1
|
Harbour K, Cappel Z, Baccei ML. Effects of Corticosterone on the Excitability of Glutamatergic and GABAergic Neurons of the Adolescent Mouse Superficial Dorsal Horn. Neuroscience 2023; 526:290-304. [PMID: 37437798 PMCID: PMC10530204 DOI: 10.1016/j.neuroscience.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023]
Abstract
Stress evokes age-dependent effects on pain sensitivity and commonly occurs during adolescence. However, the mechanisms linking adolescent stress and pain remain poorly understood, in part due to a lack of information regarding how stress hormones modulate the function of nociceptive circuits in the adolescent CNS. Here we investigate the short- and long-term effects of corticosterone (CORT) on the excitability of GABAergic and presumed glutamatergic neurons of the spinal superficial dorsal horn (SDH) in Gad1-GFP mice at postnatal days (P)21-P34. In situ hybridization revealed that glutamatergic SDH neurons expressed significantly higher mRNA levels of both glucocorticoid receptors (GR) and mineralocorticoid receptors (MR) compared to adjacent GABAergic neurons. The incubation of spinal cord slices with CORT (90 min) evoked select long-term changes in spontaneous synaptic transmission across both cell types in a sex-dependent manner, without altering the intrinsic firing of either Gad1-GFP+ or GFP- neurons. Meanwhile, the acute bath application of CORT significantly decreased the frequency and amplitude of miniature excitatory postsynaptic currents (mEPSCs), as well as the frequency of miniature inhibitory postsynaptic currents (mIPSCs), in both cell types leading to a net reduction in the balance of spontaneous excitation vs. inhibition (E:I ratio). This CORT-induced reduction in the E:I ratio was not prevented by selective antagonists of either GR (mifepristone) or MR (eplerenone), although eplerenone blocked the effect on mEPSC amplitude. Collectively, these data suggest that corticosterone modulates synaptic function within the adolescent SDH which could influence the overall excitability and output of the spinal nociceptive network.
Collapse
Affiliation(s)
- Kyle Harbour
- Molecular, Cellular and Biochemical Pharmacology Graduate Program, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Zoe Cappel
- Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; Neuroscience Graduate Program, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; American Society for Pharmacology and Experimental Therapeutics Summer Research Program, Department of Pharmacology and Systems Physiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Mark L Baccei
- Molecular, Cellular and Biochemical Pharmacology Graduate Program, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; Pain Research Center, Department of Anesthesiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; Neuroscience Graduate Program, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, USA; American Society for Pharmacology and Experimental Therapeutics Summer Research Program, Department of Pharmacology and Systems Physiology, University of Cincinnati Medical Center, 231 Albert Sabin Way, Cincinnati, OH 45267, USA.
| |
Collapse
|
2
|
Thacker JS, Mielke JG. The combined effects of corticosterone and brain-derived neurotrophic factor on plasticity-related receptor phosphorylation and expression at the synaptic surface in male Sprague-Dawley rats. Horm Behav 2022; 145:105233. [PMID: 35878471 DOI: 10.1016/j.yhbeh.2022.105233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/23/2022]
Abstract
Following acute exercise, a temporal window exists wherein neuroplasticity is thought to be heightened. Although a number of studies have established that pairing this post-exercise period with motor training enhances learning, the mechanisms through which exercise-induced priming occurs are not well understood. Previously, we characterized a rodent model of acute exercise that generates significant enhancement in glutamatergic receptor phosphorylation as a possible mechanism to explain how exercise-induced priming might occur. However, whether these changes are stimulated by peripheral factors (e.g., glucocorticoids), central effects (e.g., brain-derived neurotrophic factor (BDNF), or a combination of the two remains unclear. Herein, we explored the possible individual and/or cumulative contribution corticosterone (CORT) and BDNF may have on glutamate receptor phosphorylation and synaptic surface expression. Tissue slices from the sensorimotor cortex were prepared and acutely (30 min) incubated with either CORT (200 nM), BDNF (20 ng/mL), or the simultaneous application of CORT and BDNF (CORT+BDNF). Immunoblotting with biotinylated synaptoneurosomes (which provide an enrichment of proteins from the synaptic surface) suggested divergent effects between CORT and BDNF. Acute CORT application enhanced NMDA- (GluN2A, B) and AMPA- (GluA1) receptor phosphorylation, whereas BDNF preferentially increased synaptic surface expression of both NMDA- and AMPA-receptor subunits. The combined effects of CORT+BDNF resulted in a unique subset of signaling patterns that favored phosphorylation in the absence of surface expression. Taken together, these data provide a mechanistic framework for how CORT and BDNF may alter glutamatergic synapses during exercise-induced priming.
