1
|
Nukui T, Niimi H, Hayashi T, Dougu N, Yamamoto M, Shibuya R, Matsuda N, Tanaka R, Hirosawa H, Furuta R, Mitsui T, Maesaka H, Takasawa S, Kitajima I, Nakatsuji Y. Increased Cerebrospinal Fluid Adenosine 5'-Triphosphate Levels in Patients with Guillain-Barré Syndrome and Chronic Inflammatory Demyelinating Polyneuropathy. Neurol Res Int 2024; 2024:7229216. [PMID: 38887668 PMCID: PMC11182687 DOI: 10.1155/2024/7229216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 05/20/2024] [Accepted: 06/01/2024] [Indexed: 06/20/2024] Open
Abstract
Background Extracellular adenosine 5'-triphosphate (ATP) acts as a signaling molecule in the peripheral nerves, regulating myelination after nerve injury. The present study examined whether the cerebrospinal fluid (CSF) ATP levels in patients with Guillain-Barré syndrome (GBS) and chronic inflammatory demyelinating polyneuropathy (CIDP) are related to disease severity. Methods CSF ATP levels in 13 patients with GBS and 18 patients with CIDP were compared with those in a control group of 16 patients with other neurological diseases (ONDs). In patients with CIDP, CSF ATP levels were compared before and after treatment. The correlations between CSF ATP levels and other factors, including clinical data and CSF protein levels, were also evaluated. Results Median CSF ATP levels were significantly higher in patients with GBS and CIDP than in those with ONDs. When patients with CIDP were classified into two groups depending on their responsiveness to immunotherapy, median CSF ATP levels were significantly higher in good responders than in ONDs. CSF ATP levels tended to decrease after treatment in patients with CIDP. In patients with CIDP, there is a negative correlation between CSF ATP and CSF protein levels. Conclusions CSF ATP levels were increased in patients with GBS and CIDP. In particular, CSF ATP levels tended to decrease following treatment in patients with CIDP. CSF ATP levels may be useful biomarkers for the diagnosis or monitoring of therapeutic effects in patients with GBS and CIDP.
Collapse
Affiliation(s)
- Takamasa Nukui
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hideki Niimi
- Department of Clinical Laboratory and Molecular Pathology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Tomohiro Hayashi
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | | | - Mamoru Yamamoto
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Ryoko Shibuya
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Noriyuki Matsuda
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Ryo Tanaka
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hiroaki Hirosawa
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Risako Furuta
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Taichi Mitsui
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Hiroki Maesaka
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Syuhei Takasawa
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Isao Kitajima
- Department of Clinical Laboratory and Molecular Pathology, Graduate School of Medicine and Pharmaceutical Science for Research, University of Toyama, Toyama, Japan
| | - Yuji Nakatsuji
- Department of Neurology, Faculty of Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
2
|
Liu J, Li L, Zou Y, Fu L, Ma X, Zhang H, Xu Y, Xu J, Zhang J, Li M, Hu X, Li Z, Wang X, Sun H, Zheng H, Zhu L, Guo J. Role of microtubule dynamics in Wallerian degeneration and nerve regeneration after peripheral nerve injury. Neural Regen Res 2022; 17:673-681. [PMID: 34380909 PMCID: PMC8504388 DOI: 10.4103/1673-5374.320997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Wallerian degeneration, the progressive disintegration of distal axons and myelin that occurs after peripheral nerve injury, is essential for creating a permissive microenvironment for nerve regeneration, and involves cytoskeletal reconstruction. However, it is unclear whether microtubule dynamics play a role in this process. To address this, we treated cultured sciatic nerve explants, an in vitro model of Wallerian degeneration, with the microtubule-targeting agents paclitaxel and nocodazole. We found that paclitaxel-induced microtubule stabilization promoted axon and myelin degeneration and Schwann cell dedifferentiation, whereas nocodazole-induced microtubule destabilization inhibited these processes. Evaluation of an in vivo model of peripheral nerve injury showed that treatment with paclitaxel or nocodazole accelerated or attenuated axonal regeneration, as well as functional recovery of nerve conduction and target muscle and motor behavior, respectively. These results suggest that microtubule dynamics participate in peripheral nerve regeneration after injury by affecting Wallerian degeneration. This study was approved by the Animal Care and Use Committee of Southern Medical University, China (approval No. SMU-L2015081) on October 15, 2015.
