1
|
Ferreira SA, Pinto N, Serrenho I, Pato MV, Baltazar G. Contribution of glial cells to the neuroprotective effects triggered by repetitive magnetic stimulation: a systematic review. Neural Regen Res 2024; 19:116-123. [PMID: 37488852 PMCID: PMC10479834 DOI: 10.4103/1673-5374.374140] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/27/2023] [Accepted: 03/28/2023] [Indexed: 07/26/2023] Open
Abstract
Repetitive transcranial magnetic stimulation has been increasingly studied in different neurological diseases, and although most studies focus on its effects on neuronal cells, the contribution of non-neuronal cells to the improvement triggered by repetitive transcranial magnetic stimulation in these diseases has been increasingly suggested. To systematically review the effects of repetitive magnetic stimulation on non-neuronal cells two online databases, Web of Science and PubMed were searched for the effects of high-frequency-repetitive transcranial magnetic stimulation, low-frequency-repetitive transcranial magnetic stimulation, intermittent theta-burst stimulation, continuous theta-burst stimulation, or repetitive magnetic stimulation on non-neuronal cells in models of disease and in unlesioned animals or cells. A total of 52 studies were included. The protocol more frequently used was high-frequency-repetitive magnetic stimulation, and in models of disease, most studies report that high-frequency-repetitive magnetic stimulation led to a decrease in astrocyte and microglial reactivity, a decrease in the release of pro-inflammatory cytokines, and an increase of oligodendrocyte proliferation. The trend towards decreased microglial and astrocyte reactivity as well as increased oligodendrocyte proliferation occurred with intermittent theta-burst stimulation and continuous theta-burst stimulation. Few papers analyzed the low-frequency-repetitive transcranial magnetic stimulation protocol, and the parameters evaluated were restricted to the study of astrocyte reactivity and release of pro-inflammatory cytokines, reporting the absence of effects on these parameters. In what concerns the use of magnetic stimulation in unlesioned animals or cells, most articles on all four types of stimulation reported a lack of effects. It is also important to point out that the studies were developed mostly in male rodents, not evaluating possible differential effects of repetitive transcranial magnetic stimulation between sexes. This systematic review supports that through modulation of glial cells repetitive magnetic stimulation contributes to the neuroprotection or repair in various neurological disease models. However, it should be noted that there are still few articles focusing on the impact of repetitive magnetic stimulation on non-neuronal cells and most studies did not perform in-depth analyses of the effects, emphasizing the need for more studies in this field.
Collapse
Affiliation(s)
- Susana A. Ferreira
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| | - Nuno Pinto
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal
- Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
- GRUBI-Systematic Reviews Group, University of Beira Interior, Covilhã, Portugal
| | - Inês Serrenho
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal
| | - Maria Vaz Pato
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal
- Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
- GRUBI-Systematic Reviews Group, University of Beira Interior, Covilhã, Portugal
| | - Graça Baltazar
- Centro de Investigação em Ciências da Saúde (CICS-UBI), Universidade da Beira Interior, Covilhã, Portugal
- Faculdade de Ciências da Saúde, Universidade da Beira Interior, Covilhã, Portugal
| |
Collapse
|
2
|
Kohno T, Takaki K, Kishita K, Mitsutake K, Tofuku N, Kishita I. Neuromodulation Through Magnetic Fields Irradiation with AT-04 Improves Hyperalgesia in a Rat Model of Neuropathic Pain via Descending Pain Modulatory Systems and Opioid Analgesia. Cell Mol Neurobiol 2023; 43:4345-4362. [PMID: 37934363 PMCID: PMC10660917 DOI: 10.1007/s10571-023-01430-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023]
Abstract
Neuromodulation through magnetic fields irradiation with ait® (AT-04), a device that irradiates a mixed alternating magnetic fields (2 kHz and 83.3 MHz), has been shown to have high efficacy for fibromyalgia and low back pain in our previous clinical trials. The aim of this study was to elucidate the underlying analgesic mechanism of the AT-04 using the partial sciatic nerve ligation (PSL) model as an animal model of neuropathic pain. AT-04 was applied to PSL model rats with hyperalgesia and its pain-improving effect was verified by examining mechanical allodynia using the von Frey method. The results demonstrated a significant improvement in hyperalgesia in PSL model rats. We also examined the involvement of descending pain modulatory systems in the analgesic effects of AT-04 using antagonism by serotonin and noradrenergic receptor antagonists. These antagonists significantly reduced the analgesic effect of AT-04 on pain in PSL model rats by approximately 50%. We also measured the amount of serotonin and noradrenaline in the spinal fluid of PSL model rats using microdialysis during AT-04 treatment. Both monoamines were significantly increased by magnetic fields irradiation with AT-04. Furthermore, we evaluated the involvement of opioid analgesia in the analgesic effects of AT-04 using naloxone, the main antagonist of the opioid receptor, and found that it significantly antagonized the effects by approximately 60%. Therefore, the analgesic effects of AT-04 in PSL model rats involve both the endogenous pain modulation systems, including the descending pain modulatory system and the opioid analgesic system.
