1
|
Panigrahi M, Kumar H, Saravanan KA, Rajawat D, Sonejita Nayak S, Ghildiyal K, Kaisa K, Parida S, Bhushan B, Dutt T. Trajectory of livestock genomics in South Asia: A comprehensive review. Gene 2022; 843:146808. [PMID: 35973570 DOI: 10.1016/j.gene.2022.146808] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 02/07/2023]
Abstract
Livestock plays a central role in sustaining human livelihood in South Asia. There are numerous and distinct livestock species in South Asian countries. Several of them have experienced genetic development in recent years due to the application of genomic technologies and effective breeding programs. This review discusses genomic studies on cattle, buffalo, sheep, goat, pig, horse, camel, yak, mithun, and poultry. The frontiers covered in this review are genetic diversity, admixture studies, selection signature research, QTL discovery, genome-wide association studies (GWAS), and genomic selection. The review concludes with recommendations for South Asian livestock systems to increasingly leverage genomic technologies, based on the lessons learned from the numerous case studies. This paper aims to present a comprehensive analysis of the dichotomy in the South Asian livestock sector and argues that a realistic approach to genomics in livestock can ensure long-term genetic advancements.
Collapse
Affiliation(s)
- Manjit Panigrahi
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India.
| | - Harshit Kumar
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - K A Saravanan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Divya Rajawat
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Sonali Sonejita Nayak
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Kanika Ghildiyal
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Kaiho Kaisa
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Subhashree Parida
- Division of Pharmacology & Toxicology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Bharat Bhushan
- Division of Animal Genetics, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| | - Triveni Dutt
- Livestock Production and Management Section, Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, UP, India
| |
Collapse
|
2
|
Cristina R, Viviana G, Domenico I, Filomena M, Angela P, Alfredo P. State of the art on the physical mapping of the Y-chromosome in the <i>Bovidae</i> and comparison with other species. Anim Biosci 2022; 35:1289-1302. [PMID: 35240029 PMCID: PMC9449390 DOI: 10.5713/ab.21.0480] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/01/2022] [Indexed: 11/27/2022] Open
Abstract
The next generation sequencing has significantly contributed to clarify the genome structure of many species of zootechnical interest. However, to date, some portions of the genome, especially those linked to a heterogametic nature such as the Y chromosome, are difficult to assemble and many gaps are still present. It is well known that the fluorescence in situ hybridization (FISH) is an excellent tool for identifying genes unequivocably mapped on chromosomes. Therefore, FISH can contribute to the localization of unplaced genome sequences, as well as to correct assembly errors generated by comparative bioinformatics. To this end, it is necessary to have starting points; therefore, in this study, we reviewed the physically mapped genes on the Y chromosome of cattle, buffalo, sheep, goats, pigs, horses and alpacas. A total of 208 loci were currently mapped by FISH. 89 were located in the male-specific region of the Y chromosome (MSY) and 119 were identified in the pseudoautosomal region (PAR). The loci reported in MSY and PAR were respectively: 18 and 25 in Bos taurus, 5 and 7 in Bubalus bubalis, 5 and 24 in Ovis aries, 5 and 19 in Capra hircus, 10 and 16 in Sus scrofa, 46 and 18 in Equus caballus. While in Vicugna pacos only 10 loci are reported in the PAR region. The correct knowledge and assembly of all genome sequences, including those of genes mapped on the Y chromosome, will help to elucidate their biological processes, as well as to discover and exploit potentially epistasis effects useful for selection breeding programs.
Collapse
|
3
|
Horse Clinical Cytogenetics: Recurrent Themes and Novel Findings. Animals (Basel) 2021; 11:ani11030831. [PMID: 33809432 PMCID: PMC8001954 DOI: 10.3390/ani11030831] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 12/17/2022] Open
Abstract
Clinical cytogenetic studies in horses have been ongoing for over half a century and clearly demonstrate that chromosomal disorders are among the most common non-infectious causes of decreased fertility, infertility, and congenital defects. Large-scale cytogenetic surveys show that almost 30% of horses with reproductive or developmental problems have chromosome aberrations, whereas abnormal karyotypes are found in only 2-5% of the general population. Among the many chromosome abnormalities reported in the horse, most are unique or rare. However, all surveys agree that there are two recurrent conditions: X-monosomy and SRY-negative XY male-to-female sex reversal, making up approximately 35% and 11% of all chromosome abnormalities, respectively. The two are signature conditions for the horse and rare or absent in other domestic species. The progress in equine genomics and the development of molecular tools, have qualitatively improved clinical cytogenetics today, allowing for refined characterization of aberrations and understanding the underlying molecular mechanisms. While cutting-edge genomics tools promise further improvements in chromosome analysis, they will not entirely replace traditional cytogenetics, which still is the most straightforward, cost-effective, and fastest approach for the initial evaluation of potential breeding animals and horses with reproductive or developmental disorders.