Collapse
Affiliation(s)
- Jingmin Liu
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lixia Li
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Ying Zou
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lanya Fu
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xinrui Ma
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Haowen Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yizhou Xu
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University; Department of Spine Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jiawei Xu
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jiaqi Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Mi Li
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiaofang Hu
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhenlin Li
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xianghai Wang
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong Province, China
| | - Hao Sun
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong Province, China
| | - Hui Zheng
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong Province, China
| | - Lixin Zhu
- Department of Spine Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Jiasong Guo
- Department of Histology and Embryology, School of Basic Medical Sciences; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering; Department of Spine Orthopedics, Zhujiang Hospital of Southern Medical University; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory); Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Guangzhou, Guangdong Province, China
| |
Collapse
|
3
|
Patritti-Cram J, Coover RA, Jankowski MP, Ratner N. Purinergic signaling in peripheral nervous system glial cells. Glia 2021; 69:1837-1851. [PMID: 33507559 PMCID: PMC8192487 DOI: 10.1002/glia.23969] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/02/2023]
Abstract
To facilitate analyses of purinergic signaling in peripheral nerve glia, we review recent literature and catalog purinergic receptor mRNA expression in cultured mouse Schwann cells (SCs). Purinergic signaling can decrease developmental SC proliferation, and promote SC differentiation. The purinergic receptors P2RY2 and P2RX7 are implicated in nerve development and in the ratio of Remak SCs to myelinating SCs in differentiated peripheral nerve. P2RY2, P2RX7, and other receptors are also implicated in peripheral neuropathies and SC tumors. In SC tumors lacking the tumor suppressor NF1, the SC pathway that suppresses SC growth through P2RY2‐driven β‐arrestin‐mediated AKT signaling is aberrant. SC‐released purinergic agonists acting through SC and/or neuronal purinergic receptors activate pain responses. In all these settings, purinergic receptor activation can result in calcium‐independent and calcium‐dependent release of SC ATP and UDP, growth factors, and cytokines that may contribute to disease and nerve repair. Thus, current research suggests that purinergic agonists and/or antagonists might have the potential to modulate peripheral glia function in development and in disease.
Collapse
Affiliation(s)
- Jennifer Patritti-Cram
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Robert A Coover
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Department of Basic Pharmaceutical Sciences, High Point University, High Point, North Carolina, USA
| | - Michael P Jankowski
- Department of Anesthesia, Division of Pain Management, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Center for Understanding Pediatric Pain, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
4
|
Datta G, Miller NM, Afghah Z, Geiger JD, Chen X. HIV-1 gp120 Promotes Lysosomal Exocytosis in Human Schwann Cells. Front Cell Neurosci 2019; 13:329. [PMID: 31379513 PMCID: PMC6650616 DOI: 10.3389/fncel.2019.00329] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 07/03/2019] [Indexed: 12/31/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) associated neuropathy is the most common neurological complication of HIV-1, with debilitating pain affecting the quality of life. HIV-1 gp120 plays an important role in the pathogenesis of HIV neuropathy via direct neurotoxic effects or indirect pro-inflammatory responses. Studies have shown that gp120-induced release of mediators from Schwann cells induce CCR5-dependent DRG neurotoxicity, however, CCR5 antagonists failed to improve pain in HIV- infected individuals. Thus, there is an urgent need for a better understanding of neuropathic pain pathogenesis and developing effective therapeutic strategies. Because lysosomal exocytosis in Schwann cells is an indispensable process for regulating myelination and demyelination, we determined the extent to which gp120 affected lysosomal exocytosis in human Schwann cells. We demonstrated that gp120 promoted the movement of lysosomes toward plasma membranes, induced lysosomal exocytosis, and increased the release of ATP into the extracellular media. Mechanistically, we demonstrated lysosome de-acidification, and activation of P2X4 and VNUT to underlie gp120-induced lysosome exocytosis. Functionally, we demonstrated that gp120-induced lysosome exocytosis and release of ATP from Schwann cells leads to increases in intracellular calcium and generation of cytosolic reactive oxygen species in DRG neurons. Our results suggest that gp120-induced lysosome exocytosis and release of ATP from Schwann cells and DRG neurons contribute to the pathogenesis of HIV-1 associated neuropathy.
Collapse
Affiliation(s)
- Gaurav Datta
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Nicole M Miller
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Zahra Afghah
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Jonathan D Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| | - Xuesong Chen
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND, United States
| |
Collapse
|
5
|
Chung HJ, Kim M, Jung J, Jeong NY. Inhibition of Neuronal Nitric Oxide Synthase by Ethyl Pyruvate in Schwann Cells Protects Against Peripheral Nerve Degeneration. Neurochem Res 2019; 44:1964-1976. [DOI: 10.1007/s11064-019-02830-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/07/2019] [Accepted: 06/14/2019] [Indexed: 12/29/2022]
|
6
|
Coover RA, Healy TE, Guo L, Chaney KE, Hennigan RF, Thomson CS, Aschbacher-Smith LE, Jankowski MP, Ratner N. Tonic ATP-mediated growth suppression in peripheral nerve glia requires arrestin-PP2 and is evaded in NF1. Acta Neuropathol Commun 2018; 6:127. [PMID: 30470263 PMCID: PMC6251093 DOI: 10.1186/s40478-018-0635-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/14/2018] [Indexed: 12/15/2022] Open
Abstract
Normal Schwann cells (SCs) are quiescent in adult nerves, when ATP is released from the nerve in an activity dependent manner. We find that suppressing nerve activity in adult nerves causes SC to enter the cell cycle. In vitro, ATP activates the SC G-protein coupled receptor (GPCR) P2Y2. Downstream of P2Y2, β-arrestin-mediated signaling results in PP2-mediated de-phosphorylation of AKT, and PP2 activity is required for SC growth suppression. NF1 deficient SC show reduced growth suppression by ATP, and are resistant to the effects of β-arrestin-mediated signaling, including PP2-mediated de-phosphorylation of AKT. In patients with the disorder Neurofibromatosis type 1, NF1 mutant SCs proliferate and form SC tumors called neurofibromas. Elevating ATP levels in vivo reduced neurofibroma cell proliferation. Thus, the low proliferation characteristic of differentiated adult peripheral nerve may require ongoing, nerve activity-dependent, ATP. Additionally, we identify a mechanism through which NF1 SCs may evade growth suppression in nerve tumors.
Collapse
|
7
|
Campi G, Di Gioacchino M, Poccia N, Ricci A, Burghammer M, Ciasca G, Bianconi A. Nanoscale Correlated Disorder in Out-of-Equilibrium Myelin Ultrastructure. ACS NANO 2018; 12:729-739. [PMID: 29281257 DOI: 10.1021/acsnano.7b07897] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ultrastructural fluctuations at nanoscale are fundamental to assess properties and functionalities of advanced out-of-equilibrium materials. We have taken myelin as a model of supramolecular assembly in out-of-equilibrium living matter. Myelin sheath is a simple stable multilamellar structure of high relevance and impact in biomedicine. Although it is known that myelin has a quasi-crystalline ultrastructure, there is no information on its fluctuations at nanoscale in different states due to limitations of the available standard techniques. To overcome these limitations, we have used scanning micro X-ray diffraction, which is a unique non-invasive probe of both reciprocal and real space to visualize statistical fluctuations of myelin order of the sciatic nerve of Xenopus laevis. The results show that the ultrastructure period of the myelin is stabilized by large anticorrelated fluctuations at nanoscale, between hydrophobic and hydrophilic layers. The ratio between the total thickness of hydrophilic and hydrophobic layers defines the conformational parameter, which describes the different states of myelin. Our key result is that myelin in its out-of-equilibrium functional state fluctuates point-to-point between different conformations showing a correlated disorder described by a Levy distribution. As the system approaches the thermodynamic equilibrium in an aged state, the disorder loses its correlation degree and the structural fluctuation distribution changes to Gaussian. In a denatured state at low pH, it changes to a completely disordered stage. Our results aim to clarify the degradation mechanism in biological systems by associating these states with ultrastructural dynamic fluctuations at nanoscale.
Collapse
Affiliation(s)
- Gaetano Campi
- Institute of Crystallography, CNR , via Salaria, Km 29.300, 00015 Monterotondo Roma, Italy
| | - Michael Di Gioacchino
- Institute of Crystallography, CNR , via Salaria, Km 29.300, 00015 Monterotondo Roma, Italy
- Rome International Center for Materials Science Superstripes (RICMASS) , Via dei Sabelli 119A, 00185 Roma, Italy
- Department of Science, Nanoscience section, Roma Tre University , Via della Vasca Navale 84, 00146 Roma, Italy
| | - Nicola Poccia
- Department of Physics, Harvard University , Cambridge, Massachusetts 02138, United States
| | - Alessandro Ricci
- Rome International Center for Materials Science Superstripes (RICMASS) , Via dei Sabelli 119A, 00185 Roma, Italy
| | - Manfred Burghammer
- European Synchrotron Radiation Facility , 6 Rue Jules Horowitz, BP220, 38043 Grenoble Cedex, France
| | - Gabriele Ciasca
- Physics Institute, Catholic University of Sacred Heart , Largo F. Vito 1, 00168 Rome, Italy
| | - Antonio Bianconi
- Institute of Crystallography, CNR , via Salaria, Km 29.300, 00015 Monterotondo Roma, Italy
- Rome International Center for Materials Science Superstripes (RICMASS) , Via dei Sabelli 119A, 00185 Roma, Italy
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute) , Kashirskoe shosse 31, 115409 Moscow, Russia
| |
Collapse
|
8
|
López-Cebral R, Silva-Correia J, Reis RL, Silva TH, Oliveira JM. Peripheral Nerve Injury: Current Challenges, Conventional Treatment Approaches, and New Trends in Biomaterials-Based Regenerative Strategies. ACS Biomater Sci Eng 2017; 3:3098-3122. [DOI: 10.1021/acsbiomaterials.7b00655] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- R. López-Cebral
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - J. Silva-Correia
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - R. L. Reis
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - T. H. Silva
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| | - J. M. Oliveira
- 3Bs Research Group, Biomaterials, Biodegradables and Biomimetics, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, University of Minho, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal
- ICVS/3Bs, PT Government Associate Laboratory, University of Minho, Braga/Guimarães, Portugal
| |
Collapse
|
9
|
Ribeiro T, Oliveira JT, Almeida FM, Tomaz MA, Melo PA, Marques SA, de Andrade GM, Martinez AMB. Blockade of ATP P2X7 receptor enhances ischiatic nerve regeneration in mice following a crush injury. Brain Res 2017; 1669:69-78. [PMID: 28554806 DOI: 10.1016/j.brainres.2017.05.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 05/15/2017] [Accepted: 05/22/2017] [Indexed: 12/31/2022]
Abstract
Preventing damage caused by nerve degeneration is a great challenge. There is a growing body of evidence implicating extracellular nucleotides and their P2 receptors in many pathophysiological mechanisms. In this work we aimed to investigate the effects of the administration of Brilliant Blue G (BBG) and Pyridoxalphosphate-6-azophenyl-2', 4'- disulphonic acid (PPADS), P2X7 and P2 non-selective receptor antagonists, respectively, on sciatic nerve regeneration. Four groups of mice that underwent nerve crush lesion were used: two control groups treated with vehicle (saline), a group treated with BBG and a group treated with PPADS during 28days. Gastrocnemius muscle weight was evaluated. For functional evaluation we used the Sciatic Functional Index (SFI) and the horizontal ladder walking test. Nerves, dorsal root ganglia and spinal cords were processed for light and electron microscopy. Antinoceptive effects of BBG and PPADS were evaluated through von Frey E, and the levels of IL-1β and TNF-α were analyzed by ELISA. BBG promoted an increase in the number of myelinated fibers and on axon, fiber and myelin areas. BBG and PPADS led to an increase of TNF-α and IL-1β in the nerve on day 1 and PPADS caused a decrease of IL-1β on day 7. Mechanical allodynia was reversed on day 7 in the groups treated with BBG and PPADS. We concluded that BBG promoted a better morphological regeneration after ischiatic crush injury, but this was not followed by anticipation of functional improvement. In addition, both PPADS and BBG presented anti-inflammatory as well as antinociceptive effects.