Collapse
Affiliation(s)
- Tatsuro Kohno
- Anesthesiology and Intensive Care Medicine, International University of Health and Welfare, 852 Hatakeda, Narita City, Chiba, 286-0124, Japan
| | - Kaori Takaki
- Peace of Mind Co., Ltd, 2-8-6 Tokuo, Kita-Ku, Kumamoto City, Kumamoto, 861-5525, Japan
| | - Kaori Kishita
- Peace of Mind Co., Ltd, 2-8-6 Tokuo, Kita-Ku, Kumamoto City, Kumamoto, 861-5525, Japan
| | - Kazunori Mitsutake
- Peace of Mind Co., Ltd, 2-8-6 Tokuo, Kita-Ku, Kumamoto City, Kumamoto, 861-5525, Japan
| | - Nozomu Tofuku
- Peace of Mind Co., Ltd, 2-8-6 Tokuo, Kita-Ku, Kumamoto City, Kumamoto, 861-5525, Japan
| | - Iwao Kishita
- Peace of Mind Co., Ltd, 2-8-6 Tokuo, Kita-Ku, Kumamoto City, Kumamoto, 861-5525, Japan.
| |
Collapse
|
3
|
Giron CG, Lin TTZ, Kan RLD, Zhang BBB, Yau SY, Kranz GS. Non-Invasive Brain Stimulation Effects on Biomarkers of Tryptophan Metabolism: A Scoping Review and Meta-Analysis. Int J Mol Sci 2022; 23:ijms23179692. [PMID: 36077088 PMCID: PMC9456364 DOI: 10.3390/ijms23179692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Abnormal activation of the kynurenine and serotonin pathways of tryptophan metabolism is linked to a host of neuropsychiatric disorders. Concurrently, noninvasive brain stimulation (NIBS) techniques demonstrate high therapeutic efficacy across neuropsychiatric disorders, with indications for modulated neuroplasticity underlying such effects. We therefore conducted a scoping review with meta-analysis of eligible studies, conforming with the PRISMA statement, by searching the PubMed and Web of Science databases for clinical and preclinical studies that report the effects of NIBS on biomarkers of tryptophan metabolism. NIBS techniques reviewed were electroconvulsive therapy (ECT), transcranial magnetic stimulation (TMS), and transcranial direct current stimulation (tDCS). Of the 564 search results, 65 studies were included with publications dating back to 1971 until 2022. The Robust Bayesian Meta-Analysis on clinical studies and qualitative analysis identified general null effects by NIBS on biomarkers of tryptophan metabolism, but moderate evidence for TMS effects on elevating serum serotonin levels. We cannot interpret this as evidence for or against the effects of NIBS on these biomarkers, as there exists several confounding methodological differences in this literature. Future controlled studies are needed to elucidate the effects of NIBS on biomarkers of tryptophan metabolism, an under-investigated question with substantial implications to clinical research and practice.