Collapse
|
4
|
Raudsepp T, Finno CJ, Bellone RR, Petersen JL. Ten years of the horse reference genome: insights into equine biology, domestication and population dynamics in the post-genome era. Anim Genet 2019; 50:569-597. [PMID: 31568563 PMCID: PMC6825885 DOI: 10.1111/age.12857] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2019] [Indexed: 12/14/2022]
Abstract
The horse reference genome from the Thoroughbred mare Twilight has been available for a decade and, together with advances in genomics technologies, has led to unparalleled developments in equine genomics. At the core of this progress is the continuing improvement of the quality, contiguity and completeness of the reference genome, and its functional annotation. Recent achievements include the release of the next version of the reference genome (EquCab3.0) and generation of a reference sequence for the Y chromosome. Horse satellite‐free centromeres provide unique models for mammalian centromere research. Despite extremely low genetic diversity of the Y chromosome, it has been possible to trace patrilines of breeds and pedigrees and show that Y variation was lost in the past approximately 2300 years owing to selective breeding. The high‐quality reference genome has led to the development of three different SNP arrays and WGSs of almost 2000 modern individual horses. The collection of WGS of hundreds of ancient horses is unique and not available for any other domestic species. These tools and resources have led to global population studies dissecting the natural history of the species and genetic makeup and ancestry of modern breeds. Most importantly, the available tools and resources, together with the discovery of functional elements, are dissecting molecular causes of a growing number of Mendelian and complex traits. The improved understanding of molecular underpinnings of various traits continues to benefit the health and performance of the horse whereas also serving as a model for complex disease across species.
Collapse
Affiliation(s)
- T Raudsepp
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Research, Texas A&M University, College Station, TX, 77843, USA
| | - C J Finno
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA
| | - R R Bellone
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California-Davis, Davis, CA, 95616, USA.,School of Veterinary Medicine, Veterinary Genetics Laboratory, University of California-Davis, Davis, CA, 95616, USA
| | - J L Petersen
- Department of Animal Science, University of Nebraska, Lincoln, NE, 68583-0908, USA
| |
Collapse
|
5
|
Ghosh M, Sharma N, Singh AK, Gera M, Pulicherla KK, Jeong DK. Transformation of animal genomics by next-generation sequencing technologies: a decade of challenges and their impact on genetic architecture. Crit Rev Biotechnol 2018; 38:1157-1175. [PMID: 29631431 DOI: 10.1080/07388551.2018.1451819] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
For more than a quarter of a century, sequencing technologies from Sanger's method to next-generation high-throughput techniques have provided fascinating opportunities in the life sciences. The continuing upward trajectory of sequencing technologies will improve livestock research and expedite the development of various new genomic and technological studies with farm animals. The use of high-throughput technologies in livestock research has increased interest in metagenomics, epigenetics, genome-wide association studies, and identification of single nucleotide polymorphisms and copy number variations. Such studies are beginning to provide revolutionary insights into biological and evolutionary processes. Farm animals, such as cattle, swine, and horses, have played a dual role as economically and agriculturally important animals as well as biomedical research models. The first part of this study explores the current state of sequencing methods, many of which are already used in animal genomic studies, and the second part summarizes the state of cattle, swine, horse, and chicken genome sequencing and illustrates its achievements during the last few years. Finally, we describe several high-throughput sequencing approaches for the improved detection of known, unknown, and emerging infectious agents, leading to better diagnosis of infectious diseases. The insights from viral metagenomics and the advancement of next-generation sequencing will strongly support specific and efficient vaccine development and provide strategies for controlling infectious disease transmission among animal populations and/or between animals and humans. However, prospective sequencing technologies will require further research and in-field testing before reaching the marketplace.
Collapse
Affiliation(s)
- Mrinmoy Ghosh
- a Department of Animal Biotechnology , Jeju National University , Jeju-Do , Republic of Korea
| | - Neelesh Sharma
- b Department of Veterinary Science and Animal Husbandry , Sher-e-Kashmir University of Agricultural Sciences and Technology , R.S. Pura , India
| | - Amit Kumar Singh
- a Department of Animal Biotechnology , Jeju National University , Jeju-Do , Republic of Korea
| | - Meeta Gera
- a Department of Animal Biotechnology , Jeju National University , Jeju-Do , Republic of Korea
| | | | - Dong Kee Jeong
- a Department of Animal Biotechnology , Jeju National University , Jeju-Do , Republic of Korea
| |
Collapse
|
6
|
Lee JH, Lee T, Lee HK, Cho BW, Shin DH, Do KT, Sung S, Kwak W, Kim HJ, Kim H, Cho S, Park KD. Thoroughbred Horse Single Nucleotide Polymorphism and Expression Database: HSDB. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2014; 27:1236-43. [PMID: 25178365 PMCID: PMC4150188 DOI: 10.5713/ajas.2013.13694] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/20/2014] [Accepted: 06/21/2014] [Indexed: 01/17/2023]
Abstract
Genetics is important for breeding and selection of horses but there is a lack of well-established horse-related browsers or databases. In order to better understand horses, more variants and other integrated information are needed. Thus, we construct a horse genomic variants database including expression and other information. Horse Single Nucleotide Polymorphism and Expression Database (HSDB) (http://snugenome2.snu.ac.kr/HSDB) provides the number of unexplored genomic variants still remaining to be identified in the horse genome including rare variants by using population genome sequences of eighteen horses and RNA-seq of four horses. The identified single nucleotide polymorphisms (SNPs) were confirmed by comparing them with SNP chip data and variants of RNA-seq, which showed a concordance level of 99.02% and 96.6%, respectively. Moreover, the database provides the genomic variants with their corresponding transcriptional profiles from the same individuals to help understand the functional aspects of these variants. The database will contribute to genetic improvement and breeding strategies of Thoroughbreds.
Collapse
Affiliation(s)
- Joon-Ho Lee
- Genomic Informatics Center, Hankyong National University, Anseong 456-749, Korea
| | - Taeheon Lee
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Korea
| | - Hak-Kyo Lee
- Genomic Informatics Center, Hankyong National University, Anseong 456-749, Korea
| | - Byung-Wook Cho
- Department of Animal Science, College of Life Sciences, Pusan National University, Miryang 627-702, Korea
| | - Dong-Hyun Shin
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Korea
| | - Kyoung-Tag Do
- Department of Equine Sciences, Sorabol College, Gyeongju 780-711, Korea
| | - Samsun Sung
- C&K Genomics, Seoul National University Research Park, Seoul 151-919, Korea
| | - Woori Kwak
- C&K Genomics, Seoul National University Research Park, Seoul 151-919, Korea . ; Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 151-742, Korea
| | - Hyeon Jeong Kim
- C&K Genomics, Seoul National University Research Park, Seoul 151-919, Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-742, Korea . ; Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 151-742, Korea
| | - Seoae Cho
- C&K Genomics, Seoul National University Research Park, Seoul 151-919, Korea
| | - Kyung-Do Park
- Genomic Informatics Center, Hankyong National University, Anseong 456-749, Korea
| |
Collapse
|
7
|
Al-Jaru A, Goodwin W, Skidmore J, Raudsepp T, Khazanehdari K. Male horse meiosis: metaphase I chromosome configuration and chiasmata distribution. Cytogenet Genome Res 2014; 143:225-31. [PMID: 25196893 DOI: 10.1159/000365910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2014] [Indexed: 11/19/2022] Open
Abstract
Chromosome configurations and chiasma frequency during the metaphase I stage of spermatogenesis in the male horse are characterized in this work. The genome-wide frequency and distribution of chiasmata was detected as 49.45 ± 2.07 for 14 fertile stallions. All X and Y chromosomes shared a single chiasma at their pseudoautosomal region, while 1-4 chiasmata were observed in autosomal chromosomes. The chiasma frequency and distribution were further studied for 8 different bivalents identified by FISH in 5 fertile stallions. Genetic length was calculated from chiasmata data for the whole genome as well as for these 8 chromosomes. The findings complement the genetic linkage data and provide insight into the genetic basis of spermatogenesis in normal stallions.
Collapse
Affiliation(s)
- Ayman Al-Jaru
- Molecular Biology and Genetics Laboratory, Central Veterinary Research Laboratory, Dubai, United Arab Emirates
| | | | | | | | | |
Collapse
|
8
|
Aoki JY, Kai W, Kawabata Y, Ozaki A, Yoshida K, Tsuzaki T, Fuji K, Koyama T, Sakamoto T, Araki K. Construction of a radiation hybrid panel and the first yellowtail (Seriola quinqueradiata) radiation hybrid map using a nanofluidic dynamic array. BMC Genomics 2014; 15:165. [PMID: 24571093 PMCID: PMC3943507 DOI: 10.1186/1471-2164-15-165] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 02/19/2014] [Indexed: 11/10/2022] Open
Abstract
Background Yellowtail (Seriola quinqueradiata) are an economically important species in Japan. However, there are currently no methods for captive breeding and early rearing for yellowtail. Thus, the commercial cultivation of this species is reliant upon the capture of wild immature fish. Given this, there is a need to develop captive breeding techniques to reduce pressure on wild stocks and facilitate the sustainable development of yellowtail aquaculture. We constructed a whole genome radiation hybrid (RH) panel for yellowtail gene mapping and developed a framework physical map using a nanofluidic dynamic array to use SNPs (single nucleotide polymorphisms) in ESTs (expressed sequence tags) for the DNA-assisted breeding of yellowtail. Results Clonal RH cell lines were obtained after ionizing radiation; specifically, 78, 64, 129, 55, 42, and 53 clones were isolated after treatment with 3,000, 4,000, 5,000, 6,000, 8,000, or 10,000 rads, respectively. A total of 421 hybrid cell lines were obtained by fusion with mouse B78 cells. Ninety-four microsatellite markers used in the genetic linkage map were genotyped using the 421 hybrid cell lines. Based upon marker retention and genome coverage, we selected 93 hybrid cell lines to form an RH panel. Importantly, we performed the first genotyping of yellowtail markers in an RH panel using a nanofluidic dynamic array (Fluidigm, CA, USA). Then, 580 markers containing ESTs and SNPs were mapped in the first yellowtail RH map. Conclusions We successfully developed a yellowtail RH panel to facilitate the localization of markers. Using this, a framework RH map was constructed with 580 markers. This high-density physical map will serve as a useful tool for the identification of genes related to important breeding traits using genetic structural information, such as conserved synteny. Moreover, in a comparison of 30 sequences in the RH group 1 (SQ1), yellowtail appeared to be evolutionarily closer to medaka and the green-spotted pufferfish than to zebrafish. We suggest that synteny analysis may be potentially useful as a tool to investigate chromosomal evolution by comparison with model fish.
Collapse
Affiliation(s)
- Jun-ya Aoki
- National Research Institute of Aquaculture, Fisheries Research Agency, 224-1 Hiruta, Tamaki-cho, Watarai-gun, Mie 519-0423, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Meira CT, Curi RA, Vasconcelos Silva JAII, Monteiro Corrêa MJ, Nunes de Oliveira H, Silveira da Mota MD. Morphological and Genomic Differences Between Cutting and Racing Lines of Quarter Horses. J Equine Vet Sci 2013. [DOI: 10.1016/j.jevs.2012.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Schurink A, Wolc A, Ducro BJ, Frankena K, Garrick DJ, Dekkers JCM, van Arendonk JAM. Genome-wide association study of insect bite hypersensitivity in two horse populations in the Netherlands. Genet Sel Evol 2012; 44:31. [PMID: 23110538 PMCID: PMC3524047 DOI: 10.1186/1297-9686-44-31] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/19/2012] [Indexed: 01/09/2023] Open
Abstract
Background Insect bite hypersensitivity is a common allergic disease in horse populations worldwide. Insect bite hypersensitivity is affected by both environmental and genetic factors. However, little is known about genes contributing to the genetic variance associated with insect bite hypersensitivity. Therefore, the aim of our study was to identify and quantify genomic associations with insect bite hypersensitivity in Shetland pony mares and Icelandic horses in the Netherlands. Methods Data on 200 Shetland pony mares and 146 Icelandic horses were collected according to a matched case–control design. Cases and controls were matched on various factors (e.g. region, sire) to minimize effects of population stratification. Breed-specific genome-wide association studies were performed using 70 k single nucleotide polymorphisms genotypes. Bayesian variable selection method Bayes-C with a threshold model implemented in GenSel software was applied. A 1 Mb non-overlapping window approach that accumulated contributions of adjacent single nucleotide polymorphisms was used to identify associated genomic regions. Results The percentage of variance explained by all single nucleotide polymorphisms was 13% in Shetland pony mares and 28% in Icelandic horses. The 20 non-overlapping windows explaining the largest percentages of genetic variance were found on nine chromosomes in Shetland pony mares and on 14 chromosomes in Icelandic horses. Overlap in identified associated genomic regions between breeds would suggest interesting candidate regions to follow-up on. Such regions common to both breeds (within 15 Mb) were found on chromosomes 3, 7, 11, 20 and 23. Positional candidate genes within 2 Mb from the associated windows were identified on chromosome 20 in both breeds. Candidate genes are within the equine lymphocyte antigen class II region, which evokes an immune response by recognizing many foreign molecules. Conclusions The genome-wide association study identified several genomic regions associated with insect bite hypersensitivity in Shetland pony mares and Icelandic horses. On chromosome 20, associated genomic regions in both breeds were within 2 Mb from the equine lymphocyte antigen class II region. Increased knowledge on insect bite hypersensitivity associated genes will contribute to our understanding of its biology, enabling more efficient selection, therapy and prevention to decrease insect bite hypersensitivity prevalence.
Collapse
Affiliation(s)
- Anouk Schurink
- Animal Breeding and Genomics Centre, Wageningen University, P,O, Box 338, Wageningen, 6700 AH, the Netherlands
| | | | | | | | | | | | | |
Collapse
|
11
|
A genome-wide association study reveals loci influencing height and other conformation traits in horses. PLoS One 2012; 7:e37282. [PMID: 22615965 PMCID: PMC3353922 DOI: 10.1371/journal.pone.0037282] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 04/17/2012] [Indexed: 11/19/2022] Open
Abstract
The molecular analysis of genes influencing human height has been notoriously difficult. Genome-wide association studies (GWAS) for height in humans based on tens of thousands to hundreds of thousands of samples so far revealed ∼200 loci for human height explaining only 20% of the heritability. In domestic animals isolated populations with a greatly reduced genetic heterogeneity facilitate a more efficient analysis of complex traits. We performed a genome-wide association study on 1,077 Franches-Montagnes (FM) horses using ∼40,000 SNPs. Our study revealed two QTL for height at withers on chromosomes 3 and 9. The association signal on chromosome 3 is close to the LCORL/NCAPG genes. The association signal on chromosome 9 is close to the ZFAT gene. Both loci have already been shown to influence height in humans. Interestingly, there are very large intergenic regions at the association signals. The two detected QTL together explain ∼18.2% of the heritable variation of height in horses. However, another large fraction of the variance for height in horses results from ECA 1 (11.0%), although the association analysis did not reveal significantly associated SNPs on this chromosome. The QTL region on ECA 3 associated with height at withers was also significantly associated with wither height, conformation of legs, ventral border of mandible, correctness of gaits, and expression of the head. The region on ECA 9 associated with height at withers was also associated with wither height, length of croup and length of back. In addition to these two QTL regions on ECA 3 and ECA 9 we detected another QTL on ECA 6 for correctness of gaits. Our study highlights the value of domestic animal populations for the genetic analysis of complex traits.
Collapse
|
12
|
Schurink A, Ducro BJ, Bastiaansen JWM, Frankena K, van Arendonk JAM. Genome-wide association study of insect bite hypersensitivity in Dutch Shetland pony mares. Anim Genet 2012; 44:44-52. [DOI: 10.1111/j.1365-2052.2012.02368.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2012] [Indexed: 11/30/2022]
Affiliation(s)
- A. Schurink
- Animal Breeding and Genomics Centre; Wageningen University; P.O. Box 338; 6700 AH; Wageningen; the Netherlands
| | - B. J. Ducro
- Animal Breeding and Genomics Centre; Wageningen University; P.O. Box 338; 6700 AH; Wageningen; the Netherlands
| | - J. W. M. Bastiaansen
- Animal Breeding and Genomics Centre; Wageningen University; P.O. Box 338; 6700 AH; Wageningen; the Netherlands
| | - K. Frankena
- Quantitative Veterinary Epidemiology Group; Wageningen University; P.O. Box 338; 6700 AH; Wageningen; the Netherlands
| | - J. A. M. van Arendonk
- Animal Breeding and Genomics Centre; Wageningen University; P.O. Box 338; 6700 AH; Wageningen; the Netherlands
| |
Collapse
|
13
|
|
14
|
Hamilton NA, Raadsma HW. Racing towards the genes for speed. Vet J 2011; 190:5-6. [DOI: 10.1016/j.tvjl.2011.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 12/27/2010] [Accepted: 01/05/2011] [Indexed: 11/15/2022]
|
15
|
Van Soom A, Wydooghe E, Heras S, Vandaele L. Alternative models for the study of embryo - maternal cross-talk and signaling molecules from fertilisation to implantation. Reprod Fertil Dev 2011; 23:iii-v. [DOI: 10.1071/rdv23n8_fo] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
Validation of a DNA IQ™-based extraction method for TECAN robotic liquid handling workstations for processing casework. Forensic Sci Int Genet 2010; 4:292-304. [DOI: 10.1016/j.fsigen.2009.11.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 11/02/2009] [Accepted: 11/03/2009] [Indexed: 11/19/2022]
|
17
|
Giesecke K, Sieme H, Distl O. Infertility and candidate gene markers for fertility in stallions: A review. Vet J 2010; 185:265-71. [DOI: 10.1016/j.tvjl.2009.07.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Revised: 07/16/2009] [Accepted: 07/27/2009] [Indexed: 02/04/2023]
|
18
|
Abstract
This chapter reviews the use of genetically modified animals and the increasingly detailed knowledge of the genomes of the domestic species. The different approaches to genetic modification are outlined as are the advantages and disadvantages of the techniques in different species. Genetically modified mice have been fundamental in understanding gene function and in generating affordable models of human disease although these are not without their drawbacks. Transgenic farm animals have been developed for nutritionally enhanced food, disease resistance and xenografting. Transgenic rabbits, goats, sheep and cows have been developed as living bioreactors producing potentially high value biopharmaceuticals, commonly referred to as "pharming". Domestic animals are also important as a target as well as for testing genetic-based therapies for both inherited and acquired disease. This latter field may be the most important of all, in the future development of novel therapies.
Collapse
|
19
|
|
20
|
Lorenz S, Brenna-Hansen S, Moen T, Roseth A, Davidson WS, Omholt SW, Lien S. BAC-based upgrading and physical integration of a genetic SNP map in Atlantic salmon. Anim Genet 2009; 41:48-54. [PMID: 19917045 DOI: 10.1111/j.1365-2052.2009.01963.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A better understanding of the genotype-phenotype correlation of Atlantic salmon is of key importance for a whole range of production, life history and conservation biology issues attached to this species. High-density linkage maps integrated with physical maps and covering the complete genome are needed to identify economically important genes and to study the genome architecture. Linkage maps of moderate density and a physical bacterial artificial chromosome (BAC) fingerprint map for the Atlantic salmon have already been generated. Here, we describe a strategy to combine the linkage mapping with the physical integration of newly identified single nucleotide polymorphisms (SNPs). We resequenced 284 BAC-ends by PCR in 14 individuals and detected 180 putative SNPs. After successful validation of 152 sequence variations, genotyping and genetic mapping were performed in eight salmon families comprising 376 individuals. Among these, 110 SNPs were positioned on a previously constructed linkage map containing SNPs derived from expressed sequence tag (EST) sequences. Tracing the SNP markers back to the BACs enabled the integration of the genetic and physical maps by assigning 73 BAC contigs to Atlantic salmon linkage groups.
Collapse
Affiliation(s)
- S Lorenz
- CIGENE - Centre of Integrative Genetics, As, Norway
| | | | | | | | | | | | | |
Collapse
|
21
|
Bright LA, Burgess SC, Chowdhary B, Swiderski CE, McCarthy FM. Structural and functional-annotation of an equine whole genome oligoarray. BMC Bioinformatics 2009; 10 Suppl 11:S8. [PMID: 19811692 PMCID: PMC3226197 DOI: 10.1186/1471-2105-10-s11-s8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background The horse genome is sequenced, allowing equine researchers to use high-throughput functional genomics platforms such as microarrays; next-generation sequencing for gene expression and proteomics. However, for researchers to derive value from these functional genomics datasets, they must be able to model this data in biologically relevant ways; to do so requires that the equine genome be more fully annotated. There are two interrelated types of genomic annotation: structural and functional. Structural annotation is delineating and demarcating the genomic elements (such as genes, promoters, and regulatory elements). Functional annotation is assigning function to structural elements. The Gene Ontology (GO) is the de facto standard for functional annotation, and is routinely used as a basis for modelling and hypothesis testing, large functional genomics datasets. Results An Equine Whole Genome Oligonucleotide (EWGO) array with 21,351 elements was developed at Texas A&M University. This 70-mer oligoarray was designed using the approximately 7× assembled and annotated sequence of the equine genome to be one of the most comprehensive arrays available for expressed equine sequences. To assist researchers in determining the biological meaning of data derived from this array, we have structurally annotated it by mapping the elements to multiple database accessions, including UniProtKB, Entrez Gene, NRPD (Non-Redundant Protein Database) and UniGene. We next provided GO functional annotations for the gene transcripts represented on this array. Overall, we GO annotated 14,531 gene products (68.1% of the gene products represented on the EWGO array) with 57,912 annotations. GAQ (GO Annotation Quality) scores were calculated for this array both before and after we added GO annotation. The additional annotations improved the meanGAQ score 16-fold. This data is publicly available at AgBase http://www.agbase.msstate.edu/. Conclusion Providing additional information about the public databases which link to the gene products represented on the array allows users more flexibility when using gene expression modelling and hypothesis-testing computational tools. Moreover, since different databases provide different types of information, users have access to multiple data sources. In addition, our GO annotation underpins functional modelling for most gene expression analysis tools and enables equine researchers to model large lists of differentially expressed transcripts in biologically relevant ways.
Collapse
Affiliation(s)
- Lauren A Bright
- Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, PO Box 6100, Mississippi State, MS, 39762, USA.
| | | | | | | | | |
Collapse
|
22
|
Patel AC, Brett TJ, Holtzman MJ. The role of CLCA proteins in inflammatory airway disease. Annu Rev Physiol 2009; 71:425-49. [PMID: 18954282 DOI: 10.1146/annurev.physiol.010908.163253] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Inflammatory airway diseases such as asthma and chronic obstructive pulmonary disease (COPD) exhibit stereotyped traits that are variably expressed in each person. In experimental mouse models of chronic lung disease, these individual disease traits can be genetically segregated and thereby linked to distinct determinants. Functional genomic analysis indicates that at least one of these traits, mucous cell metaplasia, depends on members of the calcium-activated chloride channel (CLCA) gene family. Here we review advances in the biochemistry of the CLCA family and the evidence of a role for CLCA family members in the development of mucous cell metaplasia and possibly airway hyperreactivity in experimental models and in humans. On the basis of this information, we develop the model that CLCA proteins are not integral membrane proteins with ion channel function but instead are secreted signaling molecules that specifically regulate airway target cells in healthy and disease conditions.
Collapse
Affiliation(s)
- Anand C Patel
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
23
|
Gene expression in the lamellar dermis–epidermis during the developmental phase of carbohydrate overload-induced laminitis in the horse. Vet Immunol Immunopathol 2009; 131:86-96. [DOI: 10.1016/j.vetimm.2009.03.019] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Revised: 03/24/2009] [Accepted: 03/26/2009] [Indexed: 11/21/2022]
|
24
|
Zhou M, Wang Q, Sun J, Li X, Xu L, Yang H, Shi H, Ning S, Chen L, Li Y, He T, Zheng Y. In silico detection and characteristics of novel microRNA genes in the Equus caballus genome using an integrated ab initio and comparative genomic approach. Genomics 2009; 94:125-31. [PMID: 19406225 DOI: 10.1016/j.ygeno.2009.04.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 03/23/2009] [Accepted: 04/22/2009] [Indexed: 12/27/2022]
Abstract
The importance of microRNAs at the post-transcriptional regulation level has recently been recognized in both animals and plants. We used the simple but effective sequential method of first Blasting known animal miRNAs against the horse genome and then using the located candidates to search for novel miRNAs by RNA folding method in the vicinity (+ -500 bp) of the candidates. Here, a total of 407 novel horse miRNA genes including 354 mature miRNAs were identified, of these, 75 miRNAs were grouped into 32 families based on seed sequence identity. MiRNA genes tend to be present as clusters in some chromosomes, and 146 miRNA genes accounted for 36% of the total were observed as part of polycistronic transcripts. Detailