1
|
Zhang F, Ye J, Zhu J, Qian W, Wang H, Luo C. Key Cell-in-Cell Related Genes are Identified by Bioinformatics and Experiments in Glioblastoma. Cancer Manag Res 2024; 16:1109-1130. [PMID: 39253064 PMCID: PMC11382672 DOI: 10.2147/cmar.s475513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/27/2024] [Indexed: 09/11/2024] Open
Abstract
Purpose This study aimed to explore the roles of cell-in-cell (CIC)-related genes in glioblastoma (GBM) using bioinformatics and experimental strategies. Patients and Methods The ssGSEA algorithm was used to calculate the CIC score for each patient. Subsequently, differentially expressed genes (DEGs) between the CIClow and CIChigh groups and between the tumor and control samples were screened using the limma R package. Key CIC-related genes (CICRGs) were further filtered using univariate Cox and LASSO analyses, followed by the construction of a CIC-related risk score model. The performance of the risk score model in predicting GBM prognosis was evaluated using ROC curves and an external validation cohort. Moreover, their location and differentiation trajectory in GBM were analyzed at the single-cell level using the Seurat R package. Finally, the expression of key CICRGs in clinical samples was examined by qPCR. Results In the current study, we found that CIC scorelow group had a significantly better survival in the TCGA-GBM cohort, supporting the important role of CICRGs in GBM. Using univariate Cox and LASSO analyses, PTX3, TIMP1, IGFBP2, SNCAIP, LOXL1, SLC47A2, and LGALS3 were identified as key CICRGs. Based on this data, a CIC-related prognostic risk score model was built using the TCGA-GBM cohort and validated in the CGGA-GBM cohort. Further mechanistic analyses showed that the CIC-related risk score is closely related to immune and inflammatory responses. Interestingly, at the single-cell level, key CICRGs were expressed in the neurons and myeloids of tumor tissues and exhibited unique temporal dynamics of expression changes. Finally, the expression of key CICRGs was validated by qPCR using clinical samples from GBM patients. Conclusion We identified novel CIC-related genes and built a reliable prognostic prediction model for GBM, which will provide further basic clues for studying the exact molecular mechanisms of GBM pathogenesis from a CIC perspective.
Collapse
Affiliation(s)
- Fenglin Zhang
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Jingliang Ye
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Junle Zhu
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Wenbo Qian
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Haoheng Wang
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| | - Chun Luo
- Department of Neurosurgery, Tongji Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China
| |
Collapse
|
2
|
Wang B, Starr AL, Fraser HB. Cell-type-specific cis-regulatory divergence in gene expression and chromatin accessibility revealed by human-chimpanzee hybrid cells. eLife 2024; 12:RP89594. [PMID: 38358392 PMCID: PMC10942608 DOI: 10.7554/elife.89594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024] Open
Abstract
Although gene expression divergence has long been postulated to be the primary driver of human evolution, identifying the genes and genetic variants underlying uniquely human traits has proven to be quite challenging. Theory suggests that cell-type-specific cis-regulatory variants may fuel evolutionary adaptation due to the specificity of their effects. These variants can precisely tune the expression of a single gene in a single cell-type, avoiding the potentially deleterious consequences of trans-acting changes and non-cell type-specific changes that can impact many genes and cell types, respectively. It has recently become possible to quantify human-specific cis-acting regulatory divergence by measuring allele-specific expression in human-chimpanzee hybrid cells-the product of fusing induced pluripotent stem (iPS) cells of each species in vitro. However, these cis-regulatory changes have only been explored in a limited number of cell types. Here, we quantify human-chimpanzee cis-regulatory divergence in gene expression and chromatin accessibility across six cell types, enabling the identification of highly cell-type-specific cis-regulatory changes. We find that cell-type-specific genes and regulatory elements evolve faster than those shared across cell types, suggesting an important role for genes with cell-type-specific expression in human evolution. Furthermore, we identify several instances of lineage-specific natural selection that may have played key roles in specific cell types, such as coordinated changes in the cis-regulation of dozens of genes involved in neuronal firing in motor neurons. Finally, using novel metrics and a machine learning model, we identify genetic variants that likely alter chromatin accessibility and transcription factor binding, leading to neuron-specific changes in the expression of the neurodevelopmentally important genes FABP7 and GAD1. Overall, our results demonstrate that integrative analysis of cis-regulatory divergence in chromatin accessibility and gene expression across cell types is a promising approach to identify the specific genes and genetic variants that make us human.