Collapse
Affiliation(s)
- Jonathan S Thacker
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health System, Toronto, Ontario M5G 1X5, Canada; Department of Physiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| | - John G Mielke
- School of Public Health Sciences, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
3
|
Lee MT, Peng WH, Kan HW, Wu CC, Wang DW, Ho YC. Neurobiology of Depression: Chronic Stress Alters the Glutamatergic System in the Brain-Focusing on AMPA Receptor. Biomedicines 2022; 10:biomedicines10051005. [PMID: 35625742 PMCID: PMC9138646 DOI: 10.3390/biomedicines10051005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 12/25/2022] Open
Abstract
Major depressive disorder (MDD) is a common neuropsychiatric disorder affecting the mood and mental well-being. Its pathophysiology remains elusive due to the complexity and heterogeneity of this disorder that affects millions of individuals worldwide. Chronic stress is frequently cited as the one of the risk factors for MDD. To date, the conventional monoaminergic theory (serotonin, norepinephrine, and/or dopamine dysregulation) has received the most attention in the treatment of MDD, and all available classes of antidepressants target these monoaminergic systems. However, the contributions of other neurotransmitter systems in MDD have been widely reported. Emerging preclinical and clinical findings reveal that maladaptive glutamatergic neurotransmission might underlie the pathophysiology of MDD, thus revealing its critical role in the neurobiology of MDD and as the therapeutic target. Aiming beyond the monoaminergic hypothesis, studies of the neurobiological mechanisms underlying the stress-induced impairment of AMPA (a-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid)-glutamatergic neurotransmission in the brain could provide novel insights for the development of a new generation of antidepressants without the detrimental side effects. Here, the authors reviewed the recent literature focusing on the role of AMPA-glutamatergic neurotransmission in stress-induced maladaptive responses in emotional and mood-associated brain regions, including the hippocampus, amygdala, prefrontal cortex, nucleus accumbens and periaqueductal gray.
Collapse
Affiliation(s)
- Ming Tatt Lee
- Faculty of Pharmaceutical Sciences, UCSI University, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Wei-Hao Peng
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan; (W.-H.P.); (H.-W.K.)
| | - Hung-Wei Kan
- School of Medicine for International Students, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan; (W.-H.P.); (H.-W.K.)
| | - Cheng-Chun Wu
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan; (C.-C.W.); (D.-W.W.)
| | - Deng-Wu Wang
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan; (C.-C.W.); (D.-W.W.)
- Department of Psychiatry, E-Da Hospital, Kaohsiung City 82445, Taiwan
| | - Yu-Cheng Ho
- School of Medicine, College of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan; (C.-C.W.); (D.-W.W.)
- Correspondence:
| |
Collapse
|
4
|
Monsour M, Ebedes D, Borlongan CV. A review of the pathology and treatment of TBI and PTSD. Exp Neurol 2022; 351:114009. [PMID: 35150737 DOI: 10.1016/j.expneurol.2022.114009] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/25/2021] [Accepted: 02/05/2022] [Indexed: 02/07/2023]
Abstract
This literature review focuses on the underlying pathophysiology of TBI and PTSD symptoms, while also examining the plethora of stem cell treatment options to ameliorate these neuronal and functional changes. As more veterans return suffering from TBI and/or PTSD, it is vital that researchers discover novel therapies to mitigate the detrimental symptoms of both diagnoses. A variety of stem cell treatments have been studied and offer hopeful options for TBI and PTSD recovery.
Collapse
Affiliation(s)
- Molly Monsour
- Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Dominique Ebedes
- Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA
| | - Cesario V Borlongan
- Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, 12901 Bruce B Downs Blvd, Tampa, FL 33612, USA.
| |
Collapse
|
5
|
Cocaine-seeking behaviour is differentially expressed in male and female mice exposed to maternal separation and is associated with alterations in AMPA receptors subunits in the medial prefrontal cortex. Prog Neuropsychopharmacol Biol Psychiatry 2021; 109:110262. [PMID: 33497752 DOI: 10.1016/j.pnpbp.2021.110262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/14/2020] [Accepted: 01/17/2021] [Indexed: 12/13/2022]
Abstract
According with clinical data, women evolve differently from drug use to drug abuse. Among drugs of abuse, cocaine is the most consumed psychostimulant. Animal studies demonstrated that females show increased motivation to seek cocaine during the self-administration paradigm (SA) than males. Moreover, suffering childhood adversity or major depressive disorder are two factors that could increase the predisposition to suffer cocaine addiction. Maternal separation with early weaning (MSEW) is an animal model that allows examining the impact of early-life stress on cocaine abuse. In this study, we aimed to explore changes in MSEW-induced cocaine-seeking motivation to determine potential associations between despair-like behaviour and cocaine-seeking. We also evaluated possible alterations in the AMPA receptors (AMPArs) composition in the medial prefrontal cortex (mPFC) of these mice. We exposed mice to MSEW and the behavioural tests were performed during adulthood. Moreover, GluA1, GluA2 mRNA and protein expression were evaluated in the mPFC. Results show higher cocaine-seeking in standard nest females, as well as an increase in GluA1 and GluA2 protein expression. Moreover, MSEW induces downregulation of Gria2 and increases the Gria1/Gria2 ratio, only in male mice. In conclusion, female mice show different composition of the AMPA receptor in the mPFC and MSEW alters the glutamatergic system in the mPFC of male mice.
