1
|
Kapoor B, Biswas P, Gulati M, Rani P, Gupta R. Gut microbiome and Alzheimer's disease: What we know and what remains to be explored. Ageing Res Rev 2024; 102:102570. [PMID: 39486524 DOI: 10.1016/j.arr.2024.102570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/26/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
With advancement in human microbiome research, an increasing number of scientific evidences have endorsed the key role of gut microbiota in the pathogenesis of Alzheimer disease. Microbiome dysbiosis, characterized by altered diversity and composition, as well as rise of pathobionts influence not only various gut disorder but also central nervous system disorders such as AD. On the basis of accumulated evidences of past few years now it is quite clear that the gut microbiota can control the functions of the central nervous system (CNS) through the gut-brain axis, which provides a new prospective into the interactions between the gut and brain. The main focus of this review is on the molecular mechanism of the crosstalk between the gut microbiota and the brain through the gut-brain axis, and on the onset and development of neurological disorders triggered by the dysbiosis of gut microbiota. Due to microbiota dysbiosis the permeability of the gut and blood brain barrier is increased which may mediate or affect AD. Along with this, bacterial population of the gut microbiota can secrete amyloid proteins and lipopolysaccharides in a large quantity which may create a disturbance in the signaling pathways and the formation of proinflammatory cytokines associated with the pathogenesis of AD. These topics are followed by a critical analysis of potential intervention strategies targeting gut microbiota dysbiosis, including the use of probiotics, prebiotics, metabolites, diets and fecal microbiota transplantation. The main purpose of this review includes the summarization and discussion on the recent finding that may explain the role of the gut microbiota in the development of AD. Understanding of these fundamental mechanisms may provide a new insight into the novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Bhupinder Kapoor
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India.
| | - Pratim Biswas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, NSW 2007, Australia
| | - Pooja Rani
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Reena Gupta
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
2
|
Lin TK, Huang CR, Lin KJ, Hsieh YH, Chen SD, Lin YC, Chao AC, Yang DI. Potential Roles of Hypoxia-Inducible Factor-1 in Alzheimer's Disease: Beneficial or Detrimental? Antioxidants (Basel) 2024; 13:1378. [PMID: 39594520 PMCID: PMC11591038 DOI: 10.3390/antiox13111378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/04/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
The major pathological characteristics of Alzheimer's disease (AD) include senile plaques and neurofibrillary tangles (NFTs), which are mainly composed of aggregated amyloid-beta (Aβ) peptide and hyperphosphorylated tau protein, respectively. The excessive production of reactive oxygen species (ROS) and neuroinflammation are crucial contributing factors to the pathological mechanisms of AD. Hypoxia-inducible factor-1 (HIF-1) is a transcription factor critical for tissue adaption to low-oxygen tension. Growing evidence has suggested HIF-1 as a potential therapeutic target for AD; conversely, other experimental findings indicate that HIF-1 induction contributes to AD pathogenesis. These previous findings thus point to the complex, even contradictory, roles of HIF-1 in AD. In this review, we first introduce the general pathogenic mechanisms of AD as well as the potential pathophysiological roles of HIF-1 in cancer, immunity, and oxidative stress. Based on current experimental evidence in the literature, we then discuss the possible beneficial as well as detrimental mechanisms of HIF-1 in AD; these sections also include the summaries of multiple chemical reagents and proteins that have been shown to exert beneficial effects in AD via either the induction or inhibition of HIF-1.
Collapse
Affiliation(s)
- Tsu-Kung Lin
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (T.-K.L.); (C.-R.H.); (S.-D.C.)
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - Chi-Ren Huang
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (T.-K.L.); (C.-R.H.); (S.-D.C.)
- College of Medicine, Chang Gung University, Taoyuan 333323, Taiwan
| | - Kai-Jung Lin
- Department of Family Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan;
| | - Yi-Heng Hsieh
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
| | - Shang-Der Chen
- Department of Neurology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833401, Taiwan; (T.-K.L.); (C.-R.H.); (S.-D.C.)
| | - Yi-Chun Lin
- Department of Neurology, Taipei City Hospital Renai Branch, Taipei 106243, Taiwan;
| | - A-Ching Chao
- Department of Neurology, Kaohsiung Medical University Hospital, Kaohsiung 807377, Taiwan
- Department of Neurology, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
- Department of Sports Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Ding-I Yang
- Institute of Brain Science, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
3
|
Momen YS, Mishra J, Kumar N. Brain-Gut and Microbiota-Gut-Brain Communication in Type-2 Diabetes Linked Alzheimer's Disease. Nutrients 2024; 16:2558. [PMID: 39125436 PMCID: PMC11313915 DOI: 10.3390/nu16152558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 08/12/2024] Open
Abstract
The gastrointestinal (GI) tract, home to the largest microbial population in the human body, plays a crucial role in overall health through various mechanisms. Recent advancements in research have revealed the potential implications of gut-brain and vice-versa communication mediated by gut-microbiota and their microbial products in various diseases including type-2 diabetes and Alzheimer's disease (AD). AD is the most common type of dementia where most of cases are sporadic with no clearly identified cause. However, multiple factors are implicated in the progression of sporadic AD which can be classified as non-modifiable (e.g., genetic) and modifiable (e.g. Type-2 diabetes, diet etc.). Present review focusses on key players particularly the modifiable factors such as Type-2 diabetes (T2D) and diet and their implications in microbiota-gut-brain (MGB) and brain-gut (BG) communication and cognitive functions of healthy brain and their dysfunction in Alzheimer's Disease. Special emphasis has been given on elucidation of the mechanistic aspects of the impact of diet on gut-microbiota and the implications of some of the gut-microbial products in T2D and AD pathology. For example, mechanistically, HFD induces gut dysbiosis with driven metabolites that in turn cause loss of integrity of intestinal barrier with concomitant colonic and systemic chronic low-grade inflammation, associated with obesity and T2D. HFD-induced obesity and T2D parallel neuroinflammation, deposition of Amyloid β (Aβ), and ultimately cognitive impairment. The review also provides a new perspective of the impact of diet on brain-gut and microbiota-gut-brain communication in terms of transcription factors as a commonly spoken language that may facilitates the interaction between gut and brain of obese diabetic patients who are at a higher risk of developing cognitive impairment and AD. Other commonality such as tyrosine kinase expression and functions maintaining intestinal integrity on one hand and the phagocytic clarence by migratory microglial functions in brain are also discussed. Lastly, the characterization of the key players future research that might shed lights on novel potential pharmacological target to impede AD progression are also discussed.
