1
|
Tang X, Zheng N, Lin Q, You Y, Gong Z, Zhuang Y, Wu J, Wang Y, Huang H, Ke J, Chen F. Hypoxia-preconditioned bone marrow-derived mesenchymal stem cells protect neurons from cardiac arrest-induced pyroptosis. Neural Regen Res 2025; 20:1103-1123. [PMID: 38845218 PMCID: PMC11438345 DOI: 10.4103/nrr.nrr-d-23-01922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 04/28/2024] [Indexed: 07/12/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202504000-00027/figure1/v/2024-07-06T104127Z/r/image-tiff Cardiac arrest can lead to severe neurological impairment as a result of inflammation, mitochondrial dysfunction, and post-cardiopulmonary resuscitation neurological damage. Hypoxic preconditioning has been shown to improve migration and survival of bone marrow-derived mesenchymal stem cells and reduce pyroptosis after cardiac arrest, but the specific mechanisms by which hypoxia-preconditioned bone marrow-derived mesenchymal stem cells protect against brain injury after cardiac arrest are unknown. To this end, we established an in vitro co-culture model of bone marrow-derived mesenchymal stem cells and oxygen-glucose deprived primary neurons and found that hypoxic preconditioning enhanced the protective effect of bone marrow stromal stem cells against neuronal pyroptosis, possibly through inhibition of the MAPK and nuclear factor κB pathways. Subsequently, we transplanted hypoxia-preconditioned bone marrow-derived mesenchymal stem cells into the lateral ventricle after the return of spontaneous circulation in an 8-minute cardiac arrest rat model induced by asphyxia. The results showed that hypoxia-preconditioned bone marrow-derived mesenchymal stem cells significantly reduced cardiac arrest-induced neuronal pyroptosis, oxidative stress, and mitochondrial damage, whereas knockdown of the liver isoform of phosphofructokinase in bone marrow-derived mesenchymal stem cells inhibited these effects. To conclude, hypoxia-preconditioned bone marrow-derived mesenchymal stem cells offer a promising therapeutic approach for neuronal injury following cardiac arrest, and their beneficial effects are potentially associated with increased expression of the liver isoform of phosphofructokinase following hypoxic preconditioning.
Collapse
Affiliation(s)
- Xiahong Tang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Nan Zheng
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Qingming Lin
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Yan You
- The Second Department of Intensive Care Unit, Fujian Provincial Hospital South Branch, Fuzhou, Fujian Province, China
| | - Zheng Gong
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Yangping Zhuang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Jiali Wu
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Yu Wang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Hanlin Huang
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Jun Ke
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| | - Feng Chen
- Shengli Clinical Medical College of Fujian Medical University, Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Emergency, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
- Fujian Provincial Key Laboratory of Emergency Medicine, Fuzhou, Fujian Province, China
| |
Collapse
|
2
|
Zhang Q, Zhang C, Lu Y, Zhan H, Li B, Wei H, Yang Y, Liao L, Lan C, Hu C. JZL-184 Alleviate Neurological Impairment through Regulation of Mitochondrial Transfer and Lipid Droplet Accumulation after Cardiac Arrest. Mol Neurobiol 2024:10.1007/s12035-024-04633-3. [PMID: 39718743 DOI: 10.1007/s12035-024-04633-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 11/12/2024] [Indexed: 12/25/2024]
Abstract
Astrocytes are abundant glial cells in the central nervous system (CNS) that play important roles in brain injury following cardiac arrest (CA). Following brain ischemia, astrocytes trigger endogenous neuroprotective mechanisms, such as fatty acid transport. Lipid droplets (LDs) are cellular structures involved in neutral lipid storage and play essential roles in many biological processes. However, whether lipid droplet metabolism is related to the neurological prognosis after CA remains unclear. JZL-184 is a selective irreversible inhibitor of monoacylglycerol lipase (MAGL), and previous investigations revealed that JZL-184 confers neuroprotection in the brain following stroke. However, further investigations are warranted to explore the effect and mechanism of JZL-184 after CA. Here, we reveal that JZL-184 is neuroprotective after cardiac arrest, as it alleviates astroglial activation by upregulating the expression of transforming growth factor beta 1 (TGF-β1), promotes the transfer of mitochondria from astrocytes to neurons in the astrocyte‒neuron coculture system, and reduces lipid droplet accumulation in neurons. Mechanistically, this protective effect depends on the downstream genes DUSP4 and Rab27b. This study provides additional insights into strategies for inhibiting neurological impairment and suggests a potential therapeutic target after cardiac arrest.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Henan engineering research center for cardiopulmonary and cerebral resuscitation, Zhengzhou, 450052, China
- Key Laboratory of Assisted Circulation, National Health Council, Guangzhou, 510080, China
| | - Chenyu Zhang
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Key Laboratory of Assisted Circulation, National Health Council, Guangzhou, 510080, China
| | - Yuanzheng Lu
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Haohong Zhan
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
- Key Laboratory of Assisted Circulation, National Health Council, Guangzhou, 510080, China
| | - Bo Li
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Hongyan Wei
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Yilin Yang
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Liaoxing Liao
- Department of Emergency Medicine, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Chao Lan
- Department of Emergency Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Henan engineering research center for cardiopulmonary and cerebral resuscitation, Zhengzhou, 450052, China.
