1
|
Sestito S, Ibba R, Riu F, Carpi S, Carta A, Manera C, Habtemariam S, Yeskaliyeva B, Almarhoon ZM, Sharifi‐Rad J, Rapposelli S. Anticancer potential of decursin, decursinol angelate, and decursinol from Angelica gigas Nakai: A comprehensive review and future therapeutic prospects. Food Sci Nutr 2024; 12:6970-6989. [PMID: 39479643 PMCID: PMC11521675 DOI: 10.1002/fsn3.4376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 11/02/2024] Open
Abstract
Many naturally derived compounds are currently used in oncotherapy. Besides official medicine, complementary and alternative medicine practices, including old herbal remedies, are widely used and accepted as additional tools in cancer treatment. Angelica gigas Nakai (AGN), a medicinal herb in Asia, has roots historically used in medicine. This review focuses on key bioactive compounds from AGN roots - decursin, decursinol angelate (DA), and decursinol (DOH). Exploring their source, biosynthesis, and therapeutic mechanisms, the review highlights their role in cancer treatment. Biotechnological strategies for enhanced production and semisynthetic derivatives with anticancer properties are discussed. The study emphasizes the promising pharmacological potential of decursin, DA, and DOH in various therapeutic applications, particularly cancer treatment. The review also underscores innovative approaches to increase production and explores semisynthetic derivatives as a promising avenue for future natural product-based drug discovery. This concise overview provides valuable insights into the potential of AGN-derived compounds in the field of natural product-based therapeutics.
Collapse
Affiliation(s)
- Simona Sestito
- Department of Chemical, Physical, Mathematical and Natural SciencesUniversity of SassariSassariItaly
| | - Roberta Ibba
- Department of Medicine, Surgery and PharmacyUniversity of SassariSassariItaly
| | - Federico Riu
- Department of Chemistry−BMCUppsala UniversityUppsalaSweden
| | - Sara Carpi
- NEST, Istituto Nanoscienze‐CNR and Scuola Normale SuperiorePisaItaly
- Department of Health SciencesUniversity ‘Magna Græcia’ of CatanzaroCatanzaroItaly
| | - Antonio Carta
- Department of Medicine, Surgery and PharmacyUniversity of SassariSassariItaly
| | | | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UKUniversity of GreenwichKentUK
| | - Balakyz Yeskaliyeva
- Faculty of Chemistry and Chemical TechnologyAl‐Farabi Kazakh National UniversityAlmatyKazakhstan
| | - Zainab M. Almarhoon
- Department of Chemistry, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Javad Sharifi‐Rad
- Department of Biomedical SciencesCollege of Medicine, Korea UniversitySeoulRepublic of Korea
- Centro de Estudios Tecnológicos y Universitarios del GolfoVeracruzMexico
| | | |
Collapse
|
2
|
Lü J, Jiang C, Schell TD, Joshi M, Raman JD, Xing C. Angelica gigas: Signature Compounds, In Vivo Anticancer, Analgesic, Neuroprotective and Other Activities, and the Clinical Translation Challenges. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2022; 50:1475-1527. [PMID: 35876033 DOI: 10.1142/s0192415x2250063x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Angelica gigas Nakai (AGN) root is a medicinal herbal widely used in traditional medicine in Korea. AGN root ethanolic extract dietary supplements are marketed in the United States for memory health and pain management. We comprehensively reviewed the anticancer, analgesic, pro-memory and other bio-activities of AGN extract and its signature phytochemicals decursin, decursinol angelate, and decursinol a decade ago in 2012 and updated their anticancer activities in 2015. In the last decade, significant progress has been made for understanding the pharmacokinetics (PK) and metabolism of these compounds in animal models and single dose human PK studies have been published by us and others. In addition to increased knowledge of the known bioactivities, new bioactivities with potential novel health benefits have been reported in animal models of cerebral ischemia/stroke, anxiety, sleep disorder, epilepsy, inflammatory bowel disease, sepsis, metabolic disorders, osteoporosis, osteoarthritis, and even male infertility. Herein, we will update PK and metabolism of pyranocoumarins, review in vivo bioactivities from animal models and human studies, and critically appraise the relevant active compounds, the cellular and molecular pharmacodynamic targets, and pertinent mechanisms of action. Knowledge gaps include whether human pyranocoumarin PK metrics are AGN dose dependent and subjected to metabolic ceiling, or metabolic adaptation after repeated use. Critical clinical translation challenges include sourcing of AGN extracts, product consistency and quality control, and AGN dose optimization for different health conditions and disease indications. Future research directions are articulated to fill knowledge gaps and address these challenges.
