1
|
Yang W, Wang Y, Li X, Jing R, Mu L, Hu Y. Antidepressive and cardioprotective effects of Kai-xin-san via the regulation of HPA axis dysfunction and lipid metabolism in a rat model of depressive-cardiac disease. Brain Res Bull 2024; 219:111126. [PMID: 39542048 DOI: 10.1016/j.brainresbull.2024.111126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Depressive-cardiac disease is a comorbid state in which both cardiovascular diseases and mental disorders are present. Patients with depression are more likely to develop cardiovascular disease, which increases the risk of cardiovascular events, such as acute coronary syndrome. Cardiovascular diseases also exacerbate the poor mood of patients with psychiatric disorders. Kai-xin-san (KXS), a classic antidepressant formula, has potential antidepressive and cardioprotective effects. In the present study, we first evaluated the antidepressive and cardioprotective effects of KXS in two post-myocardial ischemic depressed rat models: a) isoproterenol (ISO) via intraperitoneal injection combined with chronic unpredictable mild stress (CUMS)-induced myocardial ischemia and depression and b) left anterior descending coronary artery ligation (LAD) combined with chronic restraint stress (CRS)-induced myocardial ischemia and depression. We then induced exogenous corticosterone in a rat model of depressive-cardiac disease. Our study revealed that chronic administration of corticosterone could induce depression-like syndromes accompanied by cardiac insufficiency. The potential mechanism involves parallel onset of HPA axis dysfunction and an imbalance in lipid metabolism. KXS treatment successfully reversed corticosterone-induced depression-like behaviors and cardiac insufficiency. The present study highlights the pivotal role of the HPA axis and lipid metabolism in the development of comorbid depression and cardiovascular disease. Thus, KXS could be a promising therapeutic option for depressive-cardiac disease.
Collapse
Affiliation(s)
- Wenshan Yang
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Chinese PLA General Hospital, Beijing 100853, China; Department of Intensive Care Unit, Group 82 Military Hospital, Baoding 071000, China
| | - Yuanbo Wang
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Chinese PLA General Hospital, Beijing 100853, China
| | - Xia Li
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Chinese PLA General Hospital, Beijing 100853, China
| | - Rui Jing
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Chinese PLA General Hospital, Beijing 100853, China
| | - Lihua Mu
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Chinese PLA General Hospital, Beijing 100853, China
| | - Yuan Hu
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
2
|
Wang YT, Wang XL, Lei L, Guo ZY, Hu D, Wang ZZ, Zhang Y. Efficacy of Chinese herbal formula Kai-Xin-San on rodent models of depression: A systematic review and meta-analysis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117492. [PMID: 38012974 DOI: 10.1016/j.jep.2023.117492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 10/12/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kai-Xin-San (KXS, or Happy Feeling Powder), a typical Chinese herbal prescription, is frequently used for treating depression by the multi-level and multi-target mechanism. AIM OF THE STUDY To systematically investigate the efficacy and safety of KXS on depression in preclinic trials. MATERIALS AND METHODS We independently searched for preclinical animal studies of KXS on depression from inception to June 28, 2022, using electronic databases, e.g., PUBMED. The measurements were performed to assess the outcomes of behavioral tests. RESULTS This systematic review and meta-analysis included twenty-four studies and 608 animals. A remarkable effect of KXS in depression behavioral tests, including sucrose consumption test (SMD: 2.36, 95% CI: (1.81, 2.90); Z = 8.49, P < 0.00001)., forced swimming test (MD = -60.52, 95% CI: (-89.04, -31.99); Z = 4.16, P < 0.0001), rearing times (MD=4.48, 95% CI: (3.39, 5.57); Z = 8.05, P < 0.00001) and crossing times (MD = -33.7, 95% CI: (25.74, 41.67); Z = 8.29, P < 0.00001) in the open field test, showing KXS's excellent efficiency in improving depressive-like symptoms of animals. CONCLUSIONS Our meta-analysis showed KXS remarkably relieved animals' depressive-like symptoms, providing evidence that KXS can be a promising drug candidate for depression treatment.
Collapse
Affiliation(s)
- Ya-Ting Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Xiao-Le Wang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Lan Lei
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Zhen-Yu Guo
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Die Hu
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| | - Zhen-Zhen Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yi Zhang
- Department of Anatomy, School of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China.