Collapse
Affiliation(s)
| | | | - Narendra Kumar
- Department of Pharmaceutical Sciences, ILR College of Pharmacy, Texas A&M Health Science Center, Kingsville, TX 78363, USA
| |
Collapse
|
4
|
Liang Y, Liu C, Cheng M, Geng L, Li J, Du W, Song M, Chen N, Yeleen TAN, Song L, Wang X, Han Y, Sheng C. The link between gut microbiome and Alzheimer's disease: From the perspective of new revised criteria for diagnosis and staging of Alzheimer's disease. Alzheimers Dement 2024; 20:5771-5788. [PMID: 38940631 PMCID: PMC11350031 DOI: 10.1002/alz.14057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/20/2024] [Accepted: 05/22/2024] [Indexed: 06/29/2024]
Abstract
Over the past decades, accumulating evidence suggests that the gut microbiome exerts a key role in Alzheimer's disease (AD). The Alzheimer's Association Workgroup is updating the diagnostic criteria for AD, which changed the profiles and categorization of biomarkers from "AT(N)" to "ATNIVS." Previously, most of studies focus on the correlation between the gut microbiome and amyloid beta deposition ("A"), the initial AD pathological feature triggering the "downstream" tauopathy and neurodegeneration. However, limited research investigated the interactions between the gut microbiome and other AD pathogenesis ("TNIVS"). In this review, we summarize current findings of the gut microbial characteristics in the whole spectrum of AD. Then, we describe the association of the gut microbiome with updated biomarker categories of AD pathogenesis. In addition, we outline the gut microbiome-related therapeutic strategies for AD. Finally, we discuss current key issues of the gut microbiome research in the AD field and future research directions. HIGHLIGHTS: The new revised criteria for Alzheimer's disease (AD) proposed by the Alzheimer's Association Workgroup have updated the profiles and categorization of biomarkers from "AT(N)" to "ATNIVS." The associations of the gut microbiome with updated biomarker categories of AD pathogenesis are described. Current findings of the gut microbial characteristics in the whole spectrum of AD are summarized. Therapeutic strategies for AD based on the gut microbiome are proposed.
Collapse
Affiliation(s)
- Yuan Liang
- Department of NeurologyThe Affiliated Hospital of Jining Medical UniversityJiningChina
| | - Congcong Liu
- Department of NeurologyThe Affiliated Hospital of Jining Medical UniversityJiningChina
| | - Manman Cheng
- Department of Respiratory MedicineThe Affiliated Hospital of Jining Medical UniversityJiningChina
| | - Lijie Geng
- Department of RadiologyThe People's Hospital of YanzhouJiningChina
| | - Jing Li
- Department of EmergencyThe Affiliated Hospital of Jining Medical UniversityJiningChina
| | - Wenying Du
- Department of NeurologyChina‐Japan Friendship HospitalBeijingChina
| | - Minfang Song
- Department of NeurologyThe Affiliated Hospital of Jining Medical UniversityJiningChina
| | - Nian Chen
- Department of NeurologyThe Affiliated Hospital of Jining Medical UniversityJiningChina
| | | | - Li Song
- Department of NeurologyThe Affiliated Hospital of Jining Medical UniversityJiningChina
| | - Xiaoni Wang
- Department of NeurologySir Run Shaw HospitalSchool of MedicineZhejiang UniversityHangzhouChina
| | - Ying Han
- Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Key Laboratory of Biomedical Engineering of Hainan ProvinceSchool of Biomedical EngineeringHainan UniversityHaikouChina
- Center of Alzheimer's DiseaseBeijing Institute for Brain DisordersBeijingChina
- National Clinical Research Center for Geriatric DisordersBeijingChina
| | - Can Sheng
- Department of NeurologyThe Affiliated Hospital of Jining Medical UniversityJiningChina
| |
Collapse
|
5
|
Liu M, Li T, Liang H, Zhong P. Herbal medicines in Alzheimer's disease and the involvement of gut microbiota. Front Pharmacol 2024; 15:1416502. [PMID: 39081953 PMCID: PMC11286407 DOI: 10.3389/fphar.2024.1416502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by memory loss and cognitive impairment. It severely affects the quality of life of victims. The prevalence of AD has been increasing in recent years. Therefore, it is of great importance to elucidate the pathogenic mechanism of AD and search for effective therapeutic approaches. Gut microbiota dysbiosis, an altered state of gut microbiota, has been well known for its involvement in the pathogenesis of AD. Much effort has been made in searching for approaches capable of modulating the composition of gut microbiota in recent years. Herbal medicines have attracted extensive attention in recent decades for the prevention and treatment of AD. Here, we gave an overview of the recent research progress on the modulatory effects of herbal medicines and herbal formulae on gut microbiota as well as the possible beneficial effects on AD, which may provide new insights into the discovery of anti-AD agents and their therapeutic potential for AD through modulating the composition of gut microbiota.
Collapse
Affiliation(s)
- Mingli Liu
- Department of Neurology, Yangpu District Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Tuming Li
- Department of Neurology, Yangpu District Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| | - Huazheng Liang
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- Monash Suzhou Research Institute, Suzhou, China
| | - Ping Zhong
- Department of Neurology, Yangpu District Shidong Hospital Affiliated to University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
6
|
Jaquez-Durán G, Arellano-Ortiz AL. Western diet components that increase intestinal permeability with implications on health. INT J VITAM NUTR RES 2024; 94:405-421. [PMID: 38009780 DOI: 10.1024/0300-9831/a000801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Intestinal permeability is a physiological property that allows necessary molecules to enter the organism. This property is regulated by tight junction proteins located between intestinal epithelial cells. However, various factors can increase intestinal permeability (IIP), including diet. Specific components in the Western diet (WD), such as monosaccharides, fat, gluten, salt, alcohol, and additives, can affect the tight junctions between enterocytes, leading to increased permeability. This review explains how these components promote IIP and outlines their potential implications for health. In addition, we describe how a reduction in WD consumption may help improve dietary treatment of diseases associated with IIP. Research has shown that some of these components can cause changes in the gut microbiota, leading to dysbiosis, which can promote greater intestinal permeability and displacement of endotoxins into the bloodstream. These endotoxins include lipopolysaccharides derived from gram-negative bacteria, and their presence has been associated with various diseases, such as autoimmune, neurological, and metabolic diseases like diabetes and cardiovascular disease. Therefore, nutrition professionals should promote the reduction of WD consumption and consider the inclusion of healthy diet components as part of the nutritional treatment for diseases associated with increased intestinal permeability.