Collapse
Affiliation(s)
- Ban Wang
- Department of Biology, Stanford UniversityStanfordUnited States
| | | | - Hunter B Fraser
- Department of Biology, Stanford UniversityStanfordUnited States
| |
Collapse
|
3
|
Wang B, Starr AL, Fraser HB. Cell type-specific cis-regulatory divergence in gene expression and chromatin accessibility revealed by human-chimpanzee hybrid cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.22.541747. [PMID: 37292820 PMCID: PMC10245923 DOI: 10.1101/2023.05.22.541747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although gene expression divergence has long been postulated to be the primary driver of human evolution, identifying the genes and genetic variants underlying uniquely human traits has proven to be quite challenging. Theory suggests that cell type-specific cis-regulatory variants may fuel evolutionary adaptation due to the specificity of their effects. These variants can precisely tune the expression of a single gene in a single cell type, avoiding the potentially deleterious consequences of trans-acting changes and non-cell type-specific changes that can impact many genes and cell types, respectively. It has recently become possible to quantify human-specific cis-acting regulatory divergence by measuring allele-specific expression in human-chimpanzee hybrid cells-the product of fusing induced pluripotent stem (iPS) cells of each species in vitro. However, these cis-regulatory changes have only been explored in a limited number of cell types. Here, we quantify human-chimpanzee cis-regulatory divergence in gene expression and chromatin accessibility across six cell types, enabling the identification of highly cell type-specific cis-regulatory changes. We find that cell type-specific genes and regulatory elements evolve faster than those shared across cell types, suggesting an important role for genes with cell type-specific expression in human evolution. Furthermore, we identify several instances of lineage-specific natural selection that may have played key roles in specific cell types, such as coordinated changes in the cis-regulation of dozens of genes involved in neuronal firing in motor neurons. Finally, using novel metrics and a machine learning model, we identify genetic variants that likely alter chromatin accessibility and transcription factor binding, leading to neuron-specific changes in the expression of the neurodevelopmentally important genes FABP7 and GAD1. Overall, our results demonstrate that integrative analysis of cis-regulatory divergence in chromatin accessibility and gene expression across cell types is a promising approach to identify the specific genes and genetic variants that make us human.
Collapse
Affiliation(s)
- Ban Wang
- Department of Biology, Stanford University, Stanford, CA, USA
| | | | | |
Collapse
|
4
|
Aid Z, Robert E, Lopez CK, Bourgoin M, Boudia F, Le Mene M, Riviere J, Baille M, Benbarche S, Renou L, Fagnan A, Thirant C, Federici L, Touchard L, Lecluse Y, Jetten A, Geoerger B, Lapillonne H, Solary E, Gaudry M, Meshinchi S, Pflumio F, Auberger P, Lobry C, Petit A, Jacquel A, Mercher T. High caspase 3 and vulnerability to dual BCL2 family inhibition define ETO2::GLIS2 pediatric leukemia. Leukemia 2023; 37:571-579. [PMID: 36585521 PMCID: PMC10583253 DOI: 10.1038/s41375-022-01800-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022]
Abstract
Pediatric acute myeloid leukemia expressing the ETO2::GLIS2 fusion oncogene is associated with dismal prognosis. Previous studies have shown that ETO2::GLIS2 can efficiently induce leukemia development associated with strong transcriptional changes but those amenable to pharmacological targeting remained to be identified. By studying an inducible ETO2::GLIS2 cellular model, we uncovered that de novo ETO2::GLIS2 expression in human cells led to increased CASP3 transcription, CASP3 activation, and cell death. Patient-derived ETO2::GLIS2+ leukemic cells expressed both high CASP3 and high BCL2. While BCL2 inhibition partly inhibited ETO2::GLIS2+ leukemic cell proliferation, BH3 profiling revealed that it also sensitized these cells to MCL1 inhibition indicating a functional redundancy between BCL2 and MCL1. We further show that combined inhibition of BCL2 and MCL1 is mandatory to abrogate disease progression using in vivo patient-derived xenograft models. These data reveal that a transcriptional consequence of ETO2::GLIS2 expression includes a positive regulation of the pro-apoptotic CASP3 and associates with a vulnerability to combined targeting of two BCL2 family members providing a novel therapeutic perspective for this aggressive pediatric AML subgroup.
