1
|
Hao M, Chu J, Zhang T, Yin T, Gu Y, Liang W, Ji W, Zhuang J, Liu Y, Gao J, Yin Y. Nanomaterials-mediated lysosomal regulation: a robust protein-clearance approach for the treatment of Alzheimer's disease. Neural Regen Res 2025; 20:424-439. [PMID: 38819046 PMCID: PMC11317947 DOI: 10.4103/nrr.nrr-d-23-01736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/04/2024] [Accepted: 02/20/2024] [Indexed: 06/01/2024] Open
Abstract
Alzheimer's disease is a debilitating, progressive neurodegenerative disorder characterized by the progressive accumulation of abnormal proteins, including amyloid plaques and intracellular tau tangles, primarily within the brain. Lysosomes, crucial intracellular organelles responsible for protein degradation, play a key role in maintaining cellular homeostasis. Some studies have suggested a link between the dysregulation of the lysosomal system and pathogenesis of neurodegenerative diseases, including Alzheimer's disease. Restoring the normal physiological function of lysosomes hold the potential to reduce the pathological burden and improve the symptoms of Alzheimer's disease. Currently, the efficacy of drugs in treating Alzheimer's disease is limited, with major challenges in drug delivery efficiency and targeting. Recently, nanomaterials have gained widespread use in Alzheimer's disease drug research owing to their favorable physical and chemical properties. This review aims to provide a comprehensive overview of recent advances in using nanomaterials (polymeric nanomaterials, nanoemulsions, and carbon-based nanomaterials) to enhance lysosomal function in treating Alzheimer's disease. This review also explores new concepts and potential therapeutic strategies for Alzheimer's disease through the integration of nanomaterials and modulation of lysosomal function. In conclusion, this review emphasizes the potential of nanomaterials in modulating lysosomal function to improve the pathological features of Alzheimer's disease. The application of nanotechnology to the development of Alzheimer's disease drugs brings new ideas and approaches for future treatment of this disease.
Collapse
Affiliation(s)
- Mengqi Hao
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jianjian Chu
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Tong Yin
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Yuankai Gu
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Wendanqi Liang
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wenbo Ji
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Jianhua Zhuang
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
| | - Yan Liu
- Department of Clinical Pharmacy, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - You Yin
- Department of Neurology, Second Affiliated Hospital of Naval Medical University (Shanghai Changzheng Hospital), Shanghai, China
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Zhang J, Yang X, Wang S, Dong J, Zhang M, Zhang M, Chen L. Metformin carbon dots enhance neurogenesis and neuroprotection in Alzheimer's disease: A potential nanomedicine approach. Mater Today Bio 2024; 29:101347. [PMID: 39850274 PMCID: PMC11754139 DOI: 10.1016/j.mtbio.2024.101347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 01/25/2025] Open
Abstract
Alzheimer's disease (AD) is characterized by progressive cognitive decline due to neuronal damage and impaired neurogenesis. Preserving neuronal integrity and stimulating neurogenesis are promising therapeutic strategies to combat AD-related cognitive dysfunction. In this study, we synthesized metformin carbon dots (CMCDs) using a hydrothermal method with metformin hydrochloride and citric acid as precursors. Notably, we found that CMCDs were significantly more effective than metformin in promoting the differentiation of neural stem cells (NSCs) into functional neurons under amyloid-beta (Aβ) conditions. Moreover, CMCDs fostered NSCs proliferation, enhanced neurogenesis, reduced Aβ deposition, and inhibited glial cell activation. We also examined neuronal structure by assessing Map2/NF-H/PSD95/SYN expression in the hippocampus, finding that CMCDs robustly strengthened neuronal structure. These results suggest that CMCDs can cognitive dysfunction in AD and promote the proliferation and neurogenesis of NSCs, as well as ameliorate neuronal injury. Hence, CMCDs emerge as promising candidates for AD therapy, demonstrating superior efficacy compared to metformin alone, and offering novel insights into small molecule drug interventions for AD.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Xuehan Yang
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Sushan Wang
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Jianhua Dong
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Meishuang Zhang