Collapse
Affiliation(s)
- Gilberto Jaquez-Durán
- Departamento de Ciencias de la Salud, División Multidisciplinaria de Ciudad Universitaria, Universidad Autónoma de Ciudad Juárez, México
| | - Ana Lidia Arellano-Ortiz
- Departamento de Ciencias de la Salud, División Multidisciplinaria de Ciudad Universitaria, Universidad Autónoma de Ciudad Juárez, México
| |
Collapse
|
7
|
Qiu Y, Hou Y, Gohel D, Zhou Y, Xu J, Bykova M, Yang Y, Leverenz JB, Pieper AA, Nussinov R, Caldwell JZK, Brown JM, Cheng F. Systematic characterization of multi-omics landscape between gut microbial metabolites and GPCRome in Alzheimer's disease. Cell Rep 2024; 43:114128. [PMID: 38652661 DOI: 10.1016/j.celrep.2024.114128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/06/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024] Open
Abstract
Shifts in the magnitude and nature of gut microbial metabolites have been implicated in Alzheimer's disease (AD), but the host receptors that sense and respond to these metabolites are largely unknown. Here, we develop a systems biology framework that integrates machine learning and multi-omics to identify molecular relationships of gut microbial metabolites with non-olfactory G-protein-coupled receptors (termed the "GPCRome"). We evaluate 1.09 million metabolite-protein pairs connecting 408 human GPCRs and 335 gut microbial metabolites. Using genetics-derived Mendelian randomization and integrative analyses of human brain transcriptomic and proteomic profiles, we identify orphan GPCRs (i.e., GPR84) as potential drug targets in AD and that triacanthine experimentally activates GPR84. We demonstrate that phenethylamine and agmatine significantly reduce tau hyperphosphorylation (p-tau181 and p-tau205) in AD patient induced pluripotent stem cell-derived neurons. This study demonstrates a systems biology framework to uncover the GPCR targets of human gut microbiota in AD and other complex diseases if broadly applied.
Collapse
Affiliation(s)
- Yunguang Qiu
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yuan Hou
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Dhruv Gohel
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yadi Zhou
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Jielin Xu
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Marina Bykova
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yuxin Yang
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - James B Leverenz
- Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Andrew A Pieper
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA; Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA; Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA; Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA; Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research in the Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jessica Z K Caldwell
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA; Lou Ruvo Center for Brain Health, Neurological Institute, Cleveland Clinic, Las Vegas, NV 89106, USA
| | - J Mark Brown
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA; Department of Cancer Biology, Lerner Research Institute Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Feixiong Cheng
- Cleveland Clinic Genome Center, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195, USA; Case Comprehensive Cancer Center, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA.
| |
Collapse
|
8
|
Berezutsky MA, Durnova NA, Andronova TA. [Ginkgolide B: mechanisms of neurobiological effects, prospects for use in the therapy of Alzheimer's disease]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:22-27. [PMID: 38676673 DOI: 10.17116/jnevro202412404122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2024]
Abstract
The review presents an analysis of experimental data on the study of neurobiological effects of ginkgolide B, which may find application in the therapy of Alzheimer's disease (AD). Ginkgolide B is a diterpene trilactone isolated from the leaves of the relict woody plant Ginkgo biloba L., which has been used for thousands of years in traditional Chinese medicine as a neuroprotective agent. In recent years, this compound has attracted attention because of its wide range of neurobiological effects. The neuroprotective effect of ginkgolide B on brain neurons when exposed to various neurotoxins has been established. This compound has also been shown to effectively protect neurons from the effects of beta-amyloid. Studies have revealed the ability of ginkgolide B to reduce microglia activity and regulate neurotransmitter release. In vivo experiments have shown that this substance significantly increases the expression of brain-derived neurotrophic factor (BDNF) and improves cognitive functions, including memory and learning. It is concluded that ginkgolide B, apparently, may find application in the future as a multi-targeted agent of complex therapy of AD.
Collapse
Affiliation(s)
- M A Berezutsky
- Razumovsky Saratov State Medical University, Saratov, Russia
| | - N A Durnova
- Razumovsky Saratov State Medical University, Saratov, Russia
| | - T A Andronova
- Razumovsky Saratov State Medical University, Saratov, Russia
| |
Collapse
|
9
|
Spínello P, do Nascimento P, da Silveira VC, Staudt T, Omidian H, Tissiani AC, Bertol CD. In Vitro Development of Enteric-Coated Tablets of the Probiotic Lactobacillus fermentum LF-G89: A Possible Approach to Intestinal Colonization. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:131-137. [PMID: 38661037 DOI: 10.2174/0126673878286133240418114629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND Probiotics must be able to withstand the demanding environment of the gastrointestinal system to adhere to the intestinal epithelium, promoting health benefits. The use of probiotics can prevent or attenuate the effects of dysbiosis that have a deleterious effect on health, promoting anti-inflammatory, immunomodulatory, and antioxidant effects. OBJECTIVE The aim of the study was to prepare tablets containing Lactobacillus fermentum LF-G89 coated with 20% Acryl-Eze II® or Opadry® enteric polymers. METHODS Tablet dissolution was evaluated under acidic and basic pH conditions, and aliquots of the dissolution medium were plated to count the Colony-forming Units (CFU). The free probiotic's tolerance to pH levels of 1.0, 2.0, 3.0, and 4.0, as well as to pepsin, pancreatin, and bile salts, was assessed. RESULTS The probiotic was released from tablets coated after they withstood the pH 1.2 acid stage for 45 minutes. The release was higher with the Acry-Eze II® polymer in the basic stage. The amount of CFU of free probiotics at pH 1.0 to 4.0 as well as pepsin reduced over time, indicating cell death. Conversely, the CFU over time with pancreatin and bile salts increased, demonstrating the resistance of L. fermentum to these conditions due to hydrolases. CONCLUSION Both coating polymers were able to withstand the acid step, likely ensuring the release of the probiotic in the small intestine, promoting colonization. Coating with enteric material is a simple and effective process to increase the survival of probiotics, offering a promising alternative to mitigate the negative effects of the dysbiosis process.