Collapse
|
6
|
Gulyaeva NV. Glucocorticoid Regulation of the Glutamatergic
Synapse: Mechanisms of Stress-Dependent Neuroplasticity. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021030091] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Renormalizing synapses in sleep: The clock is ticking. Biochem Pharmacol 2021; 191:114533. [PMID: 33771494 DOI: 10.1016/j.bcp.2021.114533] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/11/2022]
Abstract
Sleep has been hypothesized to renormalize synapses potentiated in wakefulness. This is proposed to lead to a net reduction in synaptic strength after sleep in brain areas like the cortex and hippocampus. Biological clocks, however, exert independent effects on these synapses that may explain some of the reported differences after wake and sleep. These include changes in synaptic morphology, molecules and efficacy. In this commentary, I discuss why no firm conclusions should be drawn concerning the role of sleep in synaptic renormalization until the role of circadian rhythms are isolated and determined.
Collapse
|
8
|
Cognition- and circuit-based dysfunction in a mouse model of 22q11.2 microdeletion syndrome: effects of stress. Transl Psychiatry 2020; 10:41. [PMID: 32066701 PMCID: PMC7026063 DOI: 10.1038/s41398-020-0687-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/19/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022] Open
Abstract
Genetic microdeletion at the 22q11 locus is associated with very high risk for schizophrenia. The 22q11.2 microdeletion (Df(h22q11)/+) mouse model shows cognitive deficits observed in this disorder, some of which can be linked to dysfunction of the prefrontal cortex (PFC). We used behavioral (n = 10 per genotype), electrophysiological (n = 7 per genotype per group), and neuroanatomical (n = 5 per genotype) techniques to investigate schizophrenia-related pathology of Df(h22q11)/+ mice, which showed a significant decrease in the total number of parvalbumin positive interneurons in the medial PFC. The Df(h22q11)/+ mice when tested on PFC-dependent behavioral tasks, including gambling tasks, perform significantly worse than control animals while exhibiting normal behavior on hippocampus-dependent tasks. They also show a significant decrease in hippocampus-medial Prefrontal cortex (H-PFC) synaptic plasticity (long-term potentiation, LTP). Acute platform stress almost abolished H-PFC LTP in both wild-type and Df(h22q11)/+ mice. H-PFC LTP was restored to prestress levels by clozapine (3 mg/kg i.p.) in stressed Df(h22q11)/+ mice, but the restoration of stress-induced LTP, while significant, was similar between wild-type and Df(h22q11)/+ mice. A medial PFC dysfunction may underlie the negative and cognitive symptoms in human 22q11 deletion carriers, and these results are relevant to the current debate on the utility of clozapine in such subjects.
Collapse
|
9
|
Mayanagi T, Sobue K. Social Stress-Induced Postsynaptic Hyporesponsiveness in Glutamatergic Synapses Is Mediated by PSD-Zip70-Rap2 Pathway and Relates to Anxiety-Like Behaviors. Front Cell Neurosci 2020; 13:564. [PMID: 31969804 PMCID: PMC6960224 DOI: 10.3389/fncel.2019.00564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 12/05/2019] [Indexed: 11/28/2022] Open
Abstract
PSD-Zip70 is a postsynaptic protein that regulates glutamatergic synapse formation and maturation by modulation of Rap2 activity. PSD-Zip70 knockout (PSD-Zip70KO) mice exhibit defective glutamatergic synaptic transmission in the prefrontal cortex (PFC) with aberrant Rap2 activation. As prefrontal dysfunction is implicated in the pathophysiology of stress-induced psychiatric diseases, we examined PSD-Zip70KO mice in a social defeat (SD) stress-induced mouse model of depression to investigate stress-induced alterations in synaptic function. Compared with wild-type (WT) mice, PSD-Zip70KO mice exhibited almost normal responses to SD stress in depression-related behaviors such as social activity, anhedonia, and depressive behavior. However, PSD-Zip70KO mice showed enhanced anxiety-like behavior irrespective of stress conditions. The density and size of dendritic spines of pyramidal neurons were reduced in the medial PFC (mPFC) in mice exposed to SD stress. Phosphorylation levels of the AMPA–type glutamate receptor (AMPA-R) GluA2 subunit at Ser880 were prominently elevated in mice exposed to SD stress, indicating internalization of surface-expressed AMPA-Rs and decreased postsynaptic responsiveness. Structural and functional impairments in postsynaptic responsiveness were associated with Rap2 GTPase activation in response to SD stress. Social stress-induced Rap2 activation was regulated by a PSD-Zip70-dependent pathway via interaction with SPAR/PDZ-GEF1. Notably, features such as Rap2 activation, dendritic spine shrinkage, and increased GluA2 phosphorylation were observed in the mPFC of PSD-Zip70KO mice even without SD stress. Together with our previous results, the present findings suggest that SD stress-induced postsynaptic hyporesponsiveness in glutamatergic synapses is mediated by PSD-Zip70-Rap2 signaling pathway and closely relates to anxiety-like behaviors.