Collapse
Affiliation(s)
- Zakia Aid
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Elie Robert
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Cécile K Lopez
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France.
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France.
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge, UK.
- Department of Haematology, University of Cambridge, Cambridge, UK.
| | - Maxence Bourgoin
- Team "Myeloid Malignancies and Multiple Myeloma", Université Côte d'Azur, INSERM U1065/C3M, 06204, Nice, France
| | - Fabien Boudia
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Melchior Le Mene
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Julie Riviere
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Marie Baille
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Salima Benbarche
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
| | - Laurent Renou
- Unité de Recherche (UMR)-E008 Stabilité Génétique, Cellules Souches et Radiations, Team Niche and Cancer in Hematopoiesis, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Université de Paris-Université Paris-Saclay, Fontenay-aux-Roses, 92260, France
| | - Alexandre Fagnan
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Cécile Thirant
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Laetitia Federici
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Laure Touchard
- Unité Mixte de Service - Analyse Moléculaire Modélisation et Imagerie de la maladie Cancéreuse (UMS AMMICA), Gustave Roussy Cancer Campus, 94800, Villejuif, France
| | - Yann Lecluse
- Unité Mixte de Service - Analyse Moléculaire Modélisation et Imagerie de la maladie Cancéreuse (UMS AMMICA), Gustave Roussy Cancer Campus, 94800, Villejuif, France
| | - Anton Jetten
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - Birgit Geoerger
- Gustave Roussy Cancer Campus, Pediatric and Adolescent Oncology Department, INSERM U1015, Université Paris Saclay, 94800, Villejuif, France
| | - Hélène Lapillonne
- Pediatric Hematology and Oncology Department, Armand Trousseau Hospital, AP-HP, Sorbonne University, UMRS_938, CONECT-AML, 75012, Paris, France
| | - Eric Solary
- INSERM U1287, Gustave Roussy Cancer Campus, 94800, Villejuif, France
| | - Muriel Gaudry
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Françoise Pflumio
- Unité de Recherche (UMR)-E008 Stabilité Génétique, Cellules Souches et Radiations, Team Niche and Cancer in Hematopoiesis, Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Université de Paris-Université Paris-Saclay, Fontenay-aux-Roses, 92260, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, 75010, Paris, France
| | - Patrick Auberger
- Team "Myeloid Malignancies and Multiple Myeloma", Université Côte d'Azur, INSERM U1065/C3M, 06204, Nice, France
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, 75010, Paris, France
| | - Camille Lobry
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France
- INSERM U944, CNRS UMR7212, Institut de Recherche Saint Louis and Université de Paris, 75010, Paris, France
| | - Arnaud Petit
- Gustave Roussy Cancer Campus, Pediatric and Adolescent Oncology Department, INSERM U1015, Université Paris Saclay, 94800, Villejuif, France
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Arnaud Jacquel
- Team "Myeloid Malignancies and Multiple Myeloma", Université Côte d'Azur, INSERM U1065/C3M, 06204, Nice, France.
| | - Thomas Mercher
- INSERM U1170, Gustave Roussy Cancer Campus, Université Paris Saclay, PEDIAC program, 94800, Villejuif, France.
- Equipe labellisée Ligue Nationale Contre le Cancer, 75013, Paris, France.
