1
|
Janner DE, Poetini MR, Musachio EAS, Chaves NSG, Meichtry LB, Fernandes EJ, Mustafa MMD, De Carvalho AS, Gonçalves OH, Leimann FV, de Freitas RA, Prigol M, Guerra GP. Neurodevelopmental changes in Drosophila melanogaster are restored by treatment with lutein-loaded nanoparticles: Positive modulation of neurochemical and behavioral parameters. Comp Biochem Physiol C Toxicol Pharmacol 2024; 285:109998. [PMID: 39106915 DOI: 10.1016/j.cbpc.2024.109998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 08/09/2024]
Abstract
Neurodevelopmental disorders, such as autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD), are characterized by persistent changes in communication and social interaction, as well as restricted and stereotyped patterns of behavior. The complex etiology of these disorders possibly combines the effects of multiple genes and environmental factors. Hence, exposure to insecticides such as imidacloprid (IMI) has been used to replicate the changes observed in these disorders. Lutein is known for its anti-inflammatory and antioxidant properties and is associated with neuroprotective effects. Therefore, the aim of this study was to evaluate the protective effect of lutein-loaded nanoparticles, along with their mechanisms of action, on Drosophila melanogaster offspring exposed to IMI-induced damage. To simulate the neurodevelopmental disorder model, flies were exposed to a diet containing IMI for 7 days. Posteriorly, their offspring were exposed to a diet containing lutein-loaded nanoparticles for a period of 24 h, and male and female flies were subjected to behavioral and biochemical evaluations. Treatment with lutein-loaded nanoparticles reversed the parameters of hyperactivity, aggressiveness, social interaction, repetitive movements, and anxiety in the offspring of flies exposed to IMI. It also protected markers of oxidative stress and cell viability, in addition to preventing the reduction of Nrf2 and Shank3 immunoreactivity. These results demonstrate that the damage induced by exposure to IMI was restored through treatment with lutein-loaded nanoparticles, elucidating lutein's mechanisms of action as a therapeutic agent, which, after further studies, can become a co-adjuvant in the treatment of neurodevelopmental disorders, such as ASD and ADHD.
Collapse
Affiliation(s)
- Dieniffer Espinosa Janner
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Márcia Rósula Poetini
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Elize Aparecida Santos Musachio
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Nathalie Savedra Gomes Chaves
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Luana Barreto Meichtry
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Eliana Jardim Fernandes
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Mustafa Munir Dahleh Mustafa
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Amarilis Santos De Carvalho
- Graduate Program in Food Technology, Federal Technological University of Paraná - Campus Campo Mourão, 87301-006 Campo Mourão, PR, Brazil
| | - Odinei Hess Gonçalves
- Graduate Program in Food Technology, Federal Technological University of Paraná - Campus Campo Mourão, 87301-006 Campo Mourão, PR, Brazil
| | - Fernanda Vitória Leimann
- Graduate Program in Food Technology, Federal Technological University of Paraná - Campus Campo Mourão, 87301-006 Campo Mourão, PR, Brazil
| | | | - Marina Prigol
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil
| | - Gustavo Petri Guerra
- Laboratory of Pharmacological and Toxicological Evaluations Applied to Bioactive Molecules - LaftamBio, Federal University of Pampa - Campus Itaqui, 97650-000 Itaqui, RS, Brazil; Postgraduate Program in Biochemistry, Federal University of Pampa - Campus Uruguaiana, 97508-000 Uruguaiana, RS, Brazil.