Collapse
Affiliation(s)
- Paola Spínello
- College of Pharmacy and Graduate Program in Human Aging, University of Passo Fundo, Passo Fundo/ RS/ Brazil
| | - Pamela do Nascimento
- College of Pharmacy and Graduate Program in Human Aging, University of Passo Fundo, Passo Fundo/ RS/ Brazil
| | | | - Tatiana Staudt
- College of Pharmacy and Graduate Program in Human Aging, University of Passo Fundo, Passo Fundo/ RS/ Brazil
| | - Hamid Omidian
- College of Pharmacy, Nova Southeastern University, Fort Lauderdale, Florida, FL 33328, USA
| | - Ana Caroline Tissiani
- College of Pharmacy and Graduate Program in Human Aging, University of Passo Fundo, Passo Fundo/ RS/ Brazil
| | - Charise Dallazem Bertol
- College of Pharmacy and Graduate Program in Human Aging, University of Passo Fundo, Passo Fundo/ RS/ Brazil
| |
Collapse
|
10
|
Zhang M, Niu H, Li Q, Jiao L, Li H, Wu W. Active Compounds of Panax ginseng in the Improvement of Alzheimer's Disease and Application of Spatial Metabolomics. Pharmaceuticals (Basel) 2023; 17:38. [PMID: 38256872 PMCID: PMC10818864 DOI: 10.3390/ph17010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/14/2023] [Accepted: 12/24/2023] [Indexed: 01/24/2024] Open
Abstract
Panax ginseng C.A. Meyer (P. ginseng) is one of the more common traditional Chinese medicines (TCMs). It contains numerous chemical components and exhibits a range of pharmacological effects. An enormous burden is placed on people's health and life by Alzheimer's disease (AD), a neurodegenerative condition. Recent research has shown that P. ginseng's chemical constituents, particularly ginsenosides, have a significant beneficial impact on the prevention and management of neurological disorders. To understand the current status of research on P. ginseng to improve AD, this paper discusses the composition of P. ginseng, its mechanism of action, and its clinical application. The pathogenesis of AD includes amyloid beta protein (Aβ) generation and aggregation, tau protein hyperphosphorylation, oxidant stress, neuroinflammation, mitochondrial damage, and neurotransmitter and gut microbiota disorders. This review presents the key molecular mechanisms and signaling pathways of the active ingredients in P. ginseng involved in improving AD from the perspective of AD pathogenesis. A P. ginseng-related signaling pathway network was constructed to provide effective targets for the treatment of AD. In addition, the application of spatial metabolomics techniques in studying P. ginseng and AD is discussed. In summary, this paper discusses research perspectives for the study of P. ginseng in the treatment of AD, including a systematic and in-depth review of the mechanisms of action of the active substances in P. ginseng, and evaluates the feasibility of applying spatial metabolomics in the study of AD pathogenesis and pharmacological treatment.
Collapse
Affiliation(s)
| | | | | | | | - Hui Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.Z.); (H.N.); (Q.L.); (L.J.)
| | - Wei Wu
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun 130117, China; (M.Z.); (H.N.); (Q.L.); (L.J.)
| |
Collapse
|
11
|
Wu JJ, Wei Z. Advances in the study of the effects of gut microflora on microglia in Alzheimer's disease. Front Mol Neurosci 2023; 16:1295916. [PMID: 38098943 PMCID: PMC10720669 DOI: 10.3389/fnmol.2023.1295916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/31/2023] [Indexed: 12/17/2023] Open
Abstract
Alzheimer's disease (AD) is a central nervous system (CNS) degenerative disorder, is caused by various factors including β-amyloid toxicity, hyperphosphorylation of tau protein, oxidative stress, and others. The dysfunction of microglia has been associated with the onset and advancement of different neurodevelopmental and neurodegenerative disorders, such as AD. The gut of mammals harbors a vast and complex population of microorganisms, commonly referred to as the microbiota. There's a growing recognition that these gut microbes are intrinsically intertwined with mammalian physiology. Through the circulation of metabolites, they establish metabolic symbiosis, enhance immune function, and establish communication with different remote cells, including those in the brain. The gut microbiome plays a crucial part in influencing the development and performance of microglia, as indicated by recent preclinical studies. Dysbiosis of the intestinal flora leads to alterations in the microglia transcriptome that regulate the interconversion of microglia subtypes. This conversation explores recent research that clarifies how gut bacteria, their byproducts, and harmful elements affect the activation and characteristics of microglia. This understanding opens doors to innovative microbial-based therapeutic strategies for early identification and treatment goals in AD.
Collapse
Affiliation(s)
- Jin-Jing Wu
- School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Zhe Wei
- School of Medicine, Lishui University, Lishui, Zhejiang, China
- Institute of Breast Oncology, Lishui University Medical College, Lishui, Zhejiang, China
| |
Collapse
|
12
|
López-Villodres JA, Escamilla A, Mercado-Sáenz S, Alba-Tercedor C, Rodriguez-Perez LM, Arranz-Salas I, Sanchez-Varo R, Bermúdez D. Microbiome Alterations and Alzheimer's Disease: Modeling Strategies with Transgenic Mice. Biomedicines 2023; 11:1846. [PMID: 37509487 PMCID: PMC10377071 DOI: 10.3390/biomedicines11071846] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/21/2023] [Accepted: 06/23/2023] [Indexed: 07/30/2023] Open
Abstract
In the last decade, the role of the microbiota-gut-brain axis has been gaining momentum in the context of many neurodegenerative and metabolic disorders, including Alzheimer's disease (AD) and diabetes, respectively. Notably, a balanced gut microbiota contributes to the epithelial intestinal barrier maintenance, modulates the host immune system, and releases neurotransmitters and/or neuroprotective short-chain fatty acids. However, dysbiosis may provoke immune dysregulation, impacting neuroinflammation through peripheral-central immune communication. Moreover, lipopolysaccharide or detrimental microbial end-products can cross the blood-brain barrier and induce or at least potentiate the neuropathological progression of AD. Thus, after repeated failure to find a cure for this dementia, a necessary paradigmatic shift towards considering AD as a systemic disorder has occurred. Here, we present an overview of the use of germ-free and/or transgenic animal models as valid tools to unravel the connection between dysbiosis, metabolic diseases, and AD, and to investigate novel therapeutical targets. Given the high impact of dietary habits, not only on the microbiota but also on other well-established AD risk factors such as diabetes or obesity, consistent changes of lifestyle along with microbiome-based therapies should be considered as complementary approaches.
