1
|
Takeda A, Tamano H. Insight into brain metallothioneins from bidirectional Zn2+ signaling in synaptic dynamics. Metallomics 2024; 16:mfae039. [PMID: 39223100 DOI: 10.1093/mtomcs/mfae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/01/2024] [Indexed: 09/04/2024]
Abstract
The basal levels as the labile Zn2+ pools in the extracellular and intracellular compartments are in the range of ∼10 nM and ∼100 pM, respectively. The influx of extracellular Zn2+ is used for memory via cognitive activity and is regulated for synaptic plasticity, a cellular mechanism of memory. When Zn2+ influx into neurons excessively occurs, however, it becomes a critical trigger for cognitive decline and neurodegeneration, resulting in acute and chronic pathogenesis. Aging, a biological process, generally accelerates vulnerability to neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). The basal level of extracellular Zn2+ is age relatedly increased in the rat hippocampus, and the influx of extracellular Zn2+ contributes to accelerating vulnerability to the AD and PD pathogenesis in experimental animals with aging. Metallothioneins (MTs) are Zn2+-binding proteins for cellular Zn2+ homeostasis and involved in not only supplying functional Zn2+ required for cognitive activity, but also capturing excess (toxic) Zn2+ involved in cognitive decline and neurodegeneration. Therefore, it is estimated that regulation of MT synthesis is involved in both neuronal activity and neuroprotection. The present report provides recent knowledge regarding the protective/preventive potential of MT synthesis against not only normal aging but also the AD and PD pathogenesis in experimental animals, focused on MT function in bidirectional Zn2+ signaling in synaptic dynamics.
Collapse
Affiliation(s)
- Atsushi Takeda
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Haruna Tamano
- School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
- Shizuoka Tohto Medical College, 1949 Minamiema, Izunokuni, Shizuoka 410-2221, Japan
| |
Collapse
|
2
|
Dehydroeffusol Pprevents Amyloid β 1-42-mediated Hippocampal Neurodegeneration via Reducing Intracellular Zn 2+ Toxicity. Mol Neurobiol 2021; 58:3603-3613. [PMID: 33770339 DOI: 10.1007/s12035-021-02364-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/17/2021] [Indexed: 01/04/2023]
Abstract
Dehydroeffusol, a phenanthrene isolated from Juncus effusus, is a Chinese medicine. To explore an efficacy of dehydroeffusol administration for prevention and cure of Alzheimer's disease, here we examined the effect of dehydroeffusol on amyloid β1-42 (Aβ1-42)-mediated hippocampal neurodegeneration. Dehydroeffusol (15 mg/kg body weight) was orally administered to mice once a day for 6 days and then human Aβ1-42 was injected intracerebroventricularly followed by oral administration for 12 days. Neurodegeneration in the dentate granule cell layer, which was determined 2 weeks after Aβ1-42 injection, was rescued by dehydroeffusol administration. Aβ staining (uptake) was not reduced in the dentate granule cell layer by pre-administration of dehydroeffusol for 6 days, while increase in intracellular Zn2+ induced with Aβ1-42 was reduced, suggesting that pre-administration of dehydroeffusol prior to Aβ1-42 injection is effective for Aβ1-42-mediated neurodegeneration that was linked with intracellular Zn2+ toxicity. As a matter of fact, pre-administration of dehydroeffusol rescued Aβ1-42-mediated neurodegeneration. Interestingly, pre-administration of dehydroeffusol increased synthesis of metallothioneins, intracellular Zn2+-binding proteins, in the dentate granule cell layer, which can capture Zn2+ from Zn-Aβ1-42 complexes. The present study indicates that pre-administration of dehydroeffusol protects Aβ1-42-mediated neurodegeneration in the hippocampus by reducing intracellular Zn2+ toxicity, which is linked with induced synthesis of metallothioneins. Dehydroeffusol, a novel inducer of metallothioneins, may protect Aβ1-42-induced pathogenesis in Alzheimer's disease.
Collapse
|
3
|
Changes in Hippocampal Plasticity in Depression and Therapeutic Approaches Influencing These Changes. Neural Plast 2020; 2020:8861903. [PMID: 33293948 PMCID: PMC7718046 DOI: 10.1155/2020/8861903] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/30/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Depression is a common neurological disease that seriously affects human health. There are many hypotheses about the pathogenesis of depression, and the most widely recognized and applied is the monoamine hypothesis. However, no hypothesis can fully explain the pathogenesis of depression. At present, the brain-derived neurotrophic factor (BDNF) and neurogenesis hypotheses have highlighted the important role of plasticity in depression. The plasticity of neurons and glial cells plays a vital role in the transmission and integration of signals in the central nervous system. Plasticity is the adaptive change in the nervous system in response to changes in external signals. The hippocampus is an important anatomical area associated with depression. Studies have shown that some antidepressants can treat depression by changing the plasticity of the hippocampus. Furthermore, caloric restriction has also been shown to affect antidepressant and hippocampal plasticity changes. In this review, we summarize the latest research, focusing on changes in the plasticity of hippocampal neurons and glial cells in depression and the role of BDNF in the changes in hippocampal plasticity in depression, as well as caloric restriction and mitochondrial plasticity. This review may contribute to the development of antidepressant drugs and elucidating the mechanism of depression.
Collapse
|
4
|
Fukuda T, Sato Y, Takiguchi M, Yamamoto T, Murasawa H, Pawlak A, Kobayashi H, Tamano H, Takeda A. Dehydroeffusol Rescues Amyloid β 25-35-Induced Spatial Working Memory Deficit. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2020; 75:279-282. [PMID: 32333241 DOI: 10.1007/s11130-020-00816-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Amyloid β (Aβ) peptides produced from the amyloid precursor protein, a transmembrane protein, are neurotoxic and blocking the neurotoxicity may lead to prevention of Alzheimer's disease (AD). Here we tested whether Aβ25-35-induced cognitive decline is rescued by treatment with dehydroeffusol, a phenanthrene isolated from Chinese medicine Juncus effusus. Dehydroeffusol (5 ~ 15 mg/kg body weight) was orally administered to mice for 6 days and Aβ25-35 (2 mM) was injected at the rate of 1 μl/min for 3 min into the lateral ventricle. Y-maze test was performed after dehydroeffusol administration for 12 days. Aβ25-35 impaired learning and memory in the test, while the impairment was dose-dependently rescued by dehydroeffusol administration. The present study indicates that treatment with dehydroeffusol is effective for rescuing Aβ25-35-induced cognitive decline.
Collapse
Affiliation(s)
- Toshiyuki Fukuda
- Satoen CO., LTD., 1057 Ohhara, Aoi-ku, Shizuoka, 421-1392, Japan
| | - Yuichi Sato
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Mako Takiguchi
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Takahiro Yamamoto
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Hiroyasu Murasawa
- Hashima Laboratory, Nihon Bioresearch Inc, 6-104, Majima, Fukuju-cho, Hashima, Gifu, 501-6251, Japan
| | - Akiko Pawlak
- Hashima Laboratory, Nihon Bioresearch Inc, 6-104, Majima, Fukuju-cho, Hashima, Gifu, 501-6251, Japan
| | - Hiroyuki Kobayashi
- Hashima Laboratory, Nihon Bioresearch Inc, 6-104, Majima, Fukuju-cho, Hashima, Gifu, 501-6251, Japan
| | - Haruna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Atsushi Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| |
Collapse
|