- OPALE Carnot Institute, The Organization for Partnerships in Leukemia, 75010, Paris, France.
| |
Collapse
|
5
|
He L, Li Q, Du C, Xue Y, Yu P. Glis2 inhibits the epithelial-mesenchymal transition and apoptosis of renal tubule cells by regulating the β-catenin signalling pathway in diabetic kidney disease. Biochem Biophys Res Commun 2022; 607:73-80. [DOI: 10.1016/j.bbrc.2022.03.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 11/02/2022]
|
6
|
Geng W, Wang J, Xie L, Song Y, Cao M, Shen J. p75 NTR Interacts with the Zinc Finger Protein Glis2 and Participates in Neuronal Apoptosis Following Intracerebral Hemorrhage. Neurotox Res 2022; 40:461-472. [PMID: 35192146 DOI: 10.1007/s12640-022-00483-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/06/2022] [Accepted: 02/12/2022] [Indexed: 11/24/2022]
Abstract
Intracerebral hemorrhage (ICH) is a serious condition with a particularly high mortality rate. Gli-similar 2 (Glis2) has been reported to play an important role in the pathogenesis of ICH; however, its underlying mechanisms and biological significance remains unclear. In the present study, a specific interaction between Glis2 and p75NTR, a member of the tumor necrosis factor receptor superfamily, was identified both in vivo and in vitro. These experiments further indicated that p75NTR may interact with Glis2, and that the complex was transported into the nucleus, initially, inducing neuronal death. Furthermore, the mechanism of neuronal death was explored, and may have been mediated via the activation of the mitochondrial-dependent apoptotic pathway, and this was further investigated in the pathogenesis of ICH in rats in vivo. The study may provide evidences for regulating p75NTR-Glis2 complex as a potential reliable treatment for the secondary damage following ICH.
Collapse
Affiliation(s)
- Wenqing Geng
- Department of Neurology, Affiliated Hospital of Nantong University, 20#, Xisi RD, Nantong, Jiangsu, 226001, People's Republic of China
| | - Jinglei Wang
- Department of Neurology, Affiliated Hospital of Nantong University, 20#, Xisi RD, Nantong, Jiangsu, 226001, People's Republic of China.,Department of Neurology, The People's Hospital of Hai'an, Nantong, Jiangsu, 226600, People's Republic of China
| | - Lili Xie
- Department of Neurology, The Third People's Hospital of Yancheng, The Sixth Affiliated Hospital of Nantong University, Yancheng, Jiangsu, 224300, People's Republic of China
| | - Yan Song
- Department of Neurology, Nantong Hospital of Traditional Chinese Medicine, Nantong, Jiangsu, 226006, People's Republic of China
| | - Maohong Cao
- Department of Neurology, Affiliated Hospital of Nantong University, 20#, Xisi RD, Nantong, Jiangsu, 226001, People's Republic of China.
| | - Jiabing Shen
- Department of Neurology, Affiliated Hospital of Nantong University, 20#, Xisi RD, Nantong, Jiangsu, 226001, People's Republic of China.