Collapse
Affiliation(s)
- Juan Antonio López-Villodres
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
| | - Alejandro Escamilla
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
- Instituto de Investigacion Biomedica de Malaga-IBIMA-Plataforma Bionand, 29071 Malaga, Spain
| | - Silvia Mercado-Sáenz
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
| | - Carmen Alba-Tercedor
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
| | - Luis Manuel Rodriguez-Perez
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
- Instituto de Investigacion Biomedica de Malaga-IBIMA-Plataforma Bionand, 29071 Malaga, Spain
| | - Isabel Arranz-Salas
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
- Instituto de Investigacion Biomedica de Malaga-IBIMA-Plataforma Bionand, 29071 Malaga, Spain
- Unidad de Anatomia Patologica, Hospital Universitario Virgen de la Victoria, 29010 Malaga, Spain
| | - Raquel Sanchez-Varo
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
- Instituto de Investigacion Biomedica de Malaga-IBIMA-Plataforma Bionand, 29071 Malaga, Spain
- Centro de Investigacion Biomedica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Diego Bermúdez
- Departamento Fisiologia Humana, Histologia Humana, Anatomia Patologica y Educacion Fisica y Deportiva, Facultad de Medicina, Universidad de Malaga, 29071 Malaga, Spain
| |
Collapse
|
13
|
Zou B, Li J, Ma RX, Cheng XY, Ma RY, Zhou TY, Wu ZQ, Yao Y, Li J. Gut Microbiota is an Impact Factor based on the Brain-Gut Axis to Alzheimer's Disease: A Systematic Review. Aging Dis 2023; 14:964-1678. [PMID: 37191418 DOI: 10.14336/ad.2022.1127] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/27/2022] [Indexed: 05/17/2023] Open
Abstract
Alzheimer's disease (AD) is a degenerative disease of the central nervous system. The pathogenesis of AD has been explained using cholinergic, β-amyloid toxicity, tau protein hyperphosphorylation, and oxidative stress theories. However, an effective treatment method has not been developed. In recent years, with the discovery of the brain-gut axis (BGA) and breakthroughs made in Parkinson's disease, depression, autism, and other diseases, BGA has become a hotspot in AD research. Several studies have shown that gut microbiota can affect the brain and behavior of patients with AD, especially their cognitive function. Animal models, fecal microbiota transplantation, and probiotic intervention also provide evidence regarding the correlation between gut microbiota and AD. This article discusses the relationship and related mechanisms between gut microbiota and AD based on BGA to provide possible strategies for preventing or alleviating AD symptoms by regulating gut microbiota.
Collapse
Affiliation(s)
- Bin Zou
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jia Li
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Rui-Xia Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Xiao-Yu Cheng
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Rui-Yin Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Ting-Yuan Zhou
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Zi-Qi Wu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Yao Yao
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Juan Li
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Ningxia Engineering and Technology Research Center for Modernization of Characteristic Chinese Medicine, and Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
14
|
Garvey M. The Association between Dysbiosis and Neurological Conditions Often Manifesting with Chronic Pain. Biomedicines 2023; 11:biomedicines11030748. [PMID: 36979726 PMCID: PMC10045203 DOI: 10.3390/biomedicines11030748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/21/2023] [Accepted: 02/26/2023] [Indexed: 03/06/2023] Open
Abstract
The prevalence of neurological conditions which manifest with chronic pain is increasing globally, where the World Health Organisation has now classified chronic pain as a risk factor for death by suicide. While many chronic pain conditions have a definitive underlying aetiology, non-somatic conditions represent difficult-to-diagnose and difficult-to-treat public health issues. The interaction of the immune system and nervous system has become an important area in understanding the occurrence of neuroinflammation, nociception, peripheral and central sensitisation seen in chronic pain. More recently, however, the role of the resident microbial species in the human gastrointestinal tract has become evident. Dysbiosis, an alteration in the microbial species present in favour of non-beneficial and pathogenic species has emerged as important in many chronic pain conditions, including functional somatic syndromes, autoimmune disease and neurological diseases. In particular, a decreased abundance of small chain fatty acid, e.g., butyrate-producing bacteria, including Faecalibacterium, Firmicutes and some Bacteroides spp., is frequently evident in morbidities associated with long-term pain. Microbes involved in the production of neurotransmitters serotonin, GABA, glutamate and dopamine, which mediate the gut-brain, axis are also important. This review outlines the dysbiosis present in many disease states manifesting with chronic pain, where an overlap in morbidities is also frequently present in patients.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Atlantic Technological University, F91 YW50 Sligo, Ireland; ; Tel.: +353-071-9305529
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, F91 YW50 Sligo, Ireland
| |
Collapse
|
15
|
Nguyen NM, Cho J, Lee C. Gut Microbiota and Alzheimer's Disease: How to Study and Apply Their Relationship. Int J Mol Sci 2023; 24:ijms24044047. [PMID: 36835459 PMCID: PMC9958597 DOI: 10.3390/ijms24044047] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/06/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Gut microbiota (GM), the microorganisms in the gastrointestinal tract, contribute to the regulation of brain homeostasis through bidirectional communication between the gut and the brain. GM disturbance has been discovered to be related to various neurological disorders, including Alzheimer's disease (AD). Recently, the microbiota-gut-brain axis (MGBA) has emerged as an enticing subject not only to understand AD pathology but also to provide novel therapeutic strategies for AD. In this review, the general concept of the MGBA and its impacts on the development and progression of AD are described. Then, diverse experimental approaches for studying the roles of GM in AD pathogenesis are presented. Finally, the MGBA-based therapeutic strategies for AD are discussed. This review provides concise guidance for those who wish to obtain a conceptual and methodological understanding of the GM and AD relationship with an emphasis on its practical application.
Collapse
|
16
|
Tecalco-Cruz AC, López-Canovas L, Azuara-Liceaga E. Estrogen signaling via estrogen receptor alpha and its implications for neurodegeneration associated with Alzheimer's disease in aging women. Metab Brain Dis 2023; 38:783-793. [PMID: 36640216 DOI: 10.1007/s11011-023-01161-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
Estrogen receptor alpha (ERα) is a transcription factor activated by estrogenic hormones to regulate gene expression in certain organs, including the brain. In the brain, estrogen signaling pathways are central for maintaining cognitive functions. Herein, we review the neuroprotective effects of estrogens mediated by ERα. The estrogen/ERα pathways are affected by the reduction of estrogens in menopause, and this event may be a risk factor for neurodegeneration associated with Alzheimer's disease in women. Thus, developing a better understanding of estrogen/ERα signaling may be critical for defining new biomarkers and potential therapeutic targets for Alzheimer's disease in women.