| |
Collapse
|
3
|
Chen C, Xu YJ, Zhang SR, Wang XH, Hu Y, Guo DH, Zhou XJ, Zhu WY, Wen AD, Tan QR, Dong XZ, Liu P. MiR-1281 is involved in depression disorder and the antidepressant effects of Kai-Xin-San by targeting ADCY1 and DVL1. Heliyon 2023; 9:e14265. [PMID: 36938448 PMCID: PMC10020002 DOI: 10.1016/j.heliyon.2023.e14265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 02/23/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Kai-Xin-San (KXS) is a Chinese medicine formulation that is commonly used to treat depression caused by dual deficiencies in the heart and spleen. Recent studies indicated that miRNAs were involved in the pathophysiology of depression. However, there have been few studies on the mechanism underlying the miRNAs directly mediating antidepressant at clinical level, especially in nature drugs and TCM compound. In this study, we identified circulating miRNAs defferentially expressed among the depression patients (DPs), DPs who underwent 8weeks of KXS treatment and health controls (HCs). A total of 45 miRNAs (17 were up-regulated and 28 were down-regulated) were significantly differentially expressed among three groups. Subsequently, qRT-PCR was used to verify 10 differentially expressed candidate miRNAs in more serum samples, and the results showed that 6 miRNAs (miR-1281, miR-365a-3p, miR-2861, miR-16-5p, miR-1202 and miR-451a) were consistent with the results of microarray. Among them, miR-1281, was the novel dynamically altered and appeared to be specifically related to depression and antidepressant effects of KXS. MicroRNA-gene-pathway-net analysis showed that miR-1281-regulated genes are mostly key nodes in the classical signaling pathway related to depression. Additionally, our data suggest that ADCY1 and DVL1 were the targets of miR-1281. Thus, based on the discovery of miRNA expression profiles in vivo, our findings suggest a new role for miR-1281 related to depression and demonstrated in vitro that KXS may activate cAMP/PKA/ERK/CREB and Wnt/β-catenin signal transduction pathways by down-regulating miR-1281 that targets ADCY1 and DVL1 to achieve its role in neuronal cell protection.
Collapse
Affiliation(s)
- Chao Chen
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
| | - Yuan-jie Xu
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
| | - Shang-rong Zhang
- Department of Psychiatry, The 984th Hospital of Chinese People's Liberation Army, Beijing 100094, People's Republic of China
| | - Xiao-hui Wang
- Department of Psychiatry, The 984th Hospital of Chinese People's Liberation Army, Beijing 100094, People's Republic of China
| | - Yuan Hu
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
| | - Dai-hong Guo
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
| | - Xiao-jiang Zhou
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
| | - Wei-yu Zhu
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
| | - Ai-Dong Wen
- Department of Pharmacy, Xijing Hospital of Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Qing-Rong Tan
- Department of Psychiatry, Xijing Hospital of Fourth Military Medical University, Xi'an, 710032, People's Republic of China
| | - Xian-Zhe Dong
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing 100853, People's Republic of China
- Corresponding author. Department of Pharmacy, Xuanwu Hospital of Capital Medical University, 45 Changchun Road, Xicheng District, Beijing 100053, China.
| | - Ping Liu
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing 100853, People's Republic of China
- Corresponding author.Department of Pharmacy, the General Hospital of the People's Liberation Army, Beijing 100853, China.
| |
Collapse
|
4
|
New insights into effects of Kaixin Powder on depression via lipid metabolism related adiponectin signaling pathway. CHINESE HERBAL MEDICINES 2023. [DOI: 10.1016/j.chmed.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
5
|
Kai-Xin-San Protects Depression Mice Against CORT-Induced Neuronal Injury by Inhibiting Microglia Activation and Oxidative Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5845800. [PMID: 36310618 PMCID: PMC9605849 DOI: 10.1155/2022/5845800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 09/20/2022] [Indexed: 11/07/2022]
Abstract
Objective Traditional Chinese medicine formula Kai-Xin-San (KXS) is used to treat psychiatric disorders, especially in anxiety and depression. However, the precise molecular mechanism of action remains unclear. In this study, we investigated the antidepressant effect of KXS on inhibiting inflammation and oxidative stress in corticosterone (CORT)-induced depression. Methods The therapeutic efficacy of KXS was evaluated in a mouse model of depression induced by CORT. Behavioral tests were conducted to evaluate the effectiveness of KXS in treating depressive-like behavior. Nissl staining and β-galactosidase staining were used to assess the effects of KXS on neuronal injury in depressed mice. To screen key potential therapeutic targets of KXS, transcriptome sequences and data analysis were performed. Then, Iba1 immunofluorescence staining and their relative inflammatory factors mRNA expression were conducted to assess the effect of KXS in inhibiting microglial inflammation activation response. Concurrently, the measurement of 4-Hydroxynonenal (4-HNE) immunohistochemistry staining, malondialdehyde (MDA), superoxide dismutase (SOD), and reactive oxygen species (ROS) were performed to evaluate the effect of KXS on anti-oxidative stress of depression in vivo. Besides, nitric oxide (NO), relative inflammatory factors mRNA expression, JC-1 staining, and ROS were used to evaluate the effect of KXS by lipopolysaccharide (LPS)/interferon-gamma (IFNγ)-induced BV2 cells. Results KXS significantly relieved the depressive-like symptoms induced by CORT, as well as ameliorating the neuronal damage, which decreased microglia inflammatory activation response of IL-1β, IL-6, and tumor necrosis factor α (TNFα) in vivo or in vitro too. Transcriptome Sequencing and Data Analysis showed that KXS mainly by regulating immune system and transduction pathways decreased CORT-induced depression in mice. And showed that there were 19 Principal components and 10 genes in the main regulatory position with the strongest correlation in depression mice. Meanwhile, KXS effectively decreased senescence, the expression of 4-HNE, MDA content, and the production of ROS, while increasing the SOD activity in CORT-induced mice. Besides, KXS significantly reversed the mitochondrial membrane potential loss and excessive ROS production in LPS/IFNγ-induced BV2 cells. Conclusion Our research suggested that KXS might protect depressed mice against CORT-induced neuronal injury by inhibiting microglia activation and oxidative stress.