| |
Collapse
|
7
|
Huan S, Jin J, Shi CX, Li T, Dai Z, Fu XJ. Overexpression of miR-146a inhibits the apoptosis of hippocampal neurons of rats with cerebral hemorrhage by regulating autophagy. Hum Exp Toxicol 2020; 39:1178-1189. [PMID: 32090627 DOI: 10.1177/0960327120907131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this study, to investigate the effect of overexpression of miR-146a on autophagy of hippocampal neurons in rats with intracerebral hemorrhage (ICH), 72 Sprague-Dawley rats were randomly divided into the sham, ICH, miR-146a agomir, and miR-146a agomir control groups. The ICH model was constructed by injection of collagenase VII. The apoptosis of hippocampal neurons was measured by TUNEL assay. The levels of LC3 and Beclin 1 were analyzed by immunohistochemistry. Mitochondrial autophagy was examined by transmission electron microscopy. The levels of LC3A, LC3B, Beclin 1, Bax, Bcl-2, and cleaved caspase 3 were examined by Western blot. Western blot was also used to evaluate the expression of nuclear factor κB signaling pathway-related factors. To examine the effect of autophagy inhibitor (3-methyladenine (3-MA)) on miR-146a-regulated apoptotic protein expression, 30 rats were further divided into the sham, ICH, miR-146a agomir, 3-MA, and miR-146a + 3-MA groups. The levels of Bax, Bcl-2, and cleaved caspase 3 were examined by Western blot. Compared with the sham group, the nerve function scores, brain water content, the percentage of apoptotic cells, and the expression levels of LC3, Beclin 1, Bax, cleaved caspase 3, and p-P65 in the hippocampus of rats in the ICH group were all significantly increased (p < 0.05), whereas the expression levels of miR-146a, Bcl-2, and p-IκBα were markedly decreased (p < 0.05). Mitochondrial autophagy was also evident. Furthermore, compared with the ICH group, the results of the abovementioned tests in the miR-146a agomir group were reversed. The overexpression of miR-146a inhibited the autophagy of hippocampal neurons in rats with ICH.
Collapse
Affiliation(s)
- S Huan
- Department of Rehabilitation Sciences, Qingdao Women and Children Hospital, Qingdao University, Qingdao, China
| | - J Jin
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - C-X Shi
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - T Li
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Z Dai
- Department of Anesthesiology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - X-J Fu
- Department of Nephrology, Huai'an Hospital Affiliated to Xuzhou Medical University and Huai'an Second Hospital, Huai'an, China
| |
Collapse
|
8
|
Tan X, Wang S, Guo C, Qian M, Zhang X, Wan P, Yu C, Geng B, Ke K, Shen J, Song Y, Yu M. SSTR2 associated with neuronal apoptosis after intracerebral hemorrhage in adult rats. Neurol Res 2018; 40:221-230. [PMID: 29380671 DOI: 10.1080/01616412.2018.1428277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Objective SSTR2 is a member of superfamily of SST receptor (SSTR), and widely expressed in the brain; however, the knowledge of its functions in area adjacent to hematoma after intracerebral hemorrhage (ICH) is still limited. Method The role of SSTR2 in the processes of ICH was explored by conducting an ICH rat model. Western blot and immunohistochemistry were employed to examine the level of SSTR2 in area adjacent to hematoma after ICH. Immunofluorescent staining was used to observe the spatial correlation of SSTR2 with cellular types adjacent to hematoma after ICH. RNA interference specific to SSTR2 was adopted in PC12 cells to clarify the causal correlation between SSTR2 and neuronal activities. Results Increased expression of SSTR2 was observed and restricted to the neurons adjacent to hematoma following ICH. Immunofluorescent staining showed that SSTR2 was significant increased in neurons, but not astrocytes or microglia. Increasing SSTR2 level was found to be accompanied by the up-regulation of activated caspase-3 and the down-expression of p-Akt in a time-dependent manner. What's more, using SSTR2 RNA interference (SSTR2-RNAi) in PC12 cells, we indicated that SSTR2 might have a pro-apoptotic role in neurons. Conclusion We speculated that SSTR2 might exert its pro-apoptotic function in neurons through inhibiting Akt activity following ICH.