Collapse
Affiliation(s)
- Junxuan Lü
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Cheng Jiang
- Department of Pharmacology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Todd D Schell
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Monika Joshi
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Medicine Division of Hematology and Oncology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Jay D Raman
- Penn State Cancer Institute, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Urology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Chengguo Xing
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
3
|
Dugbartey GJ, Wonje QL, Alornyo KK, Robertson L, Adams I, Boima V, Mensah SD. Combination Therapy of Alpha-Lipoic Acid, Gliclazide and Ramipril Protects Against Development of Diabetic Cardiomyopathy via Inhibition of TGF-β/Smad Pathway. Front Pharmacol 2022; 13:850542. [PMID: 35401218 PMCID: PMC8988231 DOI: 10.3389/fphar.2022.850542] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/21/2022] [Indexed: 12/17/2022] Open
Abstract
Background: Diabetic cardiomyopathy (DCM) is a major long-term complication of diabetes mellitus, accounting for over 20% of annual mortality rate of diabetic patients globally. Although several existing anti-diabetic drugs have improved glycemic status in diabetic patients, prevalence of DCM is still high. This study investigates cardiac effect of alpha-lipoic acid (ALA) supplementation of anti-diabetic therapy in experimental DCM. Methods: Following 12 h of overnight fasting, 44 male Sprague Dawley rats were randomly assigned to two groups of healthy control (n = 7) and diabetic (n = 37) groups, and fasting blood glucose was measured. Type 2 diabetes mellitus (T2DM) was induced in diabetic group by intraperitoneal (i.p.) administration of nicotinamide (110 mg/kg) and streptozotocin (55 mg/kg). After confirmation of T2DM on day 3, diabetic rats received monotherapies with ALA (60 mg/kg; n = 7), gliclazide (15 mg/kg; n = 7), ramipril (10 mg/kg; n = 7) or combination of the three drugs (n = 7) for 6 weeks while untreated diabetic rats received distilled water and were used as diabetic control (n = 9). Rats were then sacrificed, and blood, pancreas and heart tissues were harvested for analyses using standard methods. Results: T2DM induction caused pancreatic islet destruction, hyperglycemia, weight loss, high relative heart weight, and development of DCM, which was characterized by myocardial degeneration and vacuolation, cardiac fibrosis, elevated cardiac damage markers (plasma and cardiac creatine kinase-myocardial band, brain natriuretic peptide and cardiac troponin I). Triple combination therapy of ALA, gliclazide and ramipril preserved islet structure, maintained body weight and blood glucose level, and prevented DCM development compared to diabetic control (p < 0.001). In addition, the combination therapy markedly reduced plasma levels of inflammatory markers (IL-1β, IL-6 and TNF-α), plasma and cardiac tissue malondialdehyde, triglycerides and total cholesterol while significantly increasing cardiac glutathione and superoxide dismutase activity and high-density lipoprotein-cholesterol compared to diabetic control (p < 0.001). Mechanistically, induction of T2DM upregulated cardiac expression of TGF-β1, phosphorylated Smad2 and Smad3 proteins, which were downregulated following triple combination therapy (p < 0.001). Conclusion: Triple combination therapy of ALA, gliclazide and ramipril prevented DCM development by inhibiting TGF-β1/Smad pathway. Our findings can be extrapolated to the human heart, which would provide effective additional pharmacological therapy against DCM in T2DM patients.