Collapse
Affiliation(s)
- Taira Mayanagi
- Department of Neuroscience, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan
| | - Kenji Sobue
- Department of Neuroscience, Institute for Biomedical Sciences, Iwate Medical University, Yahaba, Japan
| |
Collapse
|
10
|
Ewin SE, Morgan JW, Niere F, McMullen NP, Barth SH, Almonte AG, Raab-Graham KF, Weiner JL. Chronic Intermittent Ethanol Exposure Selectively Increases Synaptic Excitability in the Ventral Domain of the Rat Hippocampus. Neuroscience 2018; 398:144-157. [PMID: 30481568 DOI: 10.1016/j.neuroscience.2018.11.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 10/15/2018] [Accepted: 11/17/2018] [Indexed: 12/17/2022]
Abstract
Many studies have implicated hippocampal dysregulation in the pathophysiology of alcohol use disorder (AUD). However, over the past twenty years, a growing body of evidence has revealed distinct functional roles of the dorsal (dHC) and ventral (vHC) hippocampal subregions, with the dHC being primarily involved in spatial learning and memory and the vHC regulating anxiety- and depressive-like behaviors. Notably, to our knowledge, no rodent studies have examined the effects of chronic ethanol exposure on synaptic transmission along the dorsal/ventral axis. To that end, we examined the effects of the chronic intermittent ethanol vapor exposure (CIE) model of AUD on dHC and vHC synaptic excitability. Adult male Long-Evans rats were exposed to CIE or AIR for 10 days (12 h/day; targeting blood ethanol levels of 175-225 mg%) and recordings were made 24 h into withdrawal. As expected, this protocol increased anxiety-like behaviors on the elevated plus-maze and successive alleys test. Extracellular recordings revealed marked CIE-associated increases in synaptic excitation in the CA1 region that were exclusively restricted to the ventral domain of the hippocampus. Western blot analysis of synaptoneurosomal fractions revealed that the expression of two proteins that regulate synaptic strength, GluA2 and SK2, were dysregulated in the vHC, but not the dHC, following CIE. Together, these findings suggest that the ventral CA1 region may be particularly sensitive to the maladaptive effects of chronic ethanol exposure and provide new insight into some of the neural substrates that may contribute to the negative affective state that develops during withdrawal.
Collapse
Affiliation(s)
- Sarah E Ewin
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - James W Morgan
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Farr Niere
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Nate P McMullen
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Samuel H Barth
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Antoine G Almonte
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Kimberly F Raab-Graham
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Jeffrey L Weiner
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
11
|
Kootar S, Frandemiche ML, Dhib G, Mouska X, Lorivel T, Poupon-Silvestre G, Hunt H, Tronche F, Bethus I, Barik J, Marie H. Identification of an acute functional cross-talk between amyloid-β and glucocorticoid receptors at hippocampal excitatory synapses. Neurobiol Dis 2018; 118:117-128. [PMID: 30003950 DOI: 10.1016/j.nbd.2018.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 06/05/2018] [Accepted: 07/04/2018] [Indexed: 01/18/2023] Open
Abstract
Amyloid-β is a peptide released by synapses in physiological conditions and its pathological accumulation in brain structures necessary for memory processing represents a key toxic hallmark underlying Alzheimer's disease. The oligomeric form of Amyloid-β (Aβο) is now believed to represent the main Amyloid-β species affecting synapse function. Yet, the exact molecular mechanism by which Aβο modifies synapse function remains to be fully elucidated. There is accumulating evidence that glucocorticoid receptors (GRs) might participate in Aβο generation and activity in the brain. Here, we provide evidence for an acute functional cross-talk between Aβ and GRs at hippocampal excitatory synapses. Using live imaging and biochemical analysis of post-synaptic densities (PSD) in cultured hippocampal neurons, we show that synthetic Aβo (100 nM) increases GR levels in spines and PSD. Also, in these cultured neurons, blocking GRs with two different GR antagonists prevents Aβo-mediated PSD95 increase within the PSD. By analyzing long-term potentiation (LTP) and long-term depression (LTD) in ex vivo hippocampal slices after pharmacologically blocking GR, we also show that GR signaling is necessary for Aβo-mediated LTP impairment, but not Aβo-mediated LTD induction. The necessity of neuronal GRs for Aβo-mediated LTP was confirmed by genetically removing GRs in vivo from CA1 neurons using conditional GR mutant mice. These results indicate a tight functional interplay between GR and Aβ activities at excitatory synapses.