Collapse
|
6
|
Yang S, Qu Y, Wang J, Gao F, Ji M, Xie P, Zhu A, Tan B, Wang X, Zhu G. Anshen Dingzhi prescription in the treatment of PTSD in mice: Investigation of the underlying mechanism from the perspective of hippocampal synaptic function. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154139. [PMID: 35523115 DOI: 10.1016/j.phymed.2022.154139] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Anshen Dingzhi prescription (ADP) is an important prescription for the treatment of mental diseases in traditional Chinese medicine and is widely used to treat neuropsychiatric disorders. PURPOSE To explore the ameliorative effect of ADP on post-traumatic stress disorder (PTSD)-like behaviors in mice and determine the underlying mechanism. METHODS The constituents of ADP were analyzed by UPLC-Q-TOF/MS. The PTSD-like behaviors of mice subjected to single prolonged stress (SPS) were evaluated using behavioral tests. Potential pathological changes in the hippocampus were assessed by hematoxylin and eosin (H&E) staining. Western blotting and immunohistochemistry (IHC) were employed to detect the expression of proteins involved in relevant signaling pathways. RESULTS Five quality control markers (ginsenoside Rg1, ginsenoside Rb1, tenuifolin, poricoic acid B, and α-asarone) were detected in the ADP solution. The ginsenoside Rg1 content in ADP was found to be 0.114 mg/g. Mice subjected to SPS showed obvious fear generalization and anxiety-like behaviors. ADP treatment prevented the behavioral changes caused by exposure to SPS. Compared with control animals, the number of normal pyramidal cells in the hippocampal CA1 region of mice exposed to SPS was decreased and the number of degenerating pyramidal cells was increased; however, ADP administration could counteract these effects. Furthermore, the protein expression of BDNF, p-TrkB, μ-calpain, PSD95, GluN2A, GluA1, p-AKT, p-mTOR, and ARC was decreased, while that of PTEN and GluN2B was increased in the hippocampus of mice subjected to SPS compared with that in control animals; however, these changes in protein expression were reversed following ADP treatment. Importantly, the ameliorative effect of ADP on PTSD-like behaviors and synaptic protein expression were inhibited by rapamycin administration. CONCLUSIONS ADP administration improves PTSD-like behaviors in mice and this effect may be mediated through an mTOR-dependent improvement in synaptic function in the hippocampus.
Collapse
Affiliation(s)
- Shaojie Yang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Yan Qu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Juan Wang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Feng Gao
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Manman Ji
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Pan Xie
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China
| | - Aisong Zhu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Hangzhou, Zhejiang, 310053, China
| | - Bei Tan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, Hangzhou, Zhejiang, 310053, China
| | - Xuncui Wang
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China.
| | - Guoqi Zhu
- Key Laboratory of Xin'an Medicine, the Ministry of Education and Key Laboratory of Molecular Biology (Brain diseases), Anhui University of Chinese Medicine, Hefei, Anhui, 230038, China.
| |
Collapse
|
7
|
Wang Y, Li X, Jing R, Yang W, Wang Y, Wang C, Yao L, Cui X, Hu Y. KXS Balances the Tryptophan Metabolism in Mild to Moderate Depressed Patients and Chronic Restraint Stress Induced Depressive Rats. Neuropsychiatr Dis Treat 2022; 18:2485-2496. [PMID: 36345420 PMCID: PMC9636882 DOI: 10.2147/ndt.s377982] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/08/2022] [Indexed: 11/28/2022] Open
Abstract
PURPOSE Tryptophan metabolism is involved in the etiology and exacerbation of depressive disorders. Kai-Xin-San (KXS), a traditional Chinese medicine formula, has been widely used to treat depression and modulate serotonin simultaneously, but how it regulates depressive-like behavior by shifting the balance of the tryptophan-serotonin metabolism and kynurenine pathway remains vague. PATIENTS AND METHODS Ten participants with mild to moderate depression treated with KXS (KXS preparation) were analyzed in this study. Depression rating scale score and the concentration of serum tryptophan, 5-hydroxytryptophan and kynurenine was measured at baseline and the endpoint of KXS treatment. To explore the specific regulatory mechanism of KXS in tryptophan metabolism, the chronic restraint stress (CRS) was used to induce depressive-like syndrome in rats and the hippocampus level of tryptophan, 5-hydroxytryptophan, kynurenine with downstream metabolites (kynurenic acid, quinolinic acid) and key enzymes (indoleamine 2,3-dioxygenase, kynurenine 3-monooxygenase, kynurenine aminotransferase) were analyzed by liquid chromatography-electros pray ionization tandem mass spectrometry, high performance liquid chromatography and enzyme-linked immunosorbent assay respectively. RESULTS KXS significantly decreased depression rating scale scores and increased the serum tryptophan and kynurenine concentration in depressive patients compared to baseline. Also, it alleviated the depressive behavior in CRS rats obviously. Comparing with CRS group, KXS increased tryptophan, 5-hydroxytryptophan, kynurenine level in rat hippocampus. Furthermore, in kynurenine pathway, KXS decreased the expression of indoleamine 2,3-dioxygenase, increased kynurenic acid by upregulating the expression of kynurenine aminotransferase while decreased quinolinic acid level in hippocampus, which suggested that KXS more favored improving serotonin pathway, and neuroprotective kynurenic acid branch in the tryptophan metabolism. CONCLUSION This is the first tryptophan metabolomic study of patients with depression undergoing KXS treatment. Combining these clinical results with CRS induced rat model studies, it verified that KXS achieves an excellent antidepressant effect and balances tryptophan-kynurenine metabolic pathways by regulating some key metabolic products and enzymes.