Collapse
Affiliation(s)
- George J Dugbartey
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Quinsker L Wonje
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Karl K Alornyo
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Louis Robertson
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Ismaila Adams
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Vincent Boima
- Department of Medicine and Therapeutics, University of Ghana Medical School, College of Health Sciences, University of Ghana, Accra, Ghana
| | - Samuel D Mensah
- Department of Pharmacology and Toxicology, School of Pharmacy, College of Health Sciences, University of Ghana, Accra, Ghana
| |
Collapse
|
4
|
Kwon MY, Park J, Kim SM, Lee J, Cho H, Park JH, Han IO. An alpha-lipoic acid-decursinol hybrid compound attenuates lipopolysaccharide-mediated inflammation in BV2 and RAW264.7 cells. BMB Rep 2019. [PMID: 31383251 PMCID: PMC6726214 DOI: 10.5483/bmbrep.2019.52.8.144] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, the anti-inflammatory effects of α-lipoic acid (LA) and decursinol (Dec) hybrid compound LA-Dec were evaluated and compared with its prodrugs, LA and Dec. LA-Dec dose-dependently inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) generation in BV2 mouse microglial cells. On the other hand, no or mild inhibitory effect was shown by the Dec and LA, respectively. LA-Dec demonstrated dose-dependent protection from activation-induced cell death in BV2 cells. LA-Dec, but not LA or Dec individually, inhibited LPS-induced increased expressions of induced NO synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins in a dose-dependent manner in both BV2 and mouse macrophage, RAW264.7 cells. Furthermore, LA-Dec inhibited LPS-induced expressions of iNOS, COX-2, interleukin-6, tumor necrosis factor-α, and interleukin-1β mRNA in BV2 cells, whereas the same concentration of LA or Dec was ineffective. Signaling studies demonstrated that LA-Dec inhibited LPS-activated signal transducer and activator of transcription 3 and protein kinase B activation, but not nuclear factor-kappa B or mitogen-activated protein kinase signaling. The data implicate LA-Dec hybrid compound as a potential therapeutic agent for inflammatory diseases of the peripheral and central nervous systems.
Collapse
Affiliation(s)
- Mi-Youn Kwon
- Department of Physiology and Biophysics, College of Medicine, Inha University, Korea
| | - Jiwon Park
- Department of Physiology and Biophysics, College of Medicine, Inha University, Korea
| | - Sang-Min Kim
- Department of Physiology and Biophysics, College of Medicine, Inha University, Korea
| | - Jooweon Lee
- Department of Physiology and Biophysics, College of Medicine, Inha University, Korea
| | - Hyeongjin Cho
- Department of Chemistry, Inha University, Incheon 22212, Korea
| | - Jeong-Ho Park
- Department of Chemical & Biological Engineering, Hanbat National University, Daejeon 34158, Korea
| | - Inn-Oc Han
- Department of Physiology and Biophysics, College of Medicine, Inha University, Korea
| |
Collapse
|
5
|
Dukay B, Csoboz B, Tóth ME. Heat-Shock Proteins in Neuroinflammation. Front Pharmacol 2019; 10:920. [PMID: 31507418 PMCID: PMC6718606 DOI: 10.3389/fphar.2019.00920] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/22/2019] [Indexed: 01/01/2023] Open
Abstract
The heat-shock response, one of the main pro-survival mechanisms of a living organism, has evolved as the biochemical response of cells to cope with heat stress. The most well-characterized aspect of the heat-shock response is the accumulation of a conserved set of proteins termed heat-shock proteins (HSPs). HSPs are key players in protein homeostasis acting as chaperones by aiding the folding and assembly of nascent proteins and protecting against protein aggregation. HSPs have been associated with neurological diseases in the context of their chaperone activity, as they were found to suppress the aggregation of misfolded toxic proteins. In recent times, HSPs have proven to have functions apart from the classical molecular chaperoning in that they play a role in a wider scale of neurological disorders by modulating neuronal survival, inflammation, and disease-specific signaling processes. HSPs are gaining importance based on their ability to fine-tune inflammation and act as immune modulators in various bodily fluids. However, their effect on neuroinflammation processes is not yet fully understood. In this review, we summarize the role of neuroinflammation in acute and chronic pathological conditions affecting the brain. Moreover, we seek to explore the existing literature on HSP-mediated inflammatory function within the central nervous system and compare the function of these proteins when they are localized intracellularly compared to being present in the extracellular milieu.