Collapse
Affiliation(s)
- Xiang Tan
- a Department of Critical Care Medicine , People's Hospital of China Three Gorges University, First People's Hospital of Yichang , Yichang , People's Republic of China
| | - Shuyao Wang
- b Department of Neurology , Affiliated Hospital of Nantong University , Nantong , People's Republic of China
| | - Changyun Guo
- a Department of Critical Care Medicine , People's Hospital of China Three Gorges University, First People's Hospital of Yichang , Yichang , People's Republic of China
| | - Min Qian
- a Department of Critical Care Medicine , People's Hospital of China Three Gorges University, First People's Hospital of Yichang , Yichang , People's Republic of China
| | - Xinli Zhang
- a Department of Critical Care Medicine , People's Hospital of China Three Gorges University, First People's Hospital of Yichang , Yichang , People's Republic of China
| | - Peng Wan
- a Department of Critical Care Medicine , People's Hospital of China Three Gorges University, First People's Hospital of Yichang , Yichang , People's Republic of China
| | - Chao Yu
- a Department of Critical Care Medicine , People's Hospital of China Three Gorges University, First People's Hospital of Yichang , Yichang , People's Republic of China
| | - Baojian Geng
- c Department of Neurology , Nantong Hospital of Traditional Chinese Medicine , Nantong , People's Republic of China
| | - Kaifu Ke
- b Department of Neurology , Affiliated Hospital of Nantong University , Nantong , People's Republic of China
| | - Jiabing Shen
- b Department of Neurology , Affiliated Hospital of Nantong University , Nantong , People's Republic of China
| | - Yan Song
- c Department of Neurology , Nantong Hospital of Traditional Chinese Medicine , Nantong , People's Republic of China
| | - Min Yu
- a Department of Critical Care Medicine , People's Hospital of China Three Gorges University, First People's Hospital of Yichang , Yichang , People's Republic of China
| |
Collapse
|
9
|
Dai Q, Jiang P, Gu Y, Zhu L, Dai H, Yao Z, Liu H, Ma X, Duan C, Qu L. Insulin-like Growth Factor Binding Protein6 Associated with Neuronal Apoptosis Following Intracerebral Hemorrhage in Rats. Cell Mol Neurobiol 2017; 37:1207-1216. [PMID: 28044240 DOI: 10.1007/s10571-016-0453-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/01/2016] [Indexed: 10/20/2022]
Abstract
The insulin-like growth factor (IGF) system is linked to CNS pathological states. The functions of IGFs are modulated by a family of binding proteins termed insulin-like growth factor binding proteins (IGFBPs). Here, we demonstrate that IGFBP-6 may be associated with neuronal apoptosis in the processes of intracerebral hemorrhage (ICH). We obtained a significant upregulation of IGFBP-6 in neurons adjacent to the hematoma following ICH with the results of Western blot, immunohistochemistry, and immunofluorescence. Increasing IGFBP-6 level was found to be accompanied by the upregulation of Bax, Bcl-2, and active caspase-3. Besides, IGFBP-6 co-localized well with active caspase-3 in neurons, indicating its potential role in neuronal apoptosis. Knocking down IGFBP-6 by RNA-interference in PC12 cells reduced active caspase-3 expression. Thus, IGFBP-6 may play a role in promoting the brain secondary damage following ICH.
Collapse
Affiliation(s)
- Qijun Dai
- Department of Orthopedics, Traditional Chinese Medicine Hospital of Haian County Affiliated Hospital, Nanjing University of Chinese Medicine of Hanlin College, Ninghai Road, Haian County, 226600, Jiangsu Province, China
| | - Peipei Jiang
- Department of Orthopedics, Traditional Chinese Medicine Hospital of Haian County Affiliated Hospital, Nanjing University of Chinese Medicine of Hanlin College, Ninghai Road, Haian County, 226600, Jiangsu Province, China
| | - Yang Gu
- Department of Orthopedics, Traditional Chinese Medicine Hospital of Haian County Affiliated Hospital, Nanjing University of Chinese Medicine of Hanlin College, Ninghai Road, Haian County, 226600, Jiangsu Province, China
| | - Lin Zhu
- Department of Orthopedics, Traditional Chinese Medicine Hospital of Haian County Affiliated Hospital, Nanjing University of Chinese Medicine of Hanlin College, Ninghai Road, Haian County, 226600, Jiangsu Province, China
| | - Haifeng Dai
- Department of Orthopedics, Traditional Chinese Medicine Hospital of Haian County Affiliated Hospital, Nanjing University of Chinese Medicine of Hanlin College, Ninghai Road, Haian County, 226600, Jiangsu Province, China
| | - Zhigang Yao
- Department of Orthopedics, Traditional Chinese Medicine Hospital of Haian County Affiliated Hospital, Nanjing University of Chinese Medicine of Hanlin College, Ninghai Road, Haian County, 226600, Jiangsu Province, China
| | - Hua Liu
- Department of Orthopedics, Traditional Chinese Medicine Hospital of Haian County Affiliated Hospital, Nanjing University of Chinese Medicine of Hanlin College, Ninghai Road, Haian County, 226600, Jiangsu Province, China
| | - Xiaoping Ma
- Department of Orthopedics, Traditional Chinese Medicine Hospital of Haian County Affiliated Hospital, Nanjing University of Chinese Medicine of Hanlin College, Ninghai Road, Haian County, 226600, Jiangsu Province, China
| | - Chengwei Duan
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001, Jiangsu Province, China.
| | - Lianxia Qu
- Department of Orthopedics, Traditional Chinese Medicine Hospital of Haian County Affiliated Hospital, Nanjing University of Chinese Medicine of Hanlin College, Ninghai Road, Haian County, 226600, Jiangsu Province, China.
| |
Collapse
|
10
|
Bonsack F, Alleyne CH, Sukumari-Ramesh S. Resveratrol Attenuates Neurodegeneration and Improves Neurological Outcomes after Intracerebral Hemorrhage in Mice. Front Cell Neurosci 2017; 11:228. [PMID: 28848394 PMCID: PMC5550718 DOI: 10.3389/fncel.2017.00228] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/19/2017] [Indexed: 12/17/2022] Open
Abstract
Intracerebral hemorrhage (ICH) is a devastating type of stroke with a substantial public health impact. Currently, there is no effective treatment for ICH. The purpose of the study was to evaluate whether the post-injury administration of Resveratrol confers neuroprotection in a pre-clinical model of ICH. To this end, ICH was induced in adult male CD1 mice by collagenase injection method. Resveratrol (10 mg/kg) or vehicle was administered at 30 min post-induction of ICH and the neurobehavioral outcome, neurodegeneration, cerebral edema, hematoma resolution and neuroinflammation were assessed. The Resveratrol treatment significantly attenuated acute neurological deficits, neurodegeneration and cerebral edema after ICH in comparison to vehicle treated controls. Further, Resveratrol treated mice exhibited improved hematoma resolution with a concomitant reduction in the expression of proinflammatory cytokine, IL-1β after ICH. Altogether, the data suggest the efficacy of post-injury administration of Resveratrol in improving acute neurological function after ICH.
Collapse
Affiliation(s)
- Frederick Bonsack
- Department of Neurosurgery, Medical College of Georgia, Augusta UniversityAugusta, GA, United States
| | - Cargill H Alleyne
- Department of Neurosurgery, Medical College of Georgia, Augusta UniversityAugusta, GA, United States
| | - Sangeetha Sukumari-Ramesh
- Department of Neurosurgery, Medical College of Georgia, Augusta UniversityAugusta, GA, United States
| |
Collapse
|
11
|
Liu C, Liu C, Liu H, Gong L, Tao T, Shen Y, Zhu S, Shen A. Increased Expression of Ubiquitin-Specific Protease 4 Participates in Neuronal Apoptosis After Intracerebral Hemorrhage in Adult Rats. Cell Mol Neurobiol 2017; 37:427-435. [PMID: 27114249 DOI: 10.1007/s10571-016-0375-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/15/2016] [Indexed: 02/07/2023]
Abstract
Ubiquitinating enzymes catalyze protein ubiquitination, a reversible process countered by deubiquitinating enzyme (DUB) action. Ubiquitin-specific protease 4 (USP4) is a member of the ubiquitin-specific protease (USP) family of DUBs that has a role in spliceosome regulation. In the present study, we demonstrated that USP4 may be involved in neuronal apoptosis in the processes of intracerebral hemorrhage (ICH). We obtained a significant up-regulation of USP4 in neurons adjacent to the hematoma following ICH by the results of Western blot, immunohistochemistry, and immunofluorescence. Increasing USP4 level was found to be accompanied by the up-regulation of active caspase-3, γH2AX, Bax, and decreased expression of Bcl-2. In addition, USP4 co-localized well with γH2AX in the nucleus in the ICH model and hemin-induced apoptosis model. Moreover, in vitro study, knocking down USP4 by USP4-specific siRNA in PC12 cells reduced active caspase-3 expression. All these results above suggested that USP4 may be involved in neuronal apoptosis after ICH.