Collapse
Affiliation(s)
- Yuanbo Wang
- Graduate School of PLA General Hospital, Beijing, 100853, People's Republic of China.,Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Xia Li
- Graduate School of PLA General Hospital, Beijing, 100853, People's Republic of China.,Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Rui Jing
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Wenshan Yang
- Graduate School of PLA General Hospital, Beijing, 100853, People's Republic of China.,Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Yichen Wang
- Graduate School of PLA General Hospital, Beijing, 100853, People's Republic of China.,Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Chaochen Wang
- Graduate School of PLA General Hospital, Beijing, 100853, People's Republic of China.,Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Lei Yao
- Graduate School of PLA General Hospital, Beijing, 100853, People's Republic of China.,Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, 100853, People's Republic of China
| | - Xiaoming Cui
- Department of Health Medicine, The Third Medical Center of PLA General Hospital, Beijing, 100039, People's Republic of China
| | - Yuan Hu
- Department of Pharmacy, Medical Supplies Center of PLA General Hospital, Beijing, 100853, People's Republic of China
| |
Collapse
|
8
|
Hu Y, Wang Y, Chen C, Yang W, Zhu W, Wang Y, Liu P. A randomized, placebo-controlled, double-blind study on the effects of SZL on patients with mild to moderate depressive disorder with comparison to fluoxetine. JOURNAL OF ETHNOPHARMACOLOGY 2021; 281:114549. [PMID: 34438029 DOI: 10.1016/j.jep.2021.114549] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kaixinsan (KXS) decoction, as an herbal formula, was used to treat the diseases, such as insomnia, amnesia, emotional disorders in ancient china. It has been demonstrated to be active in various animal models resembling human depression with multitarget effects. However, effective verification on the clinical application of KXS is still lacking. Supplements in this knowledge field are urgently needed. AIM OF THE STUDY This very first study evaluated the efficacy and tolerability of ShenZhiLing (SZL) tablets (KXS preparation), compared with fluoxetine (FLX, positive comparator), in patients with mild to moderate depressive disorder. MATERIALS AND METHODS In this randomized, double-blind, parallel-group study, 156 patients with mild to moderate depression without taken any antidepressants in the past 6 months or 4 continuous weeks were randomized to receive either 3.2 g/d SZL plus 20 mg/d FLX placebo (SZL group) or 20 mg/d FLX plus 3.2 g/d SZL placebo (FLX group), for 8 weeks. Their clinical presentations and some metabolic indexes were assessed during the 8 weeks' visiting period. RESULTS Patients in SZL group showed a statistically significant improvement after 8 weeks of treatment in HAM-D17 score (18.79±2.09 to 4.43±4.71, p<0.001) and self-rating depression scale (SDS) score (58.49±8.89 to 39.84±12.09, p<0.001), but not in N-back total respond time (1145.55±608.26 to 1128.47±387.49, p>0.05). In addition, no significant difference at 8 weeks of treatment was found between SZL and FLX groups in SDS score (39.84±12.09 vs. 36.63±12.44) and N-back respond time (1128.47±387.49 vs. 1089.43±352.08) as well as reduction of HAM-D17 score (14.79±4.88 vs. 15.24±4.29) (p>0.05 for all). However, the serum APOB, APOC3 and ALB levels and LDL-C/HDL-C ratio decreased significantly in patients after SZL treatment, while only APOB/APOA1 ratio decreased significantly in FLX group. Other metabolic indexes did not alter significantly after treated with SZL or FLX. CONCLUSION The efficacy and safety profile of SZL are comparable to that of fluoxetine in patients with mild to moderate depression. The beneficial effect of SZL is probably associated with improvement of lipid metabolic balance.
Collapse
Affiliation(s)
- Yuan Hu
- Department of Clinical Pharmacology, Medical Supplier Center, Chinese PLA General Hospital, Beijing, 100853, China; Chinese PLA Medical School, Beijing, 100853, China.
| | - Yichen Wang
- Department of Clinical Pharmacology, Medical Supplier Center, Chinese PLA General Hospital, Beijing, 100853, China; Chinese PLA Medical School, Beijing, 100853, China.
| | - Chao Chen
- Department of Clinical Pharmacology, Medical Supplier Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Wenshan Yang
- Department of Clinical Pharmacology, Medical Supplier Center, Chinese PLA General Hospital, Beijing, 100853, China; Chinese PLA Medical School, Beijing, 100853, China.
| | - Weiyu Zhu
- Department of Clinical Pharmacology, Medical Supplier Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yuanbo Wang
- Department of Clinical Pharmacology, Medical Supplier Center, Chinese PLA General Hospital, Beijing, 100853, China; Chinese PLA Medical School, Beijing, 100853, China.