Collapse
Affiliation(s)
- Brigitta Dukay
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Bálint Csoboz
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Melinda E Tóth
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
6
|
Natural Korean Medicine Dang-Gui: Biosynthesis, Effective Extraction and Formulations of Major Active Pyranocoumarins, Their Molecular Action Mechanism in Cancer, and Other Biological Activities. Molecules 2017; 22:molecules22122170. [PMID: 29215592 PMCID: PMC6149795 DOI: 10.3390/molecules22122170] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/04/2017] [Accepted: 12/05/2017] [Indexed: 12/23/2022] Open
Abstract
Angelica gigas Nakai (AGN) is a crucial oriental medicinal herb that grows especially in Korea and the Far-East countries. It contains chemically active compounds like pyranocoumarins, polyacetylenes and essential oils, which might be useful for treatment of several chronic diseases. It has been used for centuries as a traditional medicine in Southeast Asia, but in Western countries is used as a functional food and a major ingredient of several herbal products. The genus Angelica is also known as ‘female ginseng’ due to its critical therapeutic role in female afflictions, such as gynecological problems. However, it is well-documented that the AGN pyranocoumarins may play vital beneficial roles against cancer, neurodisorders, inflammation, osteoporosis, amnesia, allergies, depression, fungi, diabetes, ischemia, dermatitis, reactive oxygen species (ROS) and androgen. Though numerous studies revealed the role of AGN pyranocoumarins as therapeutic agents, none of the reviews have published their molecular mechanism of action. To the best of our knowledge, this would be the first review that aims to appraise the biosynthesis of AGN’s major active pyranocoumarins, discuss effective extraction and formulation methods, and detail the molecular action mechanism of decursin (D), decursinol angelate (DA) and decursinol (DOH) in chronic diseases, which would further help extension of research in this area.
Collapse
|
7
|
Hye Kim I, Lee JC, Ha Park J, Hyeon Ahn J, Cho JH, Hui Chen B, Na Shin B, Chun Yan B, Rueol Ryu D, Hong S, Hwi Cho J, Lyul Lee Y, Kim YM, Cho BR, Won MH. Time interval after ischaemic preconditioning affects neuroprotection and gliosis in the gerbil hippocampal CA1 region induced by transient cerebral ischaemia. Neurol Res 2016; 38:210-9. [DOI: 10.1179/1743132815y.0000000098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
8
|
Neuroprotection and reduced gliosis by atomoxetine pretreatment in a gerbil model of transient cerebral ischemia. J Neurol Sci 2015; 359:373-80. [DOI: 10.1016/j.jns.2015.11.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/06/2015] [Accepted: 11/15/2015] [Indexed: 11/23/2022]
|
9
|
Kim IH, Yoo KY, Park JH, Yan BC, Ahn JH, Lee JC, Kwon HM, Kim JD, Kim YM, You SG, Kang IJ, Won MH. Comparison of neuroprotective effects of extract and fractions from Agarum clathratum against experimentally induced transient cerebral ischemic damage. PHARMACEUTICAL BIOLOGY 2014; 52:335-43. [PMID: 24171789 DOI: 10.3109/13880209.2013.837074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
UNLABELLED CONTEXTS: Agarum clathratum (Laminariaceae), a typical brown algae, has been identified by National Plant Quarantine Service in Korea. The extract of A. clathratum has antioxidant activities. OBJECTIVE We investigated the neuroprotective effects of crude-extract, ethyl acetate (EA)-, n-butanol (BU)-, dichloromethane (DCM)- and n-hexane (Hx)-fractions from A. clathratum on ischemic damage in the gerbil hippocampal CA1 region (CA1) after 5 min of transient cerebral ischemia. MATERIALS AND METHODS Agarum clathratum was collected in Kangwon province (South Korea) and treated with 95% ethanol. The ethanol extract was suspended in distilled water and subjected to a series of partitions with EA, BU, DCM and Hx. Each of extract and fraction was orally administered with 50 mg/kg once a day for one week before ischemia--reperfusion (I-R). RESULT In the crude-extract-, EA- and BU-fraction-treated ischemia groups, we found strong neuroprotection in the CA1--about 80-89% of CA1 pyramidal neurons survived. However, in the DCM- and Hx-fraction-treated ischemia groups, we did not find any significant neuroprotection. In addition, we observed changes in astrocytes and microglia in the ischemic CA1. In the crude-extract, EA- and BU-fraction-treated ischemia groups, the distribution pattern and activity of the glial cells were similar to that found in the sham group. DISCUSSION Repeated supplements of crude-extract, EA- and BU-fractions of A. clathratum could protect neurons from I-R injury in the hippocampal CA1 induced by transient cerebral ischemia via decrease of glial activation.