Collapse
Affiliation(s)
- Tatianne Ribeiro
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Faculdade de Medicina, HUCFF, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Júlia Teixeira Oliveira
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Faculdade de Medicina, HUCFF, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Fernanda Martins Almeida
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Faculdade de Medicina, HUCFF, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Marcelo Amorim Tomaz
- Laboratório de Farmacologia das Toxinas, Programa de Pós-Graduação em Farmacologia e Química Medicinal, ICB, CCS, UFRJ, Brazil
| | - Paulo A Melo
- Laboratório de Farmacologia das Toxinas, Programa de Pós-Graduação em Farmacologia e Química Medicinal, ICB, CCS, UFRJ, Brazil
| | - Suelen Adriani Marques
- Laboratório de Regeneração Neural e Função, Departamento de Neurobiologia, Instituto de Biologia, UFF, Rio de Janeiro, Brazil
| | - Geanne Matos de Andrade
- Laboratório de Neurociências e Comportamento, Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, UFC, Ceará, Brazil.
| | - Ana Maria Blanco Martinez
- Laboratório de Neurodegeneração e Reparo, Departamento de Patologia, Faculdade de Medicina, HUCFF, UFRJ, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
10
|
Cheng Q, Wang YX, Yu J, Yi S. Critical signaling pathways during Wallerian degeneration of peripheral nerve. Neural Regen Res 2017; 12:995-1002. [PMID: 28761435 PMCID: PMC5514877 DOI: 10.4103/1673-5374.208596] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Wallerian degeneration is a critical biological process that occurs in distal nerve stumps after nerve injury. To systematically investigate molecular changes underlying Wallerian degeneration, we used a rat sciatic nerve transection model to examine microarray analysis outcomes and investigate significantly involved Kyoto Enrichment of Genes and Genomes (KEGG) pathways in injured distal nerve stumps at 0, 0.5, 1, 6, 12, and 24 hours, 4 days, 1, 2, 3, and 4 weeks after peripheral nerve injury. Bioinformatic analysis showed that only one KEGG pathway (cytokine-cytokine receptor interaction) was significantly enriched at an early time point (1 hour post-sciatic nerve transection). At later time points, the number of enriched KEGG pathways initially increased and then decreased. Three KEGG pathways were studied in further detail: cytokine-cytokine receptor interaction, neuroactive ligand-receptor interaction, and axon guidance. Moreover, temporal expression patterns of representative differentially expressed genes in these KEGG pathways were validated by real time-polymerase chain reaction. Taken together, the above three signaling pathways are important after sciatic nerve injury, and may increase our understanding of the molecular mechanisms underlying Wallerian degeneration
Collapse
Affiliation(s)
- Qiong Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Ya-Xian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Jun Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
11
|
Kutuzov N, Gulin A, Lyaskovskiy V, Nadtochenko V, Maksimov G. ATP-Mediated Compositional Change in Peripheral Myelin Membranes: A Comparative Raman Spectroscopy and Time-Of-Flight Secondary Ion Mass Spectrometry Study. PLoS One 2015; 10:e0142084. [PMID: 26544552 PMCID: PMC4636249 DOI: 10.1371/journal.pone.0142084] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 10/16/2015] [Indexed: 12/20/2022] Open
Abstract
In the present paper we addressed a mechanism of the myelin reorganization initiated by extracellular ATP and adenosine in sciatic nerves of the frog Rana temporaria. In combination with Raman microspectroscopy, allowing noninvasive live-cell measurements, we employed time-of-flight secondary ion mass spectrometry (TOF-SIMS) to follow the underlying changes in chemical composition of myelin membranes triggered by the purinergic agents. The simultaneous increase in lipid ordering degree, decrease in membrane fluidity and the degree of fatty acid unsaturation were induced by both ATP and adenosine. Mass spectrometry measurements revealed that ATP administration also led to the marked elevation of membrane cholesterol and decrease of phosphotidylcholine amounts. Vesicular lipid transport pathways are considered as possible mechanisms of compositional and structural changes of myelin.