| | - Ping Liu
- Department of Clinical Pharmacology, Medical Supplier Center, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
9
|
Ramos-da-Silva L, Carlson PT, Silva-Costa LC, Martins-de-Souza D, de Almeida V. Molecular Mechanisms Associated with Antidepressant Treatment on Major Depression. Complex Psychiatry 2021; 7:49-59. [PMID: 35813936 PMCID: PMC8739385 DOI: 10.1159/000518098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/23/2021] [Indexed: 11/25/2023] Open
Abstract
Major depressive disorder (MDD) is a complex and multifactorial psychiatric disorder that causes serious health, social, and economic concerns worldwide. The main treatment of the symptoms is through antidepressant (AD) drugs. However, not all patients respond properly to these drugs. Omic sciences are widely used to analyze not only biomarkers for the AD response but also their molecular mechanism. In this review, we aimed to focus on omics data to better understand the molecular mechanisms involving AD effects on MDD. We consistently found, from preclinical to clinical data, that glutamatergic transmission, immune/inflammatory processes, energy metabolism, oxidative stress, and lipid metabolism were associated with traditional and potential new ADs. Despite efforts of studies investigating biomarkers of response to ADs, which could contribute to personalized treatment, there is no biomarker panel available for clinical application. From clinical genomic studies, we found that the main findings contribute to the development of pharmacogenomic tests for AD efficacy for each patient. Several studies pointed at DRD2, PXDNL, CACNA1E, and CACNA2D1 genes as potential targets for MDD treatment and the efficacy and rapid-antidepressant effect of ketamine. Finally, more in-depth studies of the molecular targets pointed here are needed to determine the clinical relevance and provide further evidence for precision MDD treatment.
Collapse
Affiliation(s)
- Lívia Ramos-da-Silva
- Department of Biochemistry and Tissue Biology, Laboratory of Neuroproteomics, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Pamela T. Carlson
- Department of Biochemistry and Tissue Biology, Laboratory of Neuroproteomics, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Licia C. Silva-Costa
- Department of Biochemistry and Tissue Biology, Laboratory of Neuroproteomics, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Daniel Martins-de-Souza
- Department of Biochemistry and Tissue Biology, Laboratory of Neuroproteomics, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
- Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Brazil
- D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
- Instituto Nacional de Biomarcadores em Neuropsiquiatria, Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil
| | - Valéria de Almeida
- Department of Biochemistry and Tissue Biology, Laboratory of Neuroproteomics, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
10
|
Jiang N, Wang H, Li C, Zeng G, Lv J, Wang Q, Chen Y, Liu X. The antidepressant-like effects of the water extract of Panax ginseng and Polygala tenuifolia are mediated via the BDNF-TrkB signaling pathway and neurogenesis in the hippocampus. JOURNAL OF ETHNOPHARMACOLOGY 2021; 267:113625. [PMID: 33248184 DOI: 10.1016/j.jep.2020.113625] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 10/04/2020] [Accepted: 11/23/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGY RELEVANCE The water extract of Panax ginseng (GT) and Polygala tenuifolia (YT), the main constituents of the commonly used kai-xin-san formula of traditional Chinese medicine, represents SY. It possesses strong neuroprotective effects. Using behavioural tests, we have previously established that the SY formulation exerts superior antidepressant activity than that of GT or YT. AIM To elucidate the impact of SY treatment on chronic unpredictable mild stress (CUMS)-induced depressive-like behaviours and the prospective mechanism related to hippocampal neurogenesis and the BDNF signaling pathway. METHODS We exposed Sprague-Dawley rats (male; 180-200 g) to CUMS for 35 days. The rats in the experimental treatment groups were daily treated with either fluoxetine (10 mg kg-1d-1) or SY (67.5, 135, or 270 mg kg-1d-1) orally until the behavioural tests (tail suspension test [TST], novelty-suppressed feeding test [NSFT], sucrose preference test [SPT], and forced swim test [FST]) were completed. We assessed the modifications in the hippocampal neurogenesis and the BDNF signaling pathway post-treatment with CUMS and SY. Additionally, K252a, a tyrosine protein kinase inhibitor, was utilized to evaluate the antidepressant mechanisms of SY. RESULT s: The results of SPT, NSFT, FST, and TST in CUMS-exposed rats confirmed the antidepressant actions of SY. Additionally, SY treatment induced the BDNF signaling pathway and reversed the hippocampal neurogenesis caused by CUMS. Moreover, we found that the TrkB antagonist K252a blocked SY effects on behavioural improvement, inhibited the incremental effects of SY on hippocampal neurogenesis, and eliminated the impact of SY on BDNF-TrkB signaling activation. Thus, the impact of SY treatment on BDNF signaling molecules (pAkt, pERK1/2, and pCREB) were significantly inhibited by K252a. CONCLUSIONS This study showed that SY acted as an antidepressant in rats exhibiting CUMS-induced depressive-like behaviours, and was facilitated by promoting hippocampal neurogenesis and the BDNF signaling pathway activation. Thus, SY could act as a potential novel supplement or adjuvant to prevent or treat clinical depressive disorders.