| |
Collapse
|
2
|
Asta L, Ricciardello A, Cucinotta F, Turriziani L, Boncoddo M, Bellomo F, Angelini J, Gnazzo M, Scandolo G, Pisanò G, Pelagatti F, Chehbani F, Camia M, Persico AM. Clinical, developmental and serotonemia phenotyping of a sample of 70 Italian patients with Phelan-McDermid Syndrome. J Neurodev Disord 2024; 16:57. [PMID: 39363263 PMCID: PMC11451156 DOI: 10.1186/s11689-024-09572-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Phelan-McDermid syndrome (PMS) is caused by monoallelic loss or inactivation at the SHANK3 gene, located in human chr 22q13.33, and is often associated with Autism Spectrum Disorder (ASD). OBJECTIVES To assess the clinical and developmental phenotype in a novel sample of PMS patients, including for the first time auxometric trajectories and serotonin blood levels. METHODS 70 Italian PMS patients were clinically characterized by parental report, direct medical observation, and a thorough medical and psychodiagnostic protocol. Serotonin levels were measured in platelet-rich plasma by HPLC. RESULTS Our sample includes 59 (84.3%) cases with chr. 22q13 terminal deletion, 5 (7.1%) disruptive SHANK3 mutations, and 6 (8.6%) ring chromosome 22. Intellectual disability was present in 69 (98.6%) cases, motor coordination disorder in 65 (92.9%), ASD in 20 (28.6%), and lifetime bipolar disorder in 12 (17.1%). Prenatal and postnatal complications were frequent (22.9%-48.6%). Expressive and receptive language were absent in 49 (70.0%) and 19 (27.1%) cases, respectively. Decreased pain sensitivity was reported in 56 (80.0%), hyperactivity in 49 (80.3%), abnormal sleep in 45 (64.3%), congenital dysmorphisms in 35 (58.3%), chronic stool abnormalities and especially constipation in 29 (41.4%). Parents reported noticing behavioral abnormalities during early childhood immediately after an infective episode in 34 (48.6%) patients. Brain MRI anomalies were observed in 53 (79.1%), EEG abnormalities in 16 (23.5%), kidney and upper urinary tract malformations in 18 (28.1%). Two novel phenotypes emerged: (a) a subgroup of 12/44 (27.3%) PMS patients displays smaller head size at enrollment (mean age 11.8 yrs) compared to their first year of neonatal life, documenting a deceleration of head growth (p < 0.001); (b) serotonin blood levels are significantly lower in 21 PMS patients compared to their 21 unaffected siblings (P < 0.05), and to 432 idiopathic ASD cases (p < 0.001). CONCLUSIONS We replicate and extend the description of many phenotypic characteristics present in PMS, and report two novel features: (1) growth trajectories are variable and head growth appears to slow down during childhood in some PMS patients; (2) serotonin blood levels are decreased in PMS, and not increased as frequently occurs in ASD. Further investigations of these novel features are under way.
Collapse
Affiliation(s)
- Lisa Asta
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Arianna Ricciardello
- Cantonal Psychiatric Clinic, Cantonal Socio-Psychiatric Organization (O.S.C.), Repubblica e Cantone Ticino, Mendrisio, Switzerland
| | | | - Laura Turriziani
- Center for Autism "Dopo Di Noi", Barcellona Pozzo Di Gotto (Messina), Italy
| | - Maria Boncoddo
- Institute for Biomedical Research and Innovation (I.R.I.B.), National Research Council of Italy (C.N.R.), Messina, Italy
| | - Fabiana Bellomo
- Child Neuropsychiatry Unit, "G. Martino" University Hospital, Messina, Italy
| | - Jessica Angelini
- Residency Program in Child & Adolescent Neuropsychiatry, University of Modena and Reggio Emilia, Modena, Italy
| | - Martina Gnazzo
- Residency Program in Child & Adolescent Neuropsychiatry, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Scandolo
- Residency Program in Child & Adolescent Neuropsychiatry, University of Modena and Reggio Emilia, Modena, Italy
| | - Giulia Pisanò
- Residency Program in Child & Adolescent Neuropsychiatry, University of Modena and Reggio Emilia, Modena, Italy
| | - Francesco Pelagatti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Fethia Chehbani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Michela Camia
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Antonio M Persico
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
- Child & Adolescent Neuropsychiatry Program, Modena University Hospital, Modena, Italy.
| |
Collapse
|
3
|
Robinson K, Delhaye M, Craig AM. Mapping proteomic composition of excitatory postsynaptic sites in the cerebellar cortex. Front Mol Neurosci 2024; 17:1381534. [PMID: 38783902 PMCID: PMC11111907 DOI: 10.3389/fnmol.2024.1381534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Functions of the cerebellar cortex, from motor learning to emotion and cognition, depend on the appropriate molecular composition at diverse synapse types. Glutamate receptor distributions have been partially mapped using immunogold electron microscopy. However, information is lacking on the distribution of many other components, such as Shank2, a postsynaptic scaffolding protein whose cerebellar dysfunction is associated with autism spectrum disorders. Here, we used an adapted Magnified Analysis of the Proteome, an expansion microscopy approach, to map multiple glutamate receptors, scaffolding and signaling proteins at single synapse resolution in the cerebellar cortex. Multiple distinct synapse-selective distribution patterns were observed. For example, AMPA receptors were most concentrated at synapses on molecular layer interneurons and at climbing fiber synapses, Shank1 was most concentrated at parallel fiber synapses on Purkinje cells, and Shank2 at both climbing fiber and parallel fiber synapses on Purkinje cells but little on molecular layer interneurons. Our results are consistent with gene expression data but also reveal input-selective targeting within Purkinje cells. In specialized glomerular structures of the granule cell layer, AMPA receptors as well as most other synaptic components preferentially targeted to synapses. However, NMDA receptors and the synaptic GTPase activating protein SynGAP preferentially targeted to extrasynaptic sites. Thus, glomeruli may be considered integrative signaling units through which mossy fibers differentially activate synaptic AMPA and extrasynaptic NMDA receptor complexes. Furthermore, we observed NMDA receptors and SynGAP at adherens junctions, suggesting a role in structural plasticity of glomeruli. Altogether, these data contribute to mapping the cerebellar 'synaptome'.
Collapse
Affiliation(s)
| | | | - Ann Marie Craig
- Djavad Mowafaghian Centre for Brain Health and Department of Psychiatry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
4
|
Zhu Y, Hui Q, Zhang Z, Fu H, Qin Y, Zhao Q, Li Q, Zhang J, Guo L, He W, Han C. Advancements in the study of synaptic plasticity and mitochondrial autophagy relationship. J Neurosci Res 2024; 102:e25309. [PMID: 38400573 DOI: 10.1002/jnr.25309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024]
Abstract
Synapses serve as the points of communication between neurons, consisting primarily of three components: the presynaptic membrane, synaptic cleft, and postsynaptic membrane. They transmit signals through the release and reception of neurotransmitters. Synaptic plasticity, the ability of synapses to undergo structural and functional changes, is influenced by proteins such as growth-associated proteins, synaptic vesicle proteins, postsynaptic density proteins, and neurotrophic growth factors. Furthermore, maintaining synaptic plasticity consumes more than half of the brain's energy, with a significant portion of this energy originating from ATP generated through mitochondrial energy metabolism. Consequently, the quantity, distribution, transport, and function of mitochondria impact the stability of brain energy metabolism, thereby participating in the regulation of fundamental processes in synaptic plasticity, including neuronal differentiation, neurite outgrowth, synapse formation, and neurotransmitter release. This article provides a comprehensive overview of the proteins associated with presynaptic plasticity, postsynaptic plasticity, and common factors between the two, as well as the relationship between mitochondrial energy metabolism and synaptic plasticity.
Collapse
Affiliation(s)
- Yousong Zhu
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Qinlong Hui
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Zheng Zhang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Hao Fu
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Yali Qin
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Qiong Zhao
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Qinqing Li
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| | - Junlong Zhang
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
| | - Lei Guo
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
| | - Wenbin He
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
| | - Cheng Han
- Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Jinzhong, China
- National International Joint Research Center for Molecular Traditional Chinese Medicine, Jinzhong, China
- Basic Medical College of Shanxi University of Chinese Medicine, Jinzhong, China
| |
Collapse
|
5
|
Wang M, Gu Y, Meng S, Kang L, Yang J, Sun D, Liu Y, Wan Z, Shan Y, Xue D, Su C, Li S, Yan R, Liu Y, Zhao Y, Pan Y. Association between TRP channels and glutamatergic synapse gene polymorphisms and migraine and the comorbidities anxiety and depression in a Chinese population. Front Genet 2023; 14:1158028. [PMID: 37303955 PMCID: PMC10250607 DOI: 10.3389/fgene.2023.1158028] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/17/2023] [Indexed: 06/13/2023] Open
Abstract
Background: Genetic and environmental factors contribute to migraine and the comorbidities of anxiety and depression. However, the association between genetic polymorphisms in the transient receptor potential (TRP) channels and glutamatergic synapse genes with the risk of migraine and the comorbidities of anxiety and depression remain unclear. Methods: 251 migraine patients containing 49 comorbidities with anxiety and 112 with depression and 600 controls were recruited. A customized 48-plex SNPscan kit was used for genotyping 13 SNPs of nine target genes. Logistic regression was conducted to analyze these SNPs' association with the susceptibility of migraine and comorbidities. The generalized multifactor dimension reduction (GMDR) was applied to analyze the SNP-SNP and gene-environment interactions. The GTEx database was used to examine the effects of the significant SNPs on gene expressions. Results: The TRPV1 rs8065080 and TRPV3 rs7217270 were associated with an increased risk of migraine in the dominant model [ORadj (95% CI): 1.75 (1.09-2.90), p = 0.025; 1.63 (1.02-2.58), p = 0.039, respectively]. GRIK2 rs2227283 was associated with migraine in the edge of significance [ORadj (95% CI) = 1.36 (0.99-1.89), p = 0.062]. In migraine patients, TRPV1 rs222741 was associated with both anxiety risk and depression risk in the recessive model [ORadj (95% CI): 2.64 (1.24-5.73), p = 0.012; 1.97 (1.02-3.85), p = 0.046, respectively]. TRPM8 rs7577262 was associated with anxiety (ORadj = 0.27, 95% CI = 0.10-0.76, p = 0.011). TRPV4 rs3742037, TRPM8 rs17862920 and SLC17A8 rs11110359 were associated with depression in dominant model [ORadj (95% CI): 2.03 (1.06-3.96), p = 0.035; 0.48 (0.23-0.96), p = 0.042; 0.42 (0.20-0.84), p = 0.016, respectively]. Significant eQTL and sQTL signals were observed for SNP rs8065080. Individuals with GRS (Genetic risk scores) of Q4 (14-17) had a higher risk of migraine and a lower risk of comorbidity anxiety than those with Genetic risk scores scores of Q1 (0-9) groups [ORadj (95% CI): 2.31 (1.39-3.86), p = 0.001; 0.28 (0.08-0.88), p = 0.034, respectively]. Conclusion: This study suggests that TRPV1 rs8065080, TRPV3 rs7217270, and GRIK2 rs2227283 polymorphism may associate with migraine risk. TRPV1 rs222741 and TRPM8 rs7577262 may associate with migraine comorbidity anxiety risk. rs222741, rs3742037, rs17862920, and rs11110359 may associate with migraine comorbidity depression risk. Higher GRS scores may increase migraine risk and decrease comorbidity anxiety risk.