- School of Nursing, Jilin University, Changchun, 130021, China
| | - Ming Zhang
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Li Chen
- Department of Pharmacology, Nanomedicine Engineering Laboratory of Jilin Province, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
- School of Nursing, Jilin University, Changchun, 130021, China
| |
Collapse
|
3
|
Sighencea MG, Popescu RȘ, Trifu SC. From Fundamentals to Innovation in Alzheimer's Disease: Molecular Findings and Revolutionary Therapies. Int J Mol Sci 2024; 25:12311. [PMID: 39596378 PMCID: PMC11594972 DOI: 10.3390/ijms252212311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease (AD) is a global health concern and the leading cause of dementia in the elderly. The prevalence of this neurodegenerative condition is projected to increase concomitantly with increased life expectancy, resulting in a significant economic burden. With very few FDA-approved disease-modifying drugs available for AD, there is an urgent need to develop new compounds capable of impeding the progression of the disease. Given the unclear etiopathogenesis of AD, this review emphasizes the underlying mechanisms of this condition. It explores not only well-studied aspects, such as the accumulation of Aβ plaques and neurofibrillary tangles, but also novel areas, including glymphatic and lymphatic pathways, microbiota and the gut-brain axis, serotoninergic and autophagy alterations, vascular dysfunction, the metal hypothesis, the olfactory pathway, and oral health. Furthermore, the potential molecular targets arising from all these mechanisms have been reviewed, along with novel promising approaches such as nanoparticle-based therapy, neural stem cell transplantation, vaccines, and CRISPR-Cas9-mediated genome editing techniques. Taking into account the overlap of these various mechanisms, individual and combination therapies emerge as the future direction in the AD strategy.
Collapse
Affiliation(s)
| | - Ramona Ștefania Popescu
- Department of Infectious Diseases, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania;
| | - Simona Corina Trifu
- Department of Psychiatry, “Carol Davila” University of Medicine and Pharmacy Bucharest, 020021 Bucharest, Romania
| |
Collapse
|
4
|
Meca AD, Boboc IKS, Mititelu-Tartau L, Bogdan M. Unlocking the Potential: Semaglutide's Impact on Alzheimer's and Parkinson's Disease in Animal Models. Curr Issues Mol Biol 2024; 46:5929-5949. [PMID: 38921025 PMCID: PMC11202139 DOI: 10.3390/cimb46060354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024] Open
Abstract
Semaglutide (SEM), a glucagon-like peptide-1 receptor agonist, has garnered increasing interest for its potential therapeutic effects in neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). This review provides a comprehensive description of SEM's mechanism of action and its effects in preclinical studies of these debilitating conditions. In animal models of AD, SEM has proved beneficial effects on multiple pathological hallmarks of the disease. SEM administration has been associated with reductions in amyloid-beta plaque deposition and mitigation of neuroinflammation. Moreover, SEM treatment has been shown to ameliorate behavioral deficits related to anxiety and social interaction. SEM-treated animals exhibit improvements in spatial learning and memory retention tasks, as evidenced by enhanced performance in maze navigation tests and novel object recognition assays. Similarly, in animal models of PD, SEM has demonstrated promising neuroprotective effects through various mechanisms. These include modulation of neuroinflammation, enhancement of mitochondrial function, and promotion of neurogenesis. Additionally, SEM has been shown to improve motor function and ameliorate dopaminergic neuronal loss, offering the potential for disease-modifying treatment strategies. Overall, the accumulating evidence from preclinical studies suggests that SEM holds promise as a novel therapeutic approach for AD and PD. Further research is warranted to elucidate the underlying mechanisms of SEM's neuroprotective effects and to translate these findings into clinical applications for the treatment of these devastating neurodegenerative disorders.
Collapse
Affiliation(s)
- Andreea Daniela Meca
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania; (A.D.M.); (I.K.S.B.)
| | - Ianis Kevyn Stefan Boboc
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania; (A.D.M.); (I.K.S.B.)
| | - Liliana Mititelu-Tartau
- Department of Pharmacology, Faculty of Medicine, ‘Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Maria Bogdan
- Department of Pharmacology, Faculty of Pharmacy, University of Medicine and Pharmacy, 200349 Craiova, Romania; (A.D.M.); (I.K.S.B.)