| | - Chunlin Hu
- Department of Emergency Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
3
|
Uchikawa H, Uekawa K, Hasegawa Y. Perivascular macrophages in cerebrovascular diseases. Exp Neurol 2024; 374:114680. [PMID: 38185314 DOI: 10.1016/j.expneurol.2024.114680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/10/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Cerebrovascular diseases are a major cause of stroke and dementia, both requiring long-term care. These diseases involve multiple pathophysiologies, with mitochondrial dysfunction being a crucial contributor to the initiation of inflammation, apoptosis, and oxidative stress, resulting in injuries to neurovascular units that include neuronal cell death, endothelial cell death, glial activation, and blood-brain barrier disruption. To maintain brain homeostasis against these pathogenic conditions, brain immune cells, including border-associated macrophages and microglia, play significant roles as brain innate immunity cells in the pathophysiology of cerebrovascular injury. Although microglia have long been recognized as significant contributors to neuroinflammation, attention has recently shifted to border-associated macrophages, such as perivascular macrophages (PVMs), which have been studied based on their crucial roles in the brain. These cells are strategically positioned around the walls of brain vessels, where they mainly perform critical functions, such as perivascular drainage, cerebrovascular flexibility, phagocytic activity, antigen presentation, activation of inflammatory responses, and preservation of blood-brain barrier integrity. Although PVMs act as scavenger and surveillant cells under normal conditions, these cells exert harmful effects under pathological conditions. PVMs detect mitochondrial dysfunction in injured cells and implement pathological changes to regulate brain homeostasis. Therefore, PVMs are promising as they play a significant role in mitochondrial dysfunction and, in turn, disrupt the homeostatic condition. Herein, we summarize the significant roles of PVMs in cerebrovascular diseases, especially ischemic and hemorrhagic stroke and dementia, mainly in correlation with inflammation. A better understanding of the biology and pathobiology of PVMs may lead to new insights on and therapeutic strategies for cerebrovascular diseases.
Collapse
Affiliation(s)
- Hiroki Uchikawa
- Department of Translational Neuroscience, Barrow Aneurysm and AVM Research Center, Barrow Neurological Institute, Phoenix, AZ, USA; Department of Neurosurgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Kumamoto, Japan
| | - Ken Uekawa
- Department of Neurosurgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Kumamoto, Japan
| | - Yu Hasegawa
- Department of Pharmaceutical Science, School of Pharmacy at Fukuoka, International University of Health and Welfare, Okawa, Fukuoka, Japan.
