cav-1 as a negative regulator of tumor growth. Using a lentiviral transduction approach, we were able to stably overexpress Cav-1 in U-87MG cells. Gene expression microarray analyses demonstrated significant enrichment in gene signatures corresponding to downregulation of MAPK, PI3K/AKT and mTOR signaling, as well as activation of apoptotic pathways in Cav-1-overexpressing U-87MG cells. These same gene signatures were later confirmed at the protein level in vitro. To explore the ability of Cav-1 to regulate tumor growth in vivo, we further show that Cav-1-overexpressing U-87MG cells display reduced tumorigenicity in an ectopic xenograft mouse model, with marked hypoactivation of MAPK and PI3K/mTOR pathways. Finally, we demonstrate that Cav-1 overexpression confers sensitivity to the most commonly used chemotherapy for glioblastoma, temozolomide. In conclusion, Cav-1 negatively regulates key cell growth and survival pathways and may be an effective biomarker for predicting response to chemotherapy in glioblastoma.
Collapse
Affiliation(s)
- Kevin Quann
- Department of Stem Cell Biology & Regenerative Medicine, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Senetta R, Stella G, Pozzi E, Sturli N, Massi D, Cassoni P. Caveolin-1 as a promoter of tumour spreading: when, how, where and why. J Cell Mol Med 2013; 17:325-36. [PMID: 23521716 PMCID: PMC3823014 DOI: 10.1111/jcmm.12030] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/15/2013] [Indexed: 11/29/2022] Open
Abstract
Caveolae are non-clathrin invaginations of the plasma membrane in most cell types; they are involved in signalling functions and molecule trafficking, thus modulating several biological functions, including cell growth, apoptosis and angiogenesis. The major structural protein in caveolae is caveolin-1, which is known to act as a key regulator in cancer onset and progression through its role as a tumour suppressor. Caveolin-1 can also promote cell proliferation, survival and metastasis as well as chemo- and radioresistance. Here, we discuss recent findings and novel concepts that support a role for caveolin-1 in cancer development and its distant spreading. We also address the potential application of caveolin-1 in tumour therapy and diagnosis.
Collapse
Affiliation(s)
- Rebecca Senetta
- Department of Medical Sciences, University of Turin, Turin, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Kuo SR, Tahir SA, Park S, Thompson TC, Coffield S, Frankel AE, Liu JS. Anti-caveolin-1 antibodies as anti-prostate cancer therapeutics. Hybridoma (Larchmt) 2012; 31:77-86. [PMID: 22509911 DOI: 10.1089/hyb.2011.0100] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Caveolae are critical cell surface structures important in coordinated cell signaling and endocytosis. One of the major proteins of caveolae is caveolin 1 (Cav-1). Cellular levels of Cav-1 are associated with cancer progression. In prostate cancer cells, levels of Cav-1 are positively correlated with tumor progression and metastasis. Cav-1 can be secreted by prostate cancer cells into the microenvironment and triggers proliferation and anti-apoptosis of the tumor and tumor endothelial cells. Clinical studies have shown increased serum Cav-1 levels in patients with poor prognosis. In tissue culture and animal model experiments, blocking secreted Cav-1 by polyclonal antibodies inhibits tumor cell growth. Cav-1 is therefore a potential therapeutic target for prostate cancer treatment. In this study, we used Cav-1 knock-out mice as hosts to produce monoclonal anti-Cav-1 antibodies. A total of 11 hybridoma cell lines were selected for their ability to produce antibodies that bound GST-Cav-1 but not GST on glutathione-coated ELISA plates. Further screening with ELISAs using GST-Cav-1 fragments on GSH-coated plates classified these antibodies into four groups: N1-31 with five antibodies binds the far N-terminus between amino acids 1 and 31; N32-80 with three antibodies binds between amino acids 32 and 80; CSD with two antibodies potentially bind the scaffolding domain (amino acids 80-101); and Cav-1-C with 1 antibody binds parts of the C-terminal half. Binding affinities (Kd) of these antibodies to soluble Cav-1 ranged from 10(-11) to 10(-8) M. Binding competition experiments revealed that these antibodies recognized a total of six different epitopes on Cav-1. Potency of these antibodies to neutralize Cav-1-mediated signaling pathways in cultured cells and in animal models will be tested. A selected monoclonal antibody will then be humanized and be further developed into a potential anti-prostate cancer therapeutic.
Collapse
Affiliation(s)
- Shu-Ru Kuo
- Cancer Research Institute, Department of Medicine, Scott & White Hospital, Texas A&M University Health Science Center, Temple, Texas 76502, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Schmitz M, Signore SC, Zerr I, Althaus HH. Oligodendroglial process formation is differentially affected by modulating the intra- and extracellular cholesterol content. J Mol Neurosci 2012; 49:457-69. [PMID: 22740150 PMCID: PMC3566395 DOI: 10.1007/s12031-012-9833-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 06/04/2012] [Indexed: 12/12/2022]
Abstract
Cholesterol is an essential component of eukaryotic plasma membranes and plays an important role in membrane organization and signaling processes. It is the major lipid component of detergent resistant caveolin-1 containing rafts which previously had been reported as a platform for nerve growth factor (NGF) signaling in oligodendrocytes (OL). Surprisingly, a knockdown of caveolin-1 attenuated the process formation of OL (Schmitz et al. J Neurosci Res 88:572–588, 2010), for which a loss of cholesterol could be responsible. In the present report, we could show that a caveolin-1 knockdown resulted in an elevation of cellular cholesterol level; it may indicate an important role of caveolin-1 in cholesterol trafficking to the plasma membrane. Treatment with exogenous PEG cholesterol, which was incorporated to the plasma membrane, supported oligodendroglial process formation, in particular when OL were stimulated by NGF. In this context we have found that OL express NPC1L1 (Niemann–Pick disease type C1-Like 1) which could modulate cholesterol uptake. In contrast, depletion of membrane-bound cholesterol diminished NGF-induced process formation concomitant with a reduced activity of p42/44 mitogen-activated protein kinases.
Collapse
Affiliation(s)
- Matthias Schmitz
- Max-Planck Institute of Experimental Medicine, RU Neural Regeneration, Hermann-Rein-Straße 3, 37075, Goettingen, Germany.
| | | | | | | |
Collapse
|
20
|
Abstract
Glioblastoma multiforme (GBM) is the most common malignant brain tumor and is characterized by high invasiveness, poor prognosis, and limited therapeutic options. Biochemical and morphological experiments have shown the presence of caveolae in glioblastoma cells. Caveolae are flask-shaped plasma membrane subdomains that play trafficking, mechanosensing, and signaling roles. Caveolin-1 is a membrane protein that participates in the formation of caveolae and binds a multitude of signaling proteins, compartmentalizing them in caveolae and often directly regulating their activity via binding to its scaffolding domain. Caveolin-1 has been proposed to behave either as a tumor suppressor or as an ongogene depending on the tumor type and progress. This review discusses the existing information on the expression and function of caveolin-1 and caveolae in GBM and the role of this organelle and its defining protein on cellular signaling, growth, and invasiveness of GBM. We further analyze the available data suggesting caveolin-1 could be a target in GBM therapy.
Collapse
Affiliation(s)
- Marie-Odile Parat
- University of Queensland School of Pharmacy, PACE, 20 Cornwall St., Woollloongabba QLD 4102, Australia.
| | | |
Collapse
|