Collapse
Affiliation(s)
- Nikolay Kutuzov
- Biophysics Department, Biological Faculty, Moscow State University, Leninskie gory 1/12, Moscow, Russian Federation, 119991
- * E-mail:
| | - Alexander Gulin
- N.N. Semenov Institute of Chemical Physics, RAS, Kosigin str. 4, Moscow, Russian Federation, 119991
- Chemistry Faculty, Moscow State University, Leninskie Gory 1–3, Moscow, Russian Federation, 119991
| | - Vladimir Lyaskovskiy
- All-Russian Research Institute for Optical and Physical Measurements, Ozernaya 46, Moscow, Russian Federation, 119361
| | - Victor Nadtochenko
- N.N. Semenov Institute of Chemical Physics, RAS, Kosigin str. 4, Moscow, Russian Federation, 119991
- Chemistry Faculty, Moscow State University, Leninskie Gory 1–3, Moscow, Russian Federation, 119991
- Moscow Institute of Physics and Technology State University, Institutskiy per. 9, Dolgoprudny, Moscow Region, Russian Federation, 141700
- Institute of Problems of Chemical Physics RAS, Academician Semenov avenue 1, Chernogolovka, Moscow region, Russian Federation, 142432
| | - Georgy Maksimov
- Biophysics Department, Biological Faculty, Moscow State University, Leninskie gory 1/12, Moscow, Russian Federation, 119991
| |
Collapse
|
12
|
Park BS, Kim HW, Rhyu IJ, Park C, Yeo SG, Huh Y, Jeong NY, Jung J. Hydrogen sulfide is essential for Schwann cell responses to peripheral nerve injury. J Neurochem 2014; 132:230-42. [PMID: 25123509 DOI: 10.1111/jnc.12932] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 08/06/2014] [Accepted: 08/08/2014] [Indexed: 11/29/2022]
Abstract
Hydrogen sulfide (H2 S) functions as a physiological gas transmitter in both normal and pathophysiological cellular events. H2 S is produced from substances by three enzymes: cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfurtransferase (MST). In human tissues, these enzymes are involved in tissue-specific biochemical pathways for H2 S production. For example, CBS and cysteine aminotransferase/MST are present in the brain, but CSE is not. Thus, we examined the expression of H2 S production-related enzymes in peripheral nerves. Here, we found that CSE and MST/cysteine aminotransferase, but not CBS, were present in normal peripheral nerves. In addition, injured sciatic nerves in vivo up-regulated CSE in Schwann cells during Wallerian degeneration (WD); however, CSE was not up-regulated in peripheral axons. Using an ex vivo sciatic nerve explant culture, we found that the inhibition of H2 S production broadly prevented the process of nerve degeneration, including myelin fragmentation, axonal degradation, Schwann cell dedifferentiation, and Schwann cell proliferation in vitro and in vivo. Thus, these results indicate that H2 S signaling is essential for Schwann cell responses to peripheral nerve injury. Hydrogen sulfide (H2 S) functions as a physiological gas transmitter in both normal and pathophysiological cellular events. H2 S is produced from cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and 3-mercaptopyruvate sulfur transferase (MST). Here, we found that CSE and MST/CAT were present in normal peripheral nerves. Injured static nerves in vivo up-regulated CSE in Schwann cells during Wallerian degeneration, but CSE was not up-regulated in peripheral axons.
Collapse
Affiliation(s)
- Byung Sun Park
- Department of Anatomy and Neurobiology, School of Medicine, Biomedical Science Institution, Kyung Hee University, Seoul, Korea
| | | | | | | | | | | | | | | |
Collapse
|
13
|
ATP release through lysosomal exocytosis from peripheral nerves: the effect of lysosomal exocytosis on peripheral nerve degeneration and regeneration after nerve injury. BIOMED RESEARCH INTERNATIONAL 2014; 2014:936891. [PMID: 25101301 PMCID: PMC4101216 DOI: 10.1155/2014/936891] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 05/29/2014] [Accepted: 06/16/2014] [Indexed: 01/18/2023]
Abstract
Studies have shown that lysosomal activation increases in Schwann cells after nerve injury. Lysosomal activation is thought to promote the engulfment of myelin debris or fragments of injured axons in Schwann cells during Wallerian degeneration. However, a recent interpretation of lysosomal activation proposes a different view of the phenomenon. During Wallerian degeneration, lysosomes become secretory vesicles and are activated for lysosomal exocytosis. The lysosomal exocytosis triggers adenosine 5′-triphosphate (ATP) release from peripheral neurons and Schwann cells during Wallerian degeneration. Exocytosis is involved in demyelination and axonal degradation, which facilitate nerve regeneration following nerve degeneration. At this time, released ATP may affect the communication between cells in peripheral nerves. In this review, our description of the relationship between lysosomal exocytosis and Wallerian degeneration has implications for the understanding of peripheral nerve degenerative diseases and peripheral neuropathies, such as Charcot-Marie-Tooth disease or Guillain-Barré syndrome.
Collapse
|