Collapse
Affiliation(s)
- Ning Jiang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Haixia Wang
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenchen Li
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guirong Zeng
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingwei Lv
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiong Wang
- Affiliated TCM Hospital/School of Pharmacy/Sino-Portugal TCM International Cooperation Center, Southwest Medical University, Luzhou, 646000, China
| | - Yin Chen
- Institute of Chinese Materia Medical, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Xinmin Liu
- Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
11
|
Hu Y, Chen C, Wang Y, Yang W, Wang Y, Zhu W, Yan C, Liu P. The effects of KaiXinSan on depression and its association with lipid profiles: A randomized, double-blinded, placebo-controlled trial. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 83:153467. [PMID: 33516143 DOI: 10.1016/j.phymed.2021.153467] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 01/07/2021] [Accepted: 01/12/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Traditional Chinese medicine (TCM) KaiXinSan (KXS) has been used to treat depressed patients for a long time, but its potential underlying mechanisms have not been fully understood. HYPOTHESIS KXS could mitigate symptoms of patients with atypical depression at least partly via regulating lipid equilibrium. METHODS Patients meeting DSM-IV criteria for mild or moderate depression were assigned into placebo (N = 68) or KXS 3.2 g/day (N = 66) groups in a randomized, double-blinded, placebo-controlled, parallel clinical trial to investigate the anti-depressive efficacy of KXS and its association with serum lipid profile. RESULTS The HAMD score and SDS score at 8 weeks were significantly improved in KXS-treated patients the N-BACK accuracy rate was also increased after 8 weeks of KXS treatment compared with baseline. These results indicated that KXS not only improved the specific symptoms of depression, but also had a beneficial effect on cognitive function related working memory. More importantly, KXS treatment improved patients' lipid profile by reducing the ratios of LDL/HDL and ApoB/ApoA1 (p < 0.05), as well as ApoC3 level. Moreover, subgroup analysis found that HAMD score was significantly higher in patients with high lipid profile than in those with normal lipid profile, and lipid improvement after 8 weeks of KXS treatment was more obvious in depressed patients with high lipid profile than with normal lipid profile. CONCLUSION KXS could mitigate symptoms of patients with minor and modest depression at least partly via regulating lipid equilibrium. Its might shed light that KXS may likely contributes to depressed patients with other cardio-metabolic diseases.
Collapse
Affiliation(s)
- Yuan Hu
- Department of Pharmacy, Medical Supplier Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Chao Chen
- Department of Pharmacy, Medical Supplier Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yichen Wang
- Department of Pharmacy, Medical Supplier Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Wenshan Yang
- Department of Pharmacy, Medical Supplier Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Yuanbo Wang
- Department of Pharmacy, Medical Supplier Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Weiyu Zhu
- Department of Pharmacy, Medical Supplier Center, Chinese PLA General Hospital, Beijing 100853, China
| | - Can Yan
- Department of Basic Theory of TCM, College of Basic Medicine Sciences, Guangzhou University of Chinese Medicine.
| | - Ping Liu
- Department of Pharmacy, Medical Supplier Center, Chinese PLA General Hospital, Beijing 100853, China.
| |
Collapse
|
12
|
Chinese Herbal Medicine for the Treatment of Depression: Effects on the Neuroendocrine-Immune Network. Pharmaceuticals (Basel) 2021; 14:ph14010065. [PMID: 33466877 PMCID: PMC7830381 DOI: 10.3390/ph14010065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
The neuroimmune and neuroendocrine systems are two critical biological systems in the pathogenesis of depression. Clinical and preclinical studies have demonstrated that the activation of the neuroinflammatory response of the immune system and hyperactivity of the hypothalamus–pituitary–adrenal (HPA) axis of the neuroendocrine system commonly coexist in patients with depression and that these two systems bidirectionally regulate one another through neural, immunological, and humoral intersystem interactions. The neuroendocrine-immune network poses difficulties associated with the development of antidepressant agents directed toward these biological systems for the effective treatment of depression. On the other hand, multidrug and multitarget Chinese Herbal Medicine (CHM) has great potential to assist in the development of novel medications for the systematic pharmacotherapy of depression. In this narrative essay, we conclusively analyze the mechanisms of action of CHM antidepressant constituents and formulas, specifically through the modulation of the neuroendocrine-immune network, by reviewing recent preclinical studies conducted using depressive animal models. Some CHM herbal constituents and formulas are highlighted as examples, and their mechanisms of action at both the molecular and systems levels are discussed. Furthermore, we discuss the crosstalk of these two biological systems and the systems pharmacology approach for understanding the system-wide mechanism of action of CHM on the neuroendocrine-immune network in depression treatment. The holistic, multidrug, and multitarget nature of CHM represents an excellent example of systems medicine in the effective treatment of depression.