Collapse
Affiliation(s)
- Cristian G. Giron
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Tim T. Z. Lin
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Rebecca L. D. Kan
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Bella B. B. Zhang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Suk Yu Yau
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Mental Health Research Center (MHRC), The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Georg S. Kranz
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Mental Health Research Center (MHRC), The Hong Kong Polytechnic University, Hong Kong SAR, China
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, 1090 Vienna, Austria
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong SAR, China
- Correspondence:
| |
Collapse
|
4
|
Oka H, Miki K, Kishita I, Kong DF, Uchida T. A Multicenter, Prospective, Randomized, Placebo-Controlled, Double-Blind Study of a Novel Pain Management Device, AT-02, in Patients with Fibromyalgia. PAIN MEDICINE 2020; 21:326-332. [PMID: 31165895 PMCID: PMC7007501 DOI: 10.1093/pm/pnz064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objectives Existing treatments for fibromyalgia have limited efficacy, and only a minority of individuals clinically respond to any single intervention. This study was a prospective, multicenter, randomized, double-blind, controlled clinical trial to evaluate the feasibility of alternating magnetic field therapy in fibromyalgia patients by comparing the Angel Touch device (AT-02) with a sham control (S-01). Methods Two sites enrolled 44 subjects with diagnosed fibromyalgia. After informed consent, subjects taking prohibited concomitant drugs underwent a washout period of two or more weeks. All subjects then began a one-week run-in period. Numerical rating scale (NRS) pain scores were collected without device intervention for one day, followed by S-01 application to four or more painful sites for 10 minutes at each site, twice daily for six days. Subjects were then randomized to AT-02 or S-01, applied to four or more painful sites for 10 minutes at each site, twice daily for eight weeks. NRS scores were obtained twice daily during the entire treatment period. Results The primary end point (change in NRS ± SD at week 8 vs baseline) was –0.94 ± 1.33 in the AT-02 group and –0.22 ± 1.38 in the S-01 group. A trend toward a between-group difference in eight-week NRS scores favored the AT-02 group (–0.73, 95% confidence interval = –1.56 to 0.11, P = 0.086). An adjusted repeated measure analysis detected a significant difference in NRS scores (P = 0.039). Conclusions The reduction in NRS scores for AT-02 relative to sham was comparable to reductions observed in meta-analyses of fibromyalgia drug therapy. The unadjusted results and the persistence of the pain score reductions remain encouraging.
Collapse
Affiliation(s)
- Hiroshi Oka
- Tokyo Rheumatism Pain Clinic, Tokyo, Japan.,Department of Rheumatology, Tokyo Medical University Hachioji Medical Center, Tokyo, Japan
| | - Kenji Miki
- Faculty of Health Science, Osaka Yukioka College of Health Science, Osaka, Japan.,Orthopaedic Surgery and Rheumatology, Hayaishi Hospital, Osaka, Japan
| | | | - David F Kong
- Duke Clinical Research Institute, Durham, North Carolina, USA
| | - Takahiro Uchida
- Japanese Organization for Medical Device Development, Inc., Tokyo, Japan
| |
Collapse
|
5
|
Zhivolupov SA, Odinak MM, Rashidov NA, Onischenko LS, Samartsev IN, Jurin AA. Impulse magnetic stimulation facilitates synaptic regeneration in rats following sciatic nerve injury. Neural Regen Res 2015; 7:1299-303. [PMID: 25657659 PMCID: PMC4308799 DOI: 10.3969/j.issn.1673-5374.2012.17.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 05/18/2012] [Indexed: 11/25/2022] Open
Abstract
The current studies describing magnetic stimulation for treatment of nervous system diseases mainly focus on transcranial magnetic stimulation and rarely focus on spinal cord magnetic stimulation. Spinal cord magnetic stimulation has been confirmed to promote neural plasticity after injuries of spinal cord, brain and peripheral nerve. To evaluate the effects of impulse magnetic stimulation of the spinal cord on peripheral nerve regneration, we compressed a 3 mm segment located in the middle third of the hip using a sterilized artery forceps to induce ischemia. Then, all animals underwent impulse magnetic stimulation of the lumbar portion of spinal crod and spinal nerve roots daily for 1 month. Electron microscopy results showed that in and below the injuryed segment, the inflammation and demyelination of neural tissue were alleviated, apoptotic cells were reduced, and injured Schwann cells and myelin fibers were repaired. These findings suggest that high-frequency impulse magnetic stimulation of spinal cord and corresponding spinal nerve roots promotes synaptic regeneration following sciatic nerve injury.