| |
Collapse
|
4
|
Miao M, Cao S, Tian Y, Liu D, Chen L, Chai Q, Wei M, Sun S, Wang L, Xin S, Liu G, Zheng M. Potential diagnostic biomarkers: 6 cuproptosis- and ferroptosis-related genes linking immune infiltration in acute myocardial infarction. Genes Immun 2023; 24:159-170. [PMID: 37422588 PMCID: PMC10435388 DOI: 10.1038/s41435-023-00209-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/01/2023] [Accepted: 06/27/2023] [Indexed: 07/10/2023]
Abstract
The current diagnostic biomarkers of acute myocardial infarction (AMI), troponins, lack specificity and exist as false positives in other non-cardiac diseases. Previous studies revealed that cuproptosis, ferroptosis, and immune infiltration are all involved in the development of AMI. We hypothesize that combining the analysis of cuproptosis, ferroptosis, and immune infiltration in AMI will help identify more precise diagnostic biomarkers. The results showed that a total of 19 cuproptosis- and ferroptosis-related genes (CFRGs) were differentially expressed between the healthy and AMI groups. Functional enrichment analysis showed that the differential CFRGs were mostly enriched in biological processes related to oxidative stress and the inflammatory response. The immune infiltration status analyzed by ssGSEA found elevated levels of macrophages, neutrophils, and CCR in AMI. Then, we screened 6 immune-related CFRGs (CXCL2, DDIT3, DUSP1, CDKN1A, TLR4, STAT3) to construct a nomogram for predicting AMI and validated it in the GSE109048 dataset. Moreover, we also identified 5 pivotal miRNAs and 10 candidate drugs that target the 6 feature genes. Finally, RT-qPCR analysis verified that all 6 feature genes were upregulated in both animals and patients. In conclusion, our study reveals the significance of immune-related CFRGs in AMI and provides new insights for AMI diagnosis and treatment.
Collapse
Affiliation(s)
- Mengdan Miao
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China
- Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, 050000, Hebei, China
- Department of Cardiology, Handan First Hospital, Handan, 056000, Hebei, China
| | - Shanhu Cao
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China
- Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, 050000, Hebei, China
| | - Yifei Tian
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China
- Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, 050000, Hebei, China
| | - Da Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China
- Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, 050000, Hebei, China
| | - Lixia Chen
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China
- Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, 050000, Hebei, China
| | - Qiaoying Chai
- Department of Cardiology, Handan First Hospital, Handan, 056000, Hebei, China
| | - Mei Wei
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China
| | - Shaoguang Sun
- Department of Biochemistry and Molecular Biology, Hebei Medical University, 050017, Shijiazhuang, China
| | - Le Wang
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China
| | - Shuanli Xin
- Department of Cardiology, Handan First Hospital, Handan, 056000, Hebei, China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China
| | - Mingqi Zheng
- Department of Cardiology, The First Hospital of Hebei Medical University, Shijiazhuang, 050031, Hebei, China.
- Hebei Key Laboratory of Heart and Metabolism, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
5
|
Matson K, Macleod A, Mehta N, Sempek E, Tang X. Impacts of MicroRNA-483 on Human Diseases. Noncoding RNA 2023; 9:37. [PMID: 37489457 PMCID: PMC10366739 DOI: 10.3390/ncrna9040037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 07/26/2023] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNA molecules that regulate gene expression by targeting specific messenger RNAs (mRNAs) in distinct cell types. This review provides a com-prehensive overview of the current understanding regarding the involvement of miR-483-5p and miR-483-3p in various physiological and pathological processes. Downregulation of miR-483-5p has been linked to numerous diseases, including type 2 diabetes, fatty liver disease, diabetic nephropathy, and neurological injury. Accumulating evidence indicates that miR-483-5p plays a crucial protective role in preserving cell function and viability by targeting specific transcripts. Notably, elevated levels of miR-483-5p in the bloodstream strongly correlate with metabolic risk factors and serve as promising diagnostic markers. Consequently, miR-483-5p represents an appealing biomarker for predicting the risk of developing diabetes and cardiovascular diseases and holds potential as a therapeutic target for intervention strategies. Conversely, miR-483-3p exhibits significant upregulation in diabetes and cardiovascular diseases and has been shown to induce cellular apoptosis and lipotoxicity across various cell types. However, some discrepancies regarding its precise function have been reported, underscoring the need for further investigation in this area.
Collapse
Affiliation(s)
| | | | | | | | - Xiaoqing Tang
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (K.M.); (A.M.); (N.M.); (E.S.)
| |
Collapse
|