Collapse
Affiliation(s)
- Scherazad Kootar
- Team Physiopathology of Neuronal Circuits and Behavior, Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Marie-Lise Frandemiche
- Team Physiopathology of Neuronal Circuits and Behavior, Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Gihen Dhib
- Team Physiopathology of Neuronal Circuits and Behavior, Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Xavier Mouska
- Team Physiopathology of Neuronal Circuits and Behavior, Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Thomas Lorivel
- Behavioral Facility, Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Gwenola Poupon-Silvestre
- Team Sumoylation in neuronal function and dysfunction, Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | | | - François Tronche
- Team Gene Regulation and Adaptive Behaviors, Neurosciences Paris Seine, INSERM U 1130, CNRS UMR 8246, Université Pierre et Marie Curie, Paris, France
| | - Ingrid Bethus
- Team Physiopathology of Neuronal Circuits and Behavior, Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Jacques Barik
- Team Physiopathology of Neuronal Circuits and Behavior, Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France
| | - Hélène Marie
- Team Physiopathology of Neuronal Circuits and Behavior, Université Côte d'Azur (UCA), Centre National de la Recherche Scientifique (CNRS), Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), Valbonne, France.
| |
Collapse
|
12
|
Kaplan GB, Leite-Morris KA, Wang L, Rumbika KK, Heinrichs SC, Zeng X, Wu L, Arena DT, Teng YD. Pathophysiological Bases of Comorbidity: Traumatic Brain Injury and Post-Traumatic Stress Disorder. J Neurotrauma 2017; 35:210-225. [PMID: 29017388 DOI: 10.1089/neu.2016.4953] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The high rates of traumatic brain injury (TBI) and post-traumatic stress disorder (PTSD) diagnoses encountered in recent years by the United States Veterans Affairs Healthcare System have increased public awareness and research investigation into these conditions. In this review, we analyze the neural mechanisms underlying the TBI/PTSD comorbidity. TBI and PTSD present with common neuropsychiatric symptoms including anxiety, irritability, insomnia, personality changes, and memory problems, and this overlap complicates diagnostic differentiation. Interestingly, both TBI and PTSD can be produced by overlapping pathophysiological changes that disrupt neural connections termed the "connectome." The neural disruptions shared by PTSD and TBI and the comorbid condition include asymmetrical white matter tract abnormalities and gray matter changes in the basolateral amygdala, hippocampus, and prefrontal cortex. These neural circuitry dysfunctions result in behavioral changes that include executive function and memory impairments, fear retention, fear extinction deficiencies, and other disturbances. Pathophysiological etiologies can be identified using experimental models of TBI, such as fluid percussion or blast injuries, and for PTSD, using models of fear conditioning, retention, and extinction. In both TBI and PTSD, there are discernible signs of neuroinflammation, excitotoxicity, and oxidative damage. These disturbances produce neuronal death and degeneration, axonal injury, and dendritic spine dysregulation and changes in neuronal morphology. In laboratory studies, various forms of pharmacological or psychological treatments are capable of reversing these detrimental processes and promoting axonal repair, dendritic remodeling, and neurocircuitry reorganization, resulting in behavioral and cognitive functional enhancements. Based on these mechanisms, novel neurorestorative therapeutics using anti-inflammatory, antioxidant, and anticonvulsant agents may promote better outcomes for comorbid TBI and PTSD.