Collapse
Affiliation(s)
- Sergey A Zhivolupov
- Department of Neurology, Military-Medical Academy, Saint-Petersburg, 194044, Lesnoy prospect 2, Russian Federation
| | - Miroslav M Odinak
- Department of Neurology, Military-Medical Academy, Saint-Petersburg, 194044, Lesnoy prospect 2, Russian Federation
| | - Nariman A Rashidov
- Department of Neurology, Military-Medical Academy, Saint-Petersburg, 194044, Lesnoy prospect 2, Russian Federation
| | - Ludmila S Onischenko
- Department of Neurology, Military-Medical Academy, Saint-Petersburg, 194044, Lesnoy prospect 2, Russian Federation
| | - Igor N Samartsev
- Department of Neurology, Military-Medical Academy, Saint-Petersburg, 194044, Lesnoy prospect 2, Russian Federation
| | - Anton A Jurin
- Department of Neurology, Military-Medical Academy, Saint-Petersburg, 194044, Lesnoy prospect 2, Russian Federation
| |
Collapse
|
6
|
Albu S, Gómez-Soriano J, Bravo-Esteban E, Palazon R, Kumru H, Avila-Martin G, Galán-Arriero I, Taylor J. Modulation of thermal somatosensory thresholds within local and remote spinal dermatomes following cervical repetitive magnetic stimulation. Neurosci Lett 2013; 555:237-42. [PMID: 23850607 DOI: 10.1016/j.neulet.2013.06.067] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/06/2013] [Accepted: 06/29/2013] [Indexed: 10/26/2022]
Abstract
BACKGROUND Repetitive magnetic stimulation (rMS) modulates thermal somatosensory function at both low (0.2-1.0Hz) and high (5.0-20.0Hz) frequencies within the conditioned dermatome. However the effects of 1Hz and 20Hz cervical (C6-C7) rMS on thermosensory thresholds and contact heat evoked potentials (CHEPs) tested within local and remote spinal dermatomes are not known. METHODS Thirty healthy subjects participated in the study. Warm and cold detection threshold, heat and cold pain thresholds, and Cz/Fz CHEPs were evaluated within the C6, T10 and extrasegmental V3 control dermatome, before and after random assignment of subjects to sham, 1 or 20Hz C6-C7 rMS. RESULTS Following both 1 and 20Hz cervical rMS, warm detection threshold increased within the local C6 dermatome. Furthermore 1Hz cervical rMS increased warm detection threshold within the remote T10 dermatome, but not within the V3-trigeminal control area. Cervical rMS failed to modulate cold detection threshold, heat and cold pain threshold or Cz/Fz CHEP amplitude from the dermatomal test sites. CONCLUSION Both 1 and 20Hz cervical rMS modulated warm detection threshold within the locally conditioned C6 dermatome. The concomitant increase in warm detection threshold within the T10 dermatome following 1Hz rMS provides evidence for remote neuromodulation of thermosensory function via intraspinal control mechanisms.
Collapse
Affiliation(s)
- Sergiu Albu
- Sensorimotor Function Group, Hospital Nacional de Paraplejicos SESCAM, Finca "La Peraleda", Toledo 45071, Spain.
| | | | | | | | | | | | | | | |
Collapse
|