Collapse
Affiliation(s)
- Angeles C Tecalco-Cruz
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), Apdo, Postal 03100, Ciudad de México, Mexico.
| | - Lilia López-Canovas
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), Apdo, Postal 03100, Ciudad de México, Mexico
| | - Elisa Azuara-Liceaga
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), Apdo, Postal 03100, Ciudad de México, Mexico
| |
Collapse
|
17
|
Kashif M, Sivaprakasam P, Vijendra P, Waseem M, Pandurangan AK. A Recent Update on Pathophysiology and Therapeutic Interventions of Alzheimer's Disease. Curr Pharm Des 2023; 29:3428-3441. [PMID: 38038007 DOI: 10.2174/0113816128264355231121064704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 10/09/2023] [Accepted: 10/19/2023] [Indexed: 12/02/2023]
Abstract
AIM Alzheimer's disease (AD) has been identified as a progressive brain disorder associated with memory dysfunction and the accumulation of β-amyloid plaques and neurofibrillary tangles of τ protein. Mitochondria is crucial in maintaining cell survival, cell death, calcium regulation, and ATP synthesis. Mitochondrial dysfunction and linked calcium overload have been involved in the pathogenesis of AD. CRM2 (Collapsin response mediator protein-2) is involved in endosomal lysosomal trafficking as well as autophagy, and their reduced level is also a primary culprit in the progression of AD. In addition, Cholinergic neurotransmission and neuroinflammation are two other mechanisms implicated in AD onset and might be protective targets to attenuate disease progression. The microbiota-gut-brain axis (MGBA) is another crucial target for AD treatment. Crosstalk between gut microbiota and brain mutually benefitted each other, dysbiosis in gut microbiota affects the brain functions and leads to AD progression with increased AD-causing biomarkers. Despite the complexity of AD, treatment is only limited to symptomatic management. Therefore, there is an urgent demand for novel therapeutics that target associated pathways responsible for AD pathology. This review explores the role of different mechanisms involved in AD and possible therapeutic targets to protect against disease progression. BACKGROUND Amidst various age-related diseases, AD is the most deleterious neurodegenerative disorder that affects more than 24 million people globally. Every year, approximately 7.7 million new cases of dementia have been reported. However, to date, no novel disease-modifying therapies are available to treat AD. OBJECTIVE The aim of writing this review is to highlight the role of key biomarker proteins and possible therapeutic interventions that could play a crucial role in mitigating the ongoing prognosis of Alzheimer's disease. MATERIALS AND METHODS The available information about the disease was collected through multiple search engines, including PubMed, Science Direct, Clinical Trials, and Google Scholar. RESULTS Accumulated pieces of evidence reveal that extracellular aggregation of β-amyloid plaques and intracellular tangles of τ protein are peculiar features of perpetuated Alzheimer's disease (AD). Further, the significant role of mitochondria, calcium, and cholinergic pathways in the pathogenesis of AD makes the respiratory cell organelle a crucial therapeutic target in this neurodegenerative disease. All currently available drugs either delay the clinical damage to cells or temporarily attenuate some symptoms of Alzheimer's disease. CONCLUSION The pathological features of AD are extracellular deposition of β-amyloid, acetylcholinesterase deregulation, and intracellular tangles of τ protein. The multifactorial heterogeneity of disease demands more research work in this field to find new therapeutic biological targets.
Collapse
Affiliation(s)
- Mohd Kashif
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Prathibha Sivaprakasam
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| | - Poornima Vijendra
- Department of Studies in Food Technology, Davangere University, Davangere, Karnataka, India
| | - Mohammad Waseem
- Department of Pharmaceutical Science, University of Maryland, Eastern Shore, Baltimore, USA
| | - Ashok Kumar Pandurangan
- School of Life Sciences, B.S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
| |
Collapse
|
18
|
Chunduri A, Reddy SDM, Jahanavi M, Reddy CN. Gut-Brain Axis, Neurodegeneration and Mental Health: A Personalized Medicine Perspective. Indian J Microbiol 2022; 62:505-515. [PMID: 36458229 PMCID: PMC9705676 DOI: 10.1007/s12088-022-01033-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/26/2022] [Indexed: 11/05/2022] Open
Abstract
Neurological conditions such as neurodegenerative diseases and mental health disorders are a result of multifactorial underpinnings, leading to individual-based complex phenotypes. Demystification of these multifactorial connections will promote disease diagnosis and treatment. Personalized treatment rather than a one-size-fits-all approach would enable us to cater to the unmet healthcare needs based on protein-protein and gene-environment interactions. Gut-brain axis, as the name suggests, is a two-way biochemical communication pathway between the central nervous system (CNS) and enteric nervous system (ENS), enabling a mutual influence between brain and peripheral intestinal functions. The gut microbiota is a major component of this bidirectional communication, the composition of which is varied depending on the age, and disease conditions, among other factors. Gut microbiota profile is typically unique and personalized therapeutic intervention can aid in treating or delaying neurodegeneration and mental health conditions. Besides, research on the gut microbial influence on these conditions is gaining attention, and a better understanding of this concept can lead to identification of novel targeted therapies. Graphical Abstract
Collapse
Affiliation(s)
- Alisha Chunduri
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad, Telangana 500075 India
| | - S. Deepak Mohan Reddy
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad, Telangana 500075 India
| | - M. Jahanavi
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad, Telangana 500075 India
| | - C. Nagendranatha Reddy
- Department of Biotechnology, Chaitanya Bharathi Institute of Technology, Hyderabad, Telangana 500075 India
| |
Collapse
|
19
|
Choroszy M, Litwinowicz K, Bednarz R, Roleder T, Lerman A, Toya T, Kamiński K, Sawicka-Śmiarowska E, Niemira M, Sobieszczańska B. Human Gut Microbiota in Coronary Artery Disease: A Systematic Review and Meta-Analysis. Metabolites 2022; 12:1165. [PMID: 36557203 PMCID: PMC9788186 DOI: 10.3390/metabo12121165] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
In recent years, the importance of the gut microbiome in human health and disease has increased. Growing evidence suggests that gut dysbiosis might be a crucial risk factor for coronary artery disease (CAD). Therefore, we conducted a systematic review and meta-analysis to determine whether or not CAD is associated with specific changes in the gut microbiome. The V3-V4 regions of the 16S rDNA from fecal samples were analyzed to compare the gut microbiome composition between CAD patients and controls. Our search yielded 1181 articles, of which 21 met inclusion criteria for systematic review and 7 for meta-analysis. The alpha-diversity, including observed OTUs, Shannon and Simpson indices, was significantly decreased in CAD, indicating the reduced richness of the gut microbiome. The most consistent results in a systematic review and meta-analysis pointed out the reduced abundance of Bacteroidetes and Lachnospiraceae in CAD patients. Moreover, Enterobacteriaceae, Lactobacillus, and Streptococcus taxa demonstrated an increased trend in CAD patients. The alterations in the gut microbiota composition are associated with qualitative and quantitative changes in bacterial metabolites, many of which have pro-atherogenic effects on endothelial cells, increasing the risk of developing and progressing CAD.