Collapse
Affiliation(s)
- Gary B Kaplan
- 1 Mental Health Service , VA Boston Healthcare System, Brockton, Massachusetts.,2 Department of Psychiatry, Boston University School of Medicine , Boston, Massachusetts.,3 Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine , Boston, Massachusetts
| | - Kimberly A Leite-Morris
- 2 Department of Psychiatry, Boston University School of Medicine , Boston, Massachusetts.,3 Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine , Boston, Massachusetts.,4 Research Service, VA Boston Healthcare System , Jamaica Plain, Massachusetts
| | - Lei Wang
- 5 Division of Spinal Cord Injury Research, VA Boston Healthcare System , West Roxbury, Massachusetts.,6 Departments of Physical Medicine and Rehabilitation and Neurosurgery, Harvard Medical School , Boston, Massachusetts
| | - Kendra K Rumbika
- 7 Research Service, VA Boston Healthcare System , West Roxbury, Massachusetts
| | - Stephen C Heinrichs
- 7 Research Service, VA Boston Healthcare System , West Roxbury, Massachusetts
| | - Xiang Zeng
- 5 Division of Spinal Cord Injury Research, VA Boston Healthcare System , West Roxbury, Massachusetts.,6 Departments of Physical Medicine and Rehabilitation and Neurosurgery, Harvard Medical School , Boston, Massachusetts
| | - Liquan Wu
- 5 Division of Spinal Cord Injury Research, VA Boston Healthcare System , West Roxbury, Massachusetts.,6 Departments of Physical Medicine and Rehabilitation and Neurosurgery, Harvard Medical School , Boston, Massachusetts
| | - Danielle T Arena
- 7 Research Service, VA Boston Healthcare System , West Roxbury, Massachusetts
| | - Yang D Teng
- 5 Division of Spinal Cord Injury Research, VA Boston Healthcare System , West Roxbury, Massachusetts.,6 Departments of Physical Medicine and Rehabilitation and Neurosurgery, Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
13
|
Ellis AS, Fosnocht AQ, Lucerne KE, Briand LA. Disruption of GluA2 phosphorylation potentiates stress responsivity. Behav Brain Res 2017; 333:83-89. [PMID: 28668281 DOI: 10.1016/j.bbr.2017.06.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 06/26/2017] [Accepted: 06/27/2017] [Indexed: 12/15/2022]
Abstract
Cocaine addiction is characterized by persistent craving and addicts frequently relapse even after long periods of abstinence. Exposure to stress can precipitate relapse in humans and rodents. Stress and drug use can lead to common alterations in synaptic plasticity and these commonalities may contribute to the ability of stress to elicit relapse. These common changes in synaptic plasticity are mediated, in part, by alterations in the trafficking and stabilization of AMPA receptors. Exposure to both cocaine and stress can lead to alterations in protein kinase C-mediated phosphorylation of GluA2 AMPA subunits and thus alter the trafficking of GluA2-containing AMPARs. However, it is not clear what role AMPAR trafficking plays in the interactions between stress and cocaine. The current study utilized a mouse with a point mutation within the GluA2 subunit c-terminus resulting in a disruption of PKC-mediated GluA2 phosphorylation to examine stress responsivity. Although no differences were seen in the response to a forced swim stress in naïve mice, GluA2 K882A knock-in mice exhibited an increased stress response following cocaine self-administration. Furthermore, we demonstrated that disrupting GluA2 phosphorylation increases vulnerability to stress-induced reinstatement of both cocaine seeking and cocaine-conditioned reward. Finally, GluA2 K882A knock-in mice exhibit an increased vulnerability to social defeat as indicated by increased social avoidance. Taken together these results indicate that disrupting GluA2 phosphorylation leads to increased responsivity to acute stress following cocaine exposure and increased vulnerability to chronic stress. These results highlight the GluA2 phosphorylation site as a novel target for the stress-related disorders.
Collapse
Affiliation(s)
- Alexandra S Ellis
- Department of Psychology, Temple University, United States; Neuroscience Program, Temple University, United States
| | | | | | - Lisa A Briand
- Department of Psychology, Temple University, United States; Neuroscience Program, Temple University, United States.
| |
Collapse
|
14
|
Lameth J, Gervais A, Colin C, Lévêque P, Jay TM, Edeline JM, Mallat M. Acute Neuroinflammation Promotes Cell Responses to 1800 MHz GSM Electromagnetic Fields in the Rat Cerebral Cortex. Neurotox Res 2017; 32:444-459. [PMID: 28578480 DOI: 10.1007/s12640-017-9756-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 01/08/2023]
Abstract
Mobile phone communications are conveyed by radiofrequency (RF) electromagnetic fields, including pulse-modulated global system for mobile communications (GSM)-1800 MHz, whose effects on the CNS affected by pathological states remain to be specified. Here, we investigated whether a 2-h head-only exposure to GSM-1800 MHz could impact on a neuroinflammatory reaction triggered by lipopolysaccharide (LPS) in 2-week-old or adult rats. We focused on the cerebral cortex in which the specific absorption rate (SAR) of RF averaged 2.9 W/kg. In developing rats, 24 h after GSM exposure, the levels of cortical interleukin-1ß (IL1ß) or NOX2 NADPH oxidase transcripts were reduced by 50 to 60%, in comparison with sham-exposed animals (SAR = 0), as assessed by RT-qPCR. Adult rats exposed to GSM also showed a 50% reduction in the level of IL1ß mRNA, but they differed from developing rats by the lack of NOX2 gene suppression and by displaying a significant growth response of microglial cell processes imaged in anti-Iba1-stained cortical sections. As neuroinflammation is often associated with changes in excitatory neurotransmission, we evaluated changes in expression and phosphorylation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the adult cerebral cortex by Western blot analyses. We found that GSM exposure decreased phosphorylation at two residues on the GluA1 AMPAR subunit (serine 831 and 845). The GSM-induced changes in gene expressions, microglia, and GluA1 phosphorylation did not persist 72 h after RF exposure and were not observed in the absence of LPS pretreatment. Together, our data provide evidence that GSM-1800 MHz can modulate CNS cell responses triggered by an acute neuroinflammatory state.