| |
Collapse
|
5
|
Sharma M, Tanwar AK, Purohit PK, Pal P, Kumar D, Vaidya S, Prajapati SK, Kumar A, Dhama N, Kumar S, Gupta SK. Regulatory roles of microRNAs in modulating mitochondrial dynamics, amyloid beta fibrillation, microglial activation, and cholinergic signaling: Implications for alzheimer's disease pathogenesis. Neurosci Biobehav Rev 2024; 161:105685. [PMID: 38670299 DOI: 10.1016/j.neubiorev.2024.105685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 04/28/2024]
Abstract
Alzheimer's Disease (AD) remains a formidable challenge due to its complex pathology, notably involving mitochondrial dysfunction and dysregulated microRNA (miRNA) signaling. This study delves into the underexplored realm of miRNAs' impact on mitochondrial dynamics and their interplay with amyloid-beta (Aβ) aggregation and tau pathology in AD. Addressing identified gaps, our research utilizes advanced molecular techniques and AD models, alongside patient miRNA profiles, to uncover miRNAs pivotal in mitochondrial regulation. We illuminate novel miRNAs influencing mitochondrial dynamics, Aβ, and tau, offering insights into their mechanistic roles in AD progression. Our findings not only enhance understanding of AD's molecular underpinnings but also spotlight miRNAs as promising therapeutic targets. By elucidating miRNAs' roles in mitochondrial dysfunction and their interactions with hallmark AD pathologies, our work proposes innovative strategies for AD therapy, aiming to mitigate disease progression through targeted miRNA modulation. This contribution marks a significant step toward novel AD treatments, emphasizing the potential of miRNAs in addressing this complex disease.
Collapse
Affiliation(s)
- Monika Sharma
- Department of Pharmacology, Faculty of Pharmacy, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India.
| | - Ankur Kumar Tanwar
- Department of Pharmacy, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | | | - Pankaj Pal
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India.
| | - Devendra Kumar
- Department of Pharmaceutical Chemistry, NMIMS School of Pharmacy and Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS), Shirpur Campus, Dhule, Maharashtra, India
| | - Sandeep Vaidya
- CSIR-Indian Institute of Chemical Technology, Hyderabad, Telangana, India
| | | | - Aadesh Kumar
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Nidhi Dhama
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Sokindra Kumar
- Department of Pharmacology, Faculty of Pharmacy, Swami Vivekanand Subharti University, Meerut, Uttar Pradesh, India
| | - Sukesh Kumar Gupta
- Department of Ophthalmology, Visual and Anatomical Sciences (OVAS), School of Medicine, Wayne State University, USA.
| |
Collapse
|
6
|
Katariya RA, Sammeta SS, Kale MB, Kotagale NR, Umekar MJ, Taksande BG. Agmatine as a novel intervention for Alzheimer's disease: Pathological insights and cognitive benefits. Ageing Res Rev 2024; 96:102269. [PMID: 38479477 DOI: 10.1016/j.arr.2024.102269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/01/2024] [Accepted: 03/08/2024] [Indexed: 03/24/2024]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by progressive cognitive decline and a significant societal burden. Despite extensive research and efforts of the multidisciplinary scientific community, to date, there is no cure for this debilitating disease. Moreover, the existing pharmacotherapy for AD only provides symptomatic support and does not modify the course of the illness or halt the disease progression. This is a significant limitation as the underlying pathology of the disease continues to progress leading to the deterioration of cognitive functions over time. In this milieu, there is a growing need for the development of new and more efficacious treatments for AD. Agmatine, a naturally occurring molecule derived from L-arginine, has emerged as a potential therapeutic agent for AD. Besides this, agmatine has been shown to modulate amyloid beta (Aβ) production, aggregation, and clearance, key processes implicated in AD pathogenesis. It also exerts neuroprotective effects, modulates neurotransmitter systems, enhances synaptic plasticity, and stimulates neurogenesis. Furthermore, preclinical and clinical studies have provided evidence supporting the cognition-enhancing effects of agmatine in AD. Therefore, this review article explores the promising role of agmatine in AD pathology and cognitive function. However, several limitations and challenges exist, including the need for large-scale clinical trials, optimal dosing, and treatment duration. Future research should focus on mechanistic investigations, biomarker studies, and personalized medicine approaches to fully understand and optimize the therapeutic potential of agmatine. Augmenting the use of agmatine may offer a novel approach to address the unmet medical need in AD and provide cognitive enhancement and disease modification for individuals affected by this disease.