Collapse
Affiliation(s)
- Chao Liu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Chun Liu
- Laboratory Animal Center, Nantong University, Nantong, 226001, Jiangsu, China
| | - Hanzhang Liu
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Leilei Gong
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China
| | - Tao Tao
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001, Jiangsu, China
| | - Yifen Shen
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, 226001, Jiangsu, China
| | - Shunxing Zhu
- Laboratory Animal Center, Nantong University, Nantong, 226001, Jiangsu, China.
| | - Aiguo Shen
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
12
|
Methazolamide improves neurological behavior by inhibition of neuron apoptosis in subarachnoid hemorrhage mice. Sci Rep 2016; 6:35055. [PMID: 27731352 PMCID: PMC5059745 DOI: 10.1038/srep35055] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 09/20/2016] [Indexed: 02/07/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) results in significant nerve dysfunction, such as hemiplegia, mood disorders, cognitive and memory impairment. Currently, no clear measures can reduce brain nerve damage. The study of brain nerve protection after SAH is of great significance. We aim to evaluate the protective effects and the possible mechanism of methazolamide in C57BL/6J SAH animal model in vivo and in blood-induced primary cortical neuron (PCNs) cellular model of SAH in vitro. We demonstrate that methazolamide accelerates the recovery of neurological damage, effectively relieves cerebral edema, and improves cognitive function in SAH mice as well as offers neuroprotection in blood- or hemoglobin-treated PCNs and partially restores normal neuronal morphology. In addition, western blot analyses show obviously decreased expression of active caspase-3 in methazolamide-treated SAH mice comparing with vehicle-treated SAH animals. Furthermore, methazolamide effectively inhibits ROS production in PCNs induced by blood exposure or hemoglobin insult. However, methazolamide has no protective effects in morality, fluctuation of cerebral blood flow, SAH grade, and cerebral vasospasm of SAH mice. Given methazolamide, a potent carbonic anhydrase inhibitor, can penetrate the blood–brain barrier and has been used in clinic in the treatment of ocular conditions, it provides potential as a novel therapy for SAH.
Collapse
|
13
|
The protective role of (-)-epigallocatechin-3-gallate in thrombin-induced neuronal cell apoptosis and JNK-MAPK activation. Neuroreport 2015; 26:416-23. [PMID: 25839175 PMCID: PMC4390119 DOI: 10.1097/wnr.0000000000000363] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
(−)-Epigallocatechin-3-gallate (EGCG), the major polyphenolic component of green tea, has anti-inflammatory and antioxidant properties and provides neuroprotection against central nervous system diseases. Yet, it is not known whether EGCG may be neuroprotective against intracerebral hemorrhage. In this study, we used a simplified in-vitro model of thrombin neurotoxicity to test whether EGCG provides neuroprotection against thrombin-associated toxicity. Exposure of primary cortical neurons to thrombin (100 U/ml) caused dose-dependent and time-dependent cytotoxicity. Cell Counting Kit 8 and lactate dehydrogenase were used to monitor cell viability after exposure of neurons to thrombin or EGCG and after EGCG pretreatment. Flow cytometric analysis and western blotting demonstrated that thrombin-induced neuron degeneration occurs through apoptosis. A concentration of 25 μM EGCG significantly abolished thrombin-induced toxicity and prevented apoptosis by suppressing c-Jun-N-terminal kinase (JNK) phosphorylation, and the JNK inhibitor SP600125 reduced thrombin-induced caspase 3 activation and apoptosis. These data suggest that EGCG may have protective effects against thrombin-induced neuroapoptosis by inhibiting the activation of JNK, leading to caspase 3 cleavage. EGCG is a novel candidate neuroprotective agent against intracerebral hemorrhage-induced neurotoxicity.
Collapse
|