Collapse
Affiliation(s)
- Julie Lameth
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U.1127, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Bat. ICM, 47 boulevard de l'Hôpital, F-75013, Paris, France
| | - Annie Gervais
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U.1127, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Bat. ICM, 47 boulevard de l'Hôpital, F-75013, Paris, France
| | - Catherine Colin
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U.1127, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Bat. ICM, 47 boulevard de l'Hôpital, F-75013, Paris, France
| | - Philippe Lévêque
- Université de Limoges, CNRS, XLIM, UMR 7252, 123 avenue Albert Thomas, F-87000, Limoges, France
| | - Thérèse M Jay
- Physiopathologie des Maladies Psychiatriques, Centre de Psychiatrie et Neurosciences, UMR_S894 INSERM, Université Paris Descartes, 102-108 rue de la Santé, 75014, Paris, France
| | - Jean-Marc Edeline
- Paris Saclay Institute of Neuroscience, Neuro-PSI, UMR 9197 CNRS, Université Paris-Sud, 91405, Orsay cedex, France
| | - Michel Mallat
- Sorbonne Universités, UPMC Univ Paris 06, INSERM U.1127, CNRS, Institut du Cerveau et de la Moelle épinière (ICM), Hôpital Pitié-Salpêtrière, Bat. ICM, 47 boulevard de l'Hôpital, F-75013, Paris, France.
| |
Collapse
|
15
|
Rame M, Caudal D, Schenker E, Svenningsson P, Spedding M, Jay TM, Godsil BP. Clozapine counteracts a ketamine-induced depression of hippocampal-prefrontal neuroplasticity and alters signaling pathway phosphorylation. PLoS One 2017; 12:e0177036. [PMID: 28472198 PMCID: PMC5417651 DOI: 10.1371/journal.pone.0177036] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 04/20/2017] [Indexed: 01/01/2023] Open
Abstract
Single sub-anesthetic doses of ketamine can exacerbate the symptoms of patients diagnosed with schizophrenia, yet similar ketamine treatments rapidly reduce depressive symptoms in major depression. Acute doses of the atypical antipsychotic drug clozapine have also been shown to counteract ketamine-induced psychotic effects. In the interest of understanding whether these drug effects could be modeled with alterations in neuroplasticity, we examined the impact of acutely-administered ketamine and clozapine on in vivo long-term potentiation (LTP) in the rat’s hippocampus-to-prefrontal cortex (H-PFC) pathway. We found that a low dose of ketamine depressed H-PFC LTP, whereas animals that were co-administrated the two drugs displayed LTP that was similar to a saline-treated control. To address which signaling molecules might mediate such effects, we also examined phosphorylation and total protein levels of GSK3β, GluA1, TrkB, ERK, and mTOR in prefrontal and hippocampal sub-regions. Among the statistically significant effects that were detected (a) both ketamine and clozapine increased the phosphorylation of Ser9-GSK3β throughout the prefrontal cortex and of Ser2481-mTOR in the dorsal hippocampus (DH), (b) clozapine increased the phosphorylation of Ser831-GluA1 throughout the prefrontal cortex and of Ser845-GluA1 in the ventral hippocampus, (c) ketamine treatment increased the phosphorylation of Thr202/Tyr204-ERK in the medial PFC (mPFC), and (d) clozapine treatment was associated with decreases in the phosphorylation of Tyr705-TrkB in the DH and of Try816-TrkB in the mPFC. Further analyses involving phosphorylation effect sizes also suggested Ser831-GluA1 in the PFC displayed the highest degree of clozapine-responsivity relative to ketamine. These results provide evidence for how ketamine and clozapine treatments affect neuroplasticity and signaling pathways in the stress-sensitive H-PFC network. They also demonstrate the potential relevance of H-PFC pathway neuroplasticity for modeling ketamine-clozapine interactions in regards to psychosis.
Collapse
Affiliation(s)
- Marion Rame
- Laboratoire de Physiopathologie des Maladies Psychiatriques, UMR_S894 Inserm, Centre de Psychiatrie et Neurosciences, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Dorian Caudal
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | | | - Per Svenningsson
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institute, Stockholm, Sweden
| | - Michael Spedding
- Institut de Recherches Servier, Croissy-sur-Seine, France
- Spedding Research Solutions SAS, Le Vesinet, France
| | - Thérèse M. Jay
- Laboratoire de Physiopathologie des Maladies Psychiatriques, UMR_S894 Inserm, Centre de Psychiatrie et Neurosciences, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Bill P. Godsil
- Laboratoire de Physiopathologie des Maladies Psychiatriques, UMR_S894 Inserm, Centre de Psychiatrie et Neurosciences, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- * E-mail:
| |
Collapse
|
16
|
Lopes MW, Leal RB, Guarnieri R, Schwarzbold ML, Hoeller A, Diaz AP, Boos GL, Lin K, Linhares MN, Nunes JC, Quevedo J, Bortolotto ZA, Markowitsch HJ, Lightman SL, Walz R. A single high dose of dexamethasone affects the phosphorylation state of glutamate AMPA receptors in the human limbic system. Transl Psychiatry 2016; 6:e986. [PMID: 27959333 PMCID: PMC5290343 DOI: 10.1038/tp.2016.251] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 10/15/2016] [Indexed: 12/28/2022] Open
Abstract
Glucocorticoids (GC) released during stress response exert feedforward effects in the whole brain, but particularly in the limbic circuits that modulates cognition, emotion and behavior. GC are the most commonly prescribed anti-inflammatory and immunosuppressant medication worldwide and pharmacological GC treatment has been paralleled by the high incidence of acute and chronic neuropsychiatric side effects, which reinforces the brain sensitivity for GC. Synapses can be bi-directionally modifiable via potentiation (long-term potentiation, LTP) or depotentiation (long-term depression, LTD) of synaptic transmission efficacy, and the phosphorylation state of Ser831 and Ser845 sites, in the GluA1 subunit of the glutamate AMPA receptors, are a critical event for these synaptic neuroplasticity events. Through a quasi-randomized controlled study, we show that a single high dexamethasone dose significantly reduces in a dose-dependent manner the levels of GluA1-Ser831 phosphorylation in the amygdala resected during surgery for temporal lobe epilepsy. This is the first report demonstrating GC effects on key markers of synaptic neuroplasticity in the human limbic system. The results contribute to understanding how GC affects the human brain under physiologic and pharmacologic conditions.
Collapse
Affiliation(s)
- M W Lopes
- Department of Biochemistry, Federal University of Santa Catarina, Floranópolis, Brazil
| | - R B Leal
- Department of Biochemistry, Federal University of Santa Catarina, Floranópolis, Brazil,Center for Applied Neuroscience, Hospital Universitário, Federal University of Santa Catarina, Florianópolis, Brazil
| | - R Guarnieri
- Center for Applied Neuroscience, Hospital Universitário, Federal University of Santa Catarina, Florianópolis, Brazil,Epilepsy Center of Santa Catarina, Federal University of Santa Catarina, Florianópolis, Brazil,Neurosurgery Unit, Governador Celso Ramos Hospital, Florianópolis, Brazil
| | - M L Schwarzbold
- Center for Applied Neuroscience, Hospital Universitário, Federal University of Santa Catarina, Florianópolis, Brazil,Department of Internal Medicine, Federal University of Santa Catarina, Florianópolis, Brazil
| | - A Hoeller
- Department of Biochemistry, Federal University of Santa Catarina, Floranópolis, Brazil
| | - A P Diaz
- Center for Applied Neuroscience, Hospital Universitário, Federal University of Santa Catarina, Florianópolis, Brazil,Department of Internal Medicine, Federal University of Santa Catarina, Florianópolis, Brazil
| | - G L Boos
- Anesthesiology Division, Hospital Governador Celso Ramos, Florianópolis, Brazil
| | - K Lin
- Center for Applied Neuroscience, Hospital Universitário, Federal University of Santa Catarina, Florianópolis, Brazil,Epilepsy Center of Santa Catarina, Federal University of Santa Catarina, Florianópolis, Brazil,Department of Internal Medicine, Federal University of Santa Catarina, Florianópolis, Brazil
| | - M N Linhares
- Center for Applied Neuroscience, Hospital Universitário, Federal University of Santa Catarina, Florianópolis, Brazil,Neurosurgery Unit, Governador Celso Ramos Hospital, Florianópolis, Brazil,Department of Surgery, HU, Federal University of Santa Catarina, Florianópolis, Brazil
| | - J C Nunes
- Pathology Division, HU, Federal University of Santa Catarina, Florianópolis, Brazil
| | - J Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA,Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA,Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA
| | - Z A Bortolotto
- Laboratory of Neurosciences, Graduate Program in Health Sciences, University of Southern Santa Catarina, Criciúma, Brazil,Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - H J Markowitsch
- Physiological Psychology, University of Bielefeld, Bielefeld, Germany
| | - S L Lightman
- Centre for Synaptic Plasticity, School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK,Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, Faculty of Medicine and Dentistry, University of Bristol, Bristol, UK
| | - R Walz
- Center for Applied Neuroscience, Hospital Universitário, Federal University of Santa Catarina, Florianópolis, Brazil,Epilepsy Center of Santa Catarina, Federal University of Santa Catarina, Florianópolis, Brazil,Department of Internal Medicine, Federal University of Santa Catarina, Florianópolis, Brazil,Departamento de Clínica Médica, 3 andar, Hospital Universitário, Universidade Federal de Santa Catarina, Florianópolis CEP 88.040-970, Brazil. E-mail:
| |
Collapse
|