Collapse
Affiliation(s)
- Mingxue Wang
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Yujia Gu
- Chronic Disease Prevention and Treatment Clinic, Heilongjiang Provincial Center for Disease Control and Prevention, Harbin, China
| | - Shuhan Meng
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Lixin Kang
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Jing Yang
- Department of Neurology, Beidahuang Group Hongxinglong Hospital, Shuangyashan, China
| | - Degang Sun
- Department of Neurology, Beidahuang Group Hongxinglong Hospital, Shuangyashan, China
| | - Yuxing Liu
- Catheterization Room, Beidahuang Group Hongxinglong Hospital, Shuangyashan, China
| | - Ze Wan
- Science and Education Section, Beidahuang Group Hongxinglong Hospital, Shuangyashan, China
| | - Yi Shan
- Physical Examination Section, Beidahuang Group Baoquanling Hospital, Hegang, China
| | - Dongjie Xue
- Department of Neurology, Hegang He Mine Hospital, Hegang, China
| | - Chang Su
- Department of Internal Medicine, Baoquanling Farm Hospital, Hegang, China
| | - Shufen Li
- Vaccination Clinic, Baoquanling Farm Hospital, Hegang, China
| | - Ran Yan
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Yu Liu
- Chronic Disease Prevention and Treatment Clinic, Heilongjiang Provincial Center for Disease Control and Prevention, Harbin, China
| | - Yashuang Zhao
- Department of Epidemiology, School of Public Health, Harbin Medical University, Harbin, China
| | - Yonghui Pan
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
6
|
Keil-Stietz K, Lein PJ. Gene×environment interactions in autism spectrum disorders. Curr Top Dev Biol 2022; 152:221-284. [PMID: 36707213 PMCID: PMC10496028 DOI: 10.1016/bs.ctdb.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
There is credible evidence that environmental factors influence individual risk and/or severity of autism spectrum disorders (hereafter referred to as autism). While it is likely that environmental chemicals contribute to the etiology of autism via multiple mechanisms, identifying specific environmental factors that confer risk for autism and understanding how they contribute to the etiology of autism has been challenging, in part because the influence of environmental chemicals likely varies depending on the genetic substrate of the exposed individual. Current research efforts are focused on elucidating the mechanisms by which environmental chemicals interact with autism genetic susceptibilities to adversely impact neurodevelopment. The goal is to not only generate insights regarding the pathophysiology of autism, but also inform the development of screening platforms to identify specific environmental factors and gene×environment (G×E) interactions that modify autism risk. Data from such studies are needed to support development of intervention strategies for mitigating the burden of this neurodevelopmental condition on individuals, their families and society. In this review, we discuss environmental chemicals identified as putative autism risk factors and proposed mechanisms by which G×E interactions influence autism risk and/or severity using polychlorinated biphenyls (PCBs) as an example.
Collapse
Affiliation(s)
- Kimberly Keil-Stietz
- Department of Comparative Biosciences, University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI, United States
| | - Pamela J Lein
- Department of Molecular Biosciences, University of California, Davis, School of Veterinary Medicine, Davis, CA, United States.
| |
Collapse
|
7
|
Vyas Y, Cheyne JE, Lee K, Jung Y, Cheung PY, Montgomery JM. Shankopathies in the Developing Brain in Autism Spectrum Disorders. Front Neurosci 2022; 15:775431. [PMID: 35002604 PMCID: PMC8727517 DOI: 10.3389/fnins.2021.775431] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
The SHANK family of proteins play critical structural and functional roles in the postsynaptic density (PSD) at excitatory glutamatergic synapses. Through their multidomain structure they form a structural platform across the PSD for protein–protein interactions, as well as recruiting protein complexes to strengthen excitatory synaptic transmission. Mutations in SHANKs reflect their importance to synapse development and plasticity. This is evident in autism spectrum disorder (ASD), a neurodevelopmental disorder resulting in behavioural changes including repetitive behaviours, lack of sociability, sensory issues, learning, and language impairments. Human genetic studies have revealed ASD mutations commonly occur in SHANKs. Rodent models expressing these mutations display ASD behavioural impairments, and a subset of these deficits are rescued by reintroduction of Shank in adult animals, suggesting that lack of SHANK during key developmental periods can lead to permanent changes in the brain’s wiring. Here we explore the differences in synaptic function and plasticity from development onward in rodent Shank ASD models. To date the most explored brain regions, relate to the behavioural changes observed, e.g., the striatum, hippocampus, sensory, and prefrontal cortex. In addition, less-studied regions including the hypothalamus, cerebellum, and peripheral nervous system are also affected. Synaptic phenotypes include weakened but also strengthened synaptic function, with NMDA receptors commonly affected, as well as changes in the balance of excitation and inhibition especially in cortical brain circuits. The effects of shankopathies in activity-dependent brain wiring is an important target for therapeutic intervention. We therefore highlight areas of research consensus and identify remaining questions and challenges.