Collapse
|
13
|
Shi Y, Song R, Wang L, Qi Y, Zhang H, Zhu J, Zhang X, Tang X, Zhan Q, Zhao Y, Swaab DF, Bao AM, Zhang Z. Identifying Plasma Biomarkers with high specificity for major depressive disorder: A multi-level proteomics study. J Affect Disord 2020; 277:620-630. [PMID: 32905914 DOI: 10.1016/j.jad.2020.08.078] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 07/08/2020] [Accepted: 08/24/2020] [Indexed: 02/01/2023]
Abstract
BACKGROUND There are currently no objective diagnostic biomarkers for major depressive disorder (MDD) due to the biological complexity of the disorder. The existence of blood-based biomarkers with high specificity would be convenient for the clinical diagnosis of MDD. METHODS A comprehensive plasma proteomic analysis was conducted in a highly homogeneous cohort [7 drug-naïve MDD patients and 7 healthy controls (HCs)], with bioinformatics analysis combined with machine learning used to screen candidate proteins. Verification of reproducibility and specificity was conducted in independent cohorts [60 HCs and 74 MDD, 42 schizophrenia (SZ) and 39 bipolar I disorder (BD-I) drug-naïve patients]. Furthermore, verification of consistency was accomplished by proteomic analysis of postmortem brain tissue from 16 MDD patients and 16 HCs. RESULTS Levels of C-reactive protein (CRP), antithrombin III (ATIII), inter-alpha-trypsin inhibitor heavy chain 4 (ITIH4) and vitamin D-binding protein (VDB) were significantly higher in MDD patients, both in the discovery cohort and independent replication cohort. In comparison with SZ or BD-I patients, two proteins (VDB and ITIH4) were significantly elevated only in MDD patients. In addition, increased VDB and ITIH4 were observed consistently in both plasma and postmortem dorsolateral prefrontal cortex tissues of MDD patients. Furthermore, a panel consisting of all four plasma proteins was able to distinguish MDD patients from HCs or SZ or BD-I patients with the highest accuracy. CONCLUSION Plasma ITIH4 and VDB may be potential plasma biomarkers of MDD with high specificity. The four-protein panel is more suitable as a potential clinical diagnostic marker for MDD.
Collapse
Affiliation(s)
- Yachen Shi
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Ruize Song
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China
| | - Liping Wang
- Nanjing University Aeronaut & Astronaut, Department Math, Nanjing, Jiangsu, 210016, China
| | - Yangjian Qi
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China
| | - Hongxing Zhang
- Department of Psychology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Jianli Zhu
- Department of Psychology, Xinxiang Medical University, Xinxiang, Henan, 453003, China
| | - Xiaobin Zhang
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou, Jiangsu, 225003, China; Suzhou Psychiatric Hospital, The Affiliated Guangji Hospital of Soochow University, Suzhou, Jiangsu, 215008, China
| | - Xiaowei Tang
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou, Jiangsu, 225003, China
| | - Qiongqiong Zhan
- Department of Psychiatry, Affiliated WuTaiShan Hospital of Medical College of Yangzhou University, Yangzhou, Jiangsu, 225003, China
| | - Yang Zhao
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Dick F Swaab
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam 1105 BA, The Netherlands
| | - Ai-Min Bao
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310058, China.
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, China; Department of Psychology, Xinxiang Medical University, Xinxiang, Henan, 453003, China; Mental Health Center Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310013, China.
| |
Collapse
|
14
|
Zhou X, Wang J, Lu Y, Chen C, Hu Y, Liu P, Dong X. Anti-depressive effects of Kai-Xin-San on lipid metabolism in depressed patients and CUMS rats using metabolomic analysis. JOURNAL OF ETHNOPHARMACOLOGY 2020; 252:112615. [PMID: 31991203 DOI: 10.1016/j.jep.2020.112615] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/11/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE In this study, in order to explore potential depressive biomarkers and potential regulatory targets of KXS on depression, we assessed the effects of Kai-Xin-San (KXS) on lipid metabolism in depressed patients (DPs) and rats exposed to chronic and unpredictable mild stress (CUMS). MATERIALS AND METHODS Serum samples were collected from DPs, DPs with 8 weeks of KXS treatment (KXS) and healthy controls (HCs), and non-targeted lipidomics was used to analyze the effect of KXS on serum lipid metabolites in DPs. Based on UPLC-Q-TOF/MS technology, differential metabolites were validated in a large sample size. The potential regulatory network of KXS was analyzed by bioinformatic analysis, and the expressions of proteins in serum were verified using western boltting analysis. Moreover, effects of KXS on serum lipid and lipid metabolism-related hormone levels in CUMS rats were detected by enzyme-linked immunosorbent assay and enzymatic method. RESULTS We validated that the levels of six serum lipid metabolites (N-Desmethylcitalopram (HMDB14021), PC(14:1(9Z)/24:0) (HMDB07926), PC(P-18:1(11Z)/20:0) (HMDB11281), PC(O-18:0/20:4(8Z,11Z,14Z,17Z)) (HMDB13420), PC(16:0/P-18:0) (HMDB07995) and PC(16:0/P-18:1(11Z)) (HMDB07996)) between HC/DP groups and between DP/KXS groups were significantly different. Among these six metabolites, HMDB07995, HMDB07996, HMDB13420 and HMDB11281 were highly sensitive and specific for depression and KXS treatment by receiver operating characteristic (ROC) curve analysis. matrix metalloproteinases (MMPs) including MMP2 and MMP9, apolipoproteins (Apo) including APOA1 and APOC1 were up-regulated and apolipoproteins (Apo) including APOB, APOD and APOE, phospholipid transfer protein (PLTP), Paraoxonase 1 (PON1) were down-regulated in DPs, and KXS treatment could reverse these changes. In CUMS rats, KXS could increase the open-field score, sucrose preference and body weight, and reduce immobility time. Furthermore, KXS increased the serum levels of the above-mentioned six metabolites, reduced serum total cholesterol (TCH), triglyceride (TG) and free fatty acid (FFA) levels and increased the serum high-density lipoprotein cholesterol (HDL-C) level in CUMS rats. In addition, leptin and ghrelin were down-regulated by KXS. CONCLUSIONS The results suggested that KXS exerted antidepressant effects by regulating the signaling pathways involved in lipid metabolism disorders. The lipid metabolites might be potential biomarkers of depression and possible targets for KXS-based treatment of depression.