Collapse
Affiliation(s)
- Marcin Choroszy
- Department of Microbiology, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Kamil Litwinowicz
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-367 Wroclaw, Poland
| | - Robert Bednarz
- Ninewells Hospital and Medical School, James Arrott Drive, Dundee DD1 9SY, UK
| | - Tomasz Roleder
- Research and Development Centre, Regional Specialist Hospital, 51-124 Wroclaw, Poland
| | - Amir Lerman
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Takumi Toya
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Division of Cardiology, National Defense Medical College, Tokorozawa 359-8513, Japan
| | - Karol Kamiński
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland
| | - Emilia Sawicka-Śmiarowska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, 15-269 Bialystok, Poland
- Department of Cardiology, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Magdalena Niemira
- Clinical Research Centre, Medical University of Bialystok, 15-089 Bialystok, Poland
| | | |
Collapse
|
20
|
Intestinal Flora Affect Alzheimer's Disease by Regulating Endogenous Hormones. Neurochem Res 2022; 47:3565-3582. [DOI: 10.1007/s11064-022-03784-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/13/2022] [Accepted: 10/01/2022] [Indexed: 11/25/2022]
|
21
|
Olyaiee A, Sadeghi A, Yadegar A, Mirsamadi ES, Mirjalali H. Gut Microbiota Shifting in Irritable Bowel Syndrome: The Mysterious Role of Blastocystis sp. Front Med (Lausanne) 2022; 9:890127. [PMID: 35795640 PMCID: PMC9251125 DOI: 10.3389/fmed.2022.890127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a chronic disorder, which its causative agent is not completely clear; however, the interaction between microorganisms and gastrointestinal (GI) epithelial cells plays a critical role in the development of IBS and presenting symptoms. During recent decades, many studies have highlighted the high prevalence of Blastocystis sp. in patients with IBS and suggested a probable role for this protist in this disease. Recent studies have documented changes in the gut microbiota composition in patients with IBS regarding the presence of Blastocystis sp., but it is not clear that either disturbance of the gut during GI disorders is a favorable condition for Blastocystis sp. colonization or the presence of this protist may lead to alteration in the gut microbiota in IBS patients. In this review, we comprehensively gather and discuss scientific findings covering the role of Blastocystis sp. in IBS via gut microbiota shifting.
Collapse
Affiliation(s)
- Alireza Olyaiee
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir Sadeghi
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elnaz Sadat Mirsamadi
- Department of Microbiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Neuroprotective Effects of Probiotic-Supplemented Diet on Cognitive Behavior of 3xTg-AD Mice. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:4602428. [PMID: 35035837 PMCID: PMC8754595 DOI: 10.1155/2022/4602428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/08/2021] [Accepted: 12/18/2021] [Indexed: 12/27/2022]
Abstract
Alzheimer's disease (AD) is recognized as one of the most common types of senile dementia. AD patients first suffer memory loss for recent events (short-term memory impairment). As the disease progresses, they are deprived of self-awareness. This study aims to explore the effects of a probiotic-supplemented diet on the cognitive behaviors and pathological features of mouse models of Alzheimer's disease (AD). Mice in the control group and the 3xTg-AD group were fed a regular diet and a probiotic-supplemented diet, respectively, for 20 weeks. Behavioral experiments like Morris's water maze and Y maze were conducted. Then, feces of mice were collected for 16S sRNA gene sequencing for microorganisms. In the end, soluble and insoluble Aβ40 and Aβ42 in the hippocampus and cortex of mice in each group were quantitatively analyzed with a double-antibody Sandwich ELISA. The expression levels of tau protein and gliocyte in the hippocampus and cortex were detected using the Western Blot method. The result of the Morris water maze experiment indicated that, in the place navigation test, the mice in the 3xTg-AD group experienced a significant decline in the learning ability and a longer escape latency and in the space exploration test, the swimming time of mice in the 3xTg-AD group in the target quadrant decreased and after being treated with the probiotic diet, mice in the 3xTg-AD group had improved learning and memory ability. The result of Y maze showed that the probiotic diet can improve the spontaneous alternation accuracy of mice in the 3xTg-AD group. The result of 16s rRNA gene sequencing showed that, compared with mice in the WT group, those in the 3xTg-AD group experienced a change in the intestinal flora. The Western Blot result displayed a decreased expression level of tau (pS202) (P < 0.05) and decreased expression levels of Iba-1 and GFAP (P < 0.05). The result of the ELISA experiment showed decreased levels of soluble and insoluble Aβ40 and Aβ42 in 3xTg-AD mice (P < 0.05). In conclusion, a probiotic diet can prevent and treat AD by improving the intestinal flora of 3xTg-AD.
Collapse
|
23
|
Lynn J, Park M, Ogunwale C, Acquaah-Mensah GK. A Tale of Two Diseases: Exploring Mechanisms Linking Diabetes Mellitus with Alzheimer's Disease. J Alzheimers Dis 2021; 85:485-501. [PMID: 34842187 DOI: 10.3233/jad-210612] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dementias, including the type associated with Alzheimer's disease (AD), are on the rise worldwide. Similarly, type 2 diabetes mellitus (T2DM) is one of the most prevalent chronic diseases globally. Although mechanisms and treatments are well-established for T2DM, there remains much to be discovered. Recent research efforts have further investigated factors involved in the etiology of AD. Previously perceived to be unrelated diseases, commonalities between T2DM and AD have more recently been observed. As a result, AD has been labeled as "type 3 diabetes". In this review, we detail the shared processes that contribute to these two diseases. Insulin resistance, the main component of the pathogenesis of T2DM, is also present in AD, causing impaired brain glucose metabolism, neurodegeneration, and cognitive impairment. Dysregulation of insulin receptors and components of the insulin signaling pathway, including protein kinase B, glycogen synthase kinase 3β, and mammalian target of rapamycin are reported in both diseases. T2DM and AD also show evidence of inflammation, oxidative stress, mitochondrial dysfunction, advanced glycation end products, and amyloid deposition. The impact that changes in neurovascular structure and genetics have on the development of these conditions is also being examined. With the discovery of factors contributing to AD, innovative treatment approaches are being explored. Investigators are evaluating the efficacy of various T2DM medications for possible use in AD, including but not limited to glucagon-like peptide-1 receptor agonists, and peroxisome proliferator-activated receptor-gamma agonists. Furthermore, there are 136 active trials involving 121 therapeutic agents targeting novel AD biomarkers. With these efforts, we are one step closer to alleviating the ravaging impact of AD on our communities.
Collapse
Affiliation(s)
- Jessica Lynn
- Massachusetts College of Pharmacy & Health Sciences (MCPHS University)/Takeda Pharmaceuticals Biopharmaceutical Industry Fellowship Program, Boston, MA, USA
| | - Mingi Park
- Massachusetts College of Pharmacy & Health Sciences (MCPHS University)/Takeda Pharmaceuticals Biopharmaceutical Industry Fellowship Program, Boston, MA, USA
| | | | - George K Acquaah-Mensah
- Massachusetts College of Pharmacy & Health Sciences (MCPHS University)/Takeda Pharmaceuticals Biopharmaceutical Industry Fellowship Program, Boston, MA, USA
| |
Collapse
|
24
|
Taché Y, Saavedra JM. Introduction to the Special Issue "The Brain-Gut Axis". Cell Mol Neurobiol 2021; 42:311-313. [PMID: 34652580 DOI: 10.1007/s10571-021-01155-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 10/01/2021] [Indexed: 02/07/2023]
Abstract
This special Issue presents comprehensive and state-of-the-art advances in supporting the crucial role of the bidirectional interactions between the Brain-Gut Axis in health and diseases with an emphasis on the microbiome-gut-brain axis and its implications in variety of neurological disorders. There are intimate connections between the brain and the digestive system. Gut microbiota dysbiosis activates the intestinal immune system, enhances intestinal permeability and bacterial translocation, leading to neuroinflammation, epigenetic changes, cerebrovascular alterations, amyloid β formation and α-synuclein protein aggregates. These alterations may participate in the development of hypertension, Alzheimer, Parkinson, stroke, epilepsy and autism. Brainstem nuclei such as the nucleus tractus solitarius (NTS) and the dorsal motor nucleus of the vagus (DMV) regulate gastric motor function by way of bidirectional inputs through the vagus nerve.
Collapse
Affiliation(s)
- Yvette Taché
- David Geffen School of Medicine at UCLA, 11301 Wilshire Boulevard, CURE Building 115, Room 117, Los Angeles, CA, 90073, USA
| | - Juan M Saavedra
- Department of Pharmacology and Physiology, Georgetown University Medical Center, SE402 Med/Dent, 3900, Reservoir Road, Washington, DC, 20057, USA.
| |
Collapse
|
25
|
Nandwana V, Debbarma S. Fecal Microbiota Transplantation: A Microbiome Modulation Technique for Alzheimer's Disease. Cureus 2021; 13:e16503. [PMID: 34430117 PMCID: PMC8374998 DOI: 10.7759/cureus.16503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2021] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia and the fifth leading cause of death among the elderly. AD involves parts of the brain that can lead to progressive memory loss and impaired language skills and cognitive thinking, affecting one’s ability to carry out daily activities. Aging, bad dietary habits, family history, as well as altered gut microbiota composition may play a role in the pathogenesis of AD. Although the association between the imbalance of gut microbiota and AD is still difficult to determine, it has been suggested that dysbiosis can lead to the increased secretion of lipopolysaccharides and amyloid, which may impair the permeability of the intestine and the blood-brain barrier. Moreover, it can progress the process of neuroinflammation, amyloid-beta formation, and ultimately neuronal death. Microbiota-targeted interventions such as personalized diet, probiotics, or fecal microbiota transplantation (FMT) might represent a potential therapeutic option for AD. This review article discusses the procedure of FMT and its possible side effects on the recipient’s body. In addition, we review the role of FMT in the context of its application in various nervous system-related disorders (AD, Parkinson’s disease, multiple sclerosis).
Collapse
Affiliation(s)
- Varsha Nandwana
- Medicine, Lady Hardinge Medical College and Associated Hospitals, New Delhi, IND
| | - Shibajee Debbarma
- Community Medicine, Lady Hardinge Medical College and Associated Hospitals, New Delhi, IND
| |
Collapse
|
26
|
Wu S, Liu X, Jiang R, Yan X, Ling Z. Roles and Mechanisms of Gut Microbiota in Patients With Alzheimer's Disease. Front Aging Neurosci 2021; 13:650047. [PMID: 34122039 PMCID: PMC8193064 DOI: 10.3389/fnagi.2021.650047] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/30/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is the most common age-related progressive neurodegenerative disease, characterized by a decline in cognitive function and neuronal loss, and is caused by several factors. Numerous clinical and experimental studies have suggested the involvement of gut microbiota dysbiosis in patients with AD. The altered gut microbiota can influence brain function and behavior through the microbiota-gut-brain axis via various pathways such as increased amyloid-β deposits and tau phosphorylation, neuroinflammation, metabolic dysfunctions, and chronic oxidative stress. With no current effective therapy to cure AD, gut microbiota modulation may be a promising therapeutic option to prevent or delay the onset of AD or counteract its progression. Our present review summarizes the alterations in the gut microbiota in patients with AD, the pathogenetic roles and mechanisms of gut microbiota in AD, and gut microbiota-targeted therapies for AD. Understanding the roles and mechanisms between gut microbiota and AD will help decipher the pathogenesis of AD from novel perspectives and shed light on novel therapeutic strategies for AD.
Collapse
Affiliation(s)
- Shaochang Wu
- Department of Geriatrics, Lishui Second People’s Hospital, Lishui, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ruilai Jiang
- Department of Geriatrics, Lishui Second People’s Hospital, Lishui, China
| | - Xiumei Yan
- Department of Geriatrics, Lishui Second People’s Hospital, Lishui, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Institute of Microbe & Host Health, Linyi University, Linyi, China
| |
Collapse
|