Collapse
Affiliation(s)
- Yukti Vyas
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Juliette E Cheyne
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Kevin Lee
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Yewon Jung
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand.,Department of Pharmacology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Pang Ying Cheung
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Johanna M Montgomery
- Department of Physiology, Faculty of Medical and Health Sciences, Centre for Brain Research, University of Auckland, Auckland, New Zealand
| |
Collapse
|
8
|
Disruption of Alternative Splicing in the Amygdala of Pigs Exposed to Maternal Immune Activation. IMMUNO 2021. [DOI: 10.3390/immuno1040035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The inflammatory response of gestating females to infection or stress can disrupt gene expression in the offspring’s amygdala, resulting in lasting neurodevelopmental, physiological, and behavioral disorders. The effects of maternal immune activation (MIA) can be impacted by the offspring’s sex and exposure to additional stressors later in life. The objectives of this study were to investigate the disruption of alternative splicing patterns associated with MIA in the offspring’s amygdala and characterize this disruption in the context of the second stress of weaning and sex. Differential alternative splicing was tested on the RNA-seq profiles of a pig model of viral-induced MIA. Compared to controls, MIA was associated with the differential alternative splicing (FDR-adjusted p-value < 0.1) of 292 and 240 genes in weaned females and males, respectively, whereas 132 and 176 genes were differentially spliced in control nursed female and male, respectively. The majority of the differentially spliced (FDR-adjusted p-value < 0.001) genes (e.g., SHANK1, ZNF672, KCNA6) and many associated enriched pathways (e.g., Fc gamma R-mediated phagocytosis, non-alcoholic fatty liver disease, and cGMP-PKG signaling) have been reported in MIA-related disorders including autism and schizophrenia in humans. Differential alternative splicing associated with MIA was detected in the gene MAG across all sex-stress groups except for unstressed males and SLC2A11 across all groups except unstressed females. Precise understanding of the effect of MIA across second stressors and sexes necessitates the consideration of splicing isoform profiles.
Collapse
|
9
|
Wan L, Ai JQ, Yang C, Jiang J, Zhang QL, Luo ZH, Huang RJ, Tu T, Pan A, Tu E, Manavis J, Xiao B, Yan XX. Expression of the Excitatory Postsynaptic Scaffolding Protein, Shank3, in Human Brain: Effect of Age and Alzheimer's Disease. Front Aging Neurosci 2021; 13:717263. [PMID: 34504419 PMCID: PMC8421777 DOI: 10.3389/fnagi.2021.717263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
Shank3 is a postsynaptic scaffolding protein of excitatory synapses. Mutations or variations of SHANK3 are associated with various psychiatric and neurological disorders. We set to determine its normal expression pattern in the human brain, and its change, if any, with age and Alzheimer’s disease (AD)-type β-amyloid (Aβ) and Tau pathogenesis. In general, Shank3 immunoreactivity (IR) exhibited largely a neuropil pattern with differential laminar/regional distribution across brain regions. In youth and adults, subsets of pyramidal/multipolar neurons in the cerebrum, striatum, and thalamus showed moderate IR, while some large-sized neurons in the brainstem and the granule cells in the cerebellar cortex exhibited light IR. In double immunofluorescence, Shank3 IR occurred at the sublemmal regions in neuronal somata and large dendrites, apposing to synaptophysin-labeled presynaptic terminals. In aged cases, immunolabeled neuronal somata were reduced, with disrupted neuropil labeling seen in the molecular layer of the dentate gyrus in AD cases. In immunoblot, levels of Shank3 protein were positively correlated with that of the postsynaptic density protein 95 (PSD95) among different brain regions. Levels of Shank3, PSD95, and synaptophysin immunoblotted in the prefrontal, precentral, and cerebellar cortical lysates were reduced in the aged and AD relative to youth and adult groups. Taken together, the differential Shank3 expression among brain structures/regions indicates the varied local density of the excitatory synapses. The enriched Shank3 expression in the forebrain subregions appears inconsistent with a role of this protein in the modulation of high cognitive functions. The decline of its expression in aged and AD brains may relate to the degeneration of excitatory synapses.
Collapse
Affiliation(s)
- Lily Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jia-Qi Ai
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Chen Yang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Juan Jiang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Qi-Lei Zhang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Zhao-Hui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Rou-Jie Huang
- Medical Doctor Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Tian Tu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Ewen Tu
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, China
| | - Jim Manavis
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| |
Collapse
|
10
|
Dyar B, Meaddough E, Sarasua SM, Rogers C, Phelan K, Boccuto L. Genetic Findings as the Potential Basis of Personalized Pharmacotherapy in Phelan-McDermid Syndrome. Genes (Basel) 2021; 12:1192. [PMID: 34440366 PMCID: PMC8392667 DOI: 10.3390/genes12081192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
Phelan-McDermid syndrome (PMS) is a genetic disorder often characterized by autism or autistic-like behavior. Most cases are associated with haploinsufficiency of the SHANK3 gene resulting from deletion of the gene at 22q13.3 or from a pathogenic variant in the gene. Treatment of PMS often targets SHANK3, yet deletion size varies from <50 kb to >9 Mb, potentially encompassing dozens of genes and disrupting regulatory elements altering gene expression, inferring the potential for multiple therapeutic targets. Repurposed drugs have been used in clinical trials investigating therapies for PMS: insulin-like growth factor 1 (IGF-1) for its effect on social and aberrant behaviors, intranasal insulin for improvements in cognitive and social ability, and lithium for reversing regression and stabilizing behavior. The pharmacogenomics of PMS is complicated by the CYP2D6 enzyme which metabolizes antidepressants and antipsychotics often used for treatment. The gene coding for CYP2D6 maps to 22q13.2 and is lost in individuals with deletions larger than 8 Mb. Because PMS has diverse neurological and medical symptoms, many concurrent medications may be prescribed, increasing the risk for adverse drug reactions. At present, there is no single best treatment for PMS. Approaches to therapy are necessarily complex and must target variable behavioral and physical symptoms of PMS.
Collapse
Affiliation(s)
- Brianna Dyar
- Healthcare Genetics Program, School of Nursing, Clemson University, Clemson, SC 29634, USA; (B.D.); (E.M.); (S.M.S.)
| | - Erika Meaddough
- Healthcare Genetics Program, School of Nursing, Clemson University, Clemson, SC 29634, USA; (B.D.); (E.M.); (S.M.S.)
| | - Sara M. Sarasua
- Healthcare Genetics Program, School of Nursing, Clemson University, Clemson, SC 29634, USA; (B.D.); (E.M.); (S.M.S.)
| | | | - Katy Phelan
- Florida Cancer Specialists & Research Institute, Fort Myers, FL 33905, USA;
| | - Luigi Boccuto
- Healthcare Genetics Program, School of Nursing, Clemson University, Clemson, SC 29634, USA; (B.D.); (E.M.); (S.M.S.)
| |
Collapse
|