Collapse
Affiliation(s)
- In Hye Kim
- Department of Neurobiology, School of Medicine, Kangwon National University , Chuncheon , South Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Török Z, Crul T, Maresca B, Schütz GJ, Viana F, Dindia L, Piotto S, Brameshuber M, Balogh G, Péter M, Porta A, Trapani A, Gombos I, Glatz A, Gungor B, Peksel B, Vigh L, Csoboz B, Horváth I, Vijayan MM, Hooper PL, Harwood JL, Vigh L. Plasma membranes as heat stress sensors: from lipid-controlled molecular switches to therapeutic applications. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1594-618. [PMID: 24374314 DOI: 10.1016/j.bbamem.2013.12.015] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/09/2013] [Accepted: 12/18/2013] [Indexed: 12/31/2022]
Abstract
The classic heat shock (stress) response (HSR) was originally attributed to protein denaturation. However, heat shock protein (Hsp) induction occurs in many circumstances where no protein denaturation is observed. Recently considerable evidence has been accumulated to the favor of the "Membrane Sensor Hypothesis" which predicts that the level of Hsps can be changed as a result of alterations to the plasma membrane. This is especially pertinent to mild heat shock, such as occurs in fever. In this condition the sensitivity of many transient receptor potential (TRP) channels is particularly notable. Small temperature stresses can modulate TRP gating significantly and this is influenced by lipids. In addition, stress hormones often modify plasma membrane structure and function and thus initiate a cascade of events, which may affect HSR. The major transactivator heat shock factor-1 integrates the signals originating from the plasma membrane and orchestrates the expression of individual heat shock genes. We describe how these observations can be tested at the molecular level, for example, with the use of membrane perturbers and through computational calculations. An important fact which now starts to be addressed is that membranes are not homogeneous nor do all cells react identically. Lipidomics and cell profiling are beginning to address the above two points. Finally, we observe that a deregulated HSR is found in a large number of important diseases where more detailed knowledge of the molecular mechanisms involved may offer timely opportunities for clinical interventions and new, innovative drug treatments. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.
Collapse
Affiliation(s)
- Zsolt Török
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary.
| | - Tim Crul
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Bruno Maresca
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Gerhard J Schütz
- Institute of Applied Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria
| | - Felix Viana
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, 03550 San Juan de Alicante, Spain
| | - Laura Dindia
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
| | - Stefano Piotto
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Mario Brameshuber
- Institute of Applied Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, 1040 Vienna, Austria
| | - Gábor Balogh
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Mária Péter
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Amalia Porta
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Alfonso Trapani
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Salerno, Italy
| | - Imre Gombos
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Attila Glatz
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Burcin Gungor
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Begüm Peksel
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - László Vigh
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Bálint Csoboz
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Ibolya Horváth
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary
| | - Mathilakath M Vijayan
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada; Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Phillip L Hooper
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Medical School, Anschutz Medical Campus, Aurora, CO 80045, USA
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, Wales, UK
| | - László Vigh
- Institute of Biochemistry, Biological Research Centre of the Hung. Acad. Sci., Szeged H-6726, Hungary.
| |
Collapse
|