Collapse
Affiliation(s)
- Raj A Katariya
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Shivkumar S Sammeta
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Mayur B Kale
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Nandkishor R Kotagale
- Government College of Pharmacy, Kathora Naka, VMV Road, Amravati, Maharashtra 444604, India
| | - Milind J Umekar
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India
| | - Brijesh G Taksande
- Smt. Kishoritai Bhoyar College of Pharmacy, Kamptee, Nagpur, Maharashtra 441002, India.
| |
Collapse
|
7
|
Gelfo F, Petrosini L, Mandolesi L, Landolfo E, Caruso G, Balsamo F, Bonarota S, Bozzali M, Caltagirone C, Serra L. Land/Water Aerobic Activities: Two Sides of the Same Coin. A Comparative Analysis on the Effects in Cognition of Alzheimer's Disease. J Alzheimers Dis 2024; 98:1181-1197. [PMID: 38552114 DOI: 10.3233/jad-231279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Evidence in the literature indicates that aerobic physical activity may have a protective role in aging pathologies. However, it has not been clarified whether different types of aerobic exercise produce different effects. In particular, these potential differences have not been explored in patients with Alzheimer's disease (AD). The present narrative review has the specific aim of evaluating whether land (walking/running) and water (swimming) aerobic activities exert different effects on cognitive functions and neural correlates in AD patients. In particular, the investigation is carried out by comparing the evidence provided from studies on AD animal models and on patients. On the whole, we ascertained that both human and animal studies documented beneficial effects of land and water aerobic exercise on cognition in AD. Also, the modulation of numerous biological processes is documented in association with structural modifications. Remarkably, we found that aerobic activity appears to improve cognition per se, independently from the specific kind of exercise performed. Aerobic exercise promotes brain functioning through the secretion of molecular factors from skeletal muscles and liver. These molecular factors stimulate neuroplasticity, reduce neuroinflammation, and inhibit neurodegenerative processes leading to amyloid-β accumulation. Additionally, aerobic exercise improves mitochondrial activity, reducing oxidative stress and enhancing ATP production. Aerobic activities protect against AD, but implementing exercise protocols for patients is challenging. We suggest that health policies and specialized institutions should direct increasing attention on aerobic activity as lifestyle modifiable factor for successful aging and age-related conditions.
Collapse
Affiliation(s)
- Francesca Gelfo
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Human Sciences, Guglielmo Marconi University, Rome, Italy
| | | | - Laura Mandolesi
- Department of Humanities, Federico II University of Naples, Naples, Italy
| | | | | | - Francesca Balsamo
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Human Sciences, Guglielmo Marconi University, Rome, Italy
| | - Sabrina Bonarota
- IRCCS Fondazione Santa Lucia, Rome, Italy
- Department of Systems Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Marco Bozzali
- Department of Neuroscience 'Rita Levi Montalcini', University of Torino, Turin, Italy
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | | | | |
Collapse
|
8
|
Złotek M, Kurowska A, Herbet M, Piątkowska-Chmiel I. GLP-1 Analogs, SGLT-2, and DPP-4 Inhibitors: A Triad of Hope for Alzheimer's Disease Therapy. Biomedicines 2023; 11:3035. [PMID: 38002034 PMCID: PMC10669527 DOI: 10.3390/biomedicines11113035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 11/26/2023] Open
Abstract
Alzheimer's is a prevalent, progressive neurodegenerative disease marked by cognitive decline and memory loss. The disease's development involves various pathomechanisms, including amyloid-beta accumulation, neurofibrillary tangles, oxidative stress, inflammation, and mitochondrial dysfunction. Recent research suggests that antidiabetic drugs may enhance neuronal survival and cognitive function in diabetes. Given the well-documented correlation between diabetes and Alzheimer's disease and the potential shared mechanisms, this review aimed to comprehensively assess the potential of new-generation anti-diabetic drugs, such as GLP-1 analogs, SGLT-2 inhibitors, and DPP-4 inhibitors, as promising therapeutic approaches for Alzheimer's disease. This review aims to comprehensively assess the potential therapeutic applications of novel-generation antidiabetic drugs, including GLP-1 analogs, SGLT-2 inhibitors, and DPP-4 inhibitors, in the context of Alzheimer's disease. In our considered opinion, antidiabetic drugs offer a promising avenue for groundbreaking developments and have the potential to revolutionize the landscape of Alzheimer's disease treatment.
Collapse
Affiliation(s)
| | | | | | - Iwona Piątkowska-Chmiel
- Department of Toxicology, Faculty of Pharmacy, Medical University of Lublin, Jaczewskiego 8b Street, 20-090 Lublin, Poland; (M.Z.); (A.K.); (M.H.)
| |
Collapse
|