Collapse
Affiliation(s)
- Xiaojiang Zhou
- Medical School of Chinese PLA, Beijing, 100853, China; Department of Clinical Pharmacology, Pharmacy Care Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jin Wang
- Department of Clinical Pharmacology, Pharmacy Care Center, Chinese PLA General Hospital, Beijing, 100853, China; Department of Chinese Medicine, Shanxi University of Traditional Chinese Medicine, Jinzhong, Shanxi, China
| | - Yupan Lu
- Department of Clinical Pharmacology, Pharmacy Care Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Chao Chen
- Department of Clinical Pharmacology, Pharmacy Care Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yuan Hu
- Department of Clinical Pharmacology, Pharmacy Care Center, Chinese PLA General Hospital, Beijing, 100853, China
| | - Ping Liu
- Department of Clinical Pharmacology, Pharmacy Care Center, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Xianzhe Dong
- Department of Pharmacy, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
15
|
Hu Y, Dong X, Zhang T, Ma H, Yang W, Wang Y, Liu P, Chen Y. Kai‑Xin‑San suppresses matrix metalloproteinases and myocardial apoptosis in rats with myocardial infarction and depression. Mol Med Rep 2019; 21:508-516. [PMID: 31746394 DOI: 10.3892/mmr.2019.10807] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/10/2019] [Indexed: 11/06/2022] Open
Abstract
Depression is often triggered by prolonged exposure to psychosocial stressors and associated with coronary heart disease (CHD). Matrix metalloproteinases (MMPs) are involved in the pathogenesis of various emotional and cardiovascular disorders. The purpose of this study was to investigate whether Kai‑Xin‑San (KXS), which may terminate the signaling of MMPs, exerts antidepressant‑like and cardioprotective effects in a myocardial infarction (MI) plus depression rat model. Rats were randomly assigned to five groups: A normal control (control group), a celisc‑injection of isopropyl adrenaline group (ISO group), depression (depression group), an ISO + depression (depression + ISO group), and an ISO + depression group treated with intragastric administration of 1,785 mg/kg KXS (KXS group). Behavioral changes, echocardiography, biochemical index, matrix metalloproteinase (MMP) and apoptosis‑related proteins were assessed. Compared with the depression + ISO group, KXS significantly improved stress‑induced alterations of behavioral parameters and protected the heart by enlarging the left ventricular (LV) fractional shortening (FS) and LV ejection fraction (EF). Moreover, KXS significantly attenuated ISO + depression‑induced MMP‑2 and MMP‑9 expression at the mRNA and protein level and decreased TIMP in the heart compared to the complex model group. Myocardial apoptosis was significantly attenuated by KXS by regulating the Bcl‑2/Bax axis. These results indicated that MI comorbid with depression may damage the MMP balance in the central and peripheral system, and KXS may have a direct anti‑depressive and cardio‑protective effect by regulating the level of MMPs and associated myocardial apoptosis. It is promising to further explore the clinical potential of KXS for the therapy or prevention of MI plus depression comorbidity disease.
Collapse
Affiliation(s)
- Yuan Hu
- Department of Clinical Pharmacology, Pharmacy Care Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Xianzhe Dong
- Department of Pharmacy, Xuanwu Hospital of Capital Medical University, Beijing 100053, P.R. China
| | - Tianyi Zhang
- Department of Clinical Pharmacology, Pharmacy Care Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Hongming Ma
- Department of Clinical Pharmacology, Pharmacy Care Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Wenshan Yang
- Department of Clinical Pharmacology, Pharmacy Care Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yichen Wang
- Department of Clinical Pharmacology, Pharmacy Care Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Ping Liu
- Department of Clinical Pharmacology, Pharmacy Care Center, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Yibang Chen
- Department of Pharmacology and System Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| |
Collapse
|
16
|
Yang YY, Yang FQ, Gao JL. Differential proteomics for studying action mechanisms of traditional Chinese medicines. Chin Med 2019; 14:1. [PMID: 30636970 PMCID: PMC6325846 DOI: 10.1186/s13020-018-0223-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/31/2018] [Indexed: 12/13/2022] Open
Abstract
Differential proteomics, which has been widely used in studying of traditional Chinese medicines (TCMs) during the past 10 years, is a powerful tool to visualize differentially expressed proteins and analyzes their functions. In this paper, the applications of differential proteomics in exploring the action mechanisms of TCMs on various diseases including cancers, cardiovascular diseases, diabetes, liver diseases, kidney disorders and obesity, etc. were reviewed. Furthermore, differential proteomics in studying of TCMs identification, toxicity, processing and compatibility mechanisms were also included. This review will provide information for the further applications of differential proteomics in TCMs studies.
Collapse
Affiliation(s)
- Yi-Yao Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331 People’s Republic of China
| | - Feng-Qing Yang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 401331 People’s Republic of China
| | - Jian-Li Gao
- Academy of Chinese Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053 Zhejiang People’s Republic of China
| |
Collapse
|
17
|
Silva-Costa LC, Carlson PT, Guest PC, de Almeida V, Martins-de-Souza D. Proteomic Markers for Depression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1118:191-206. [DOI: 10.1007/978-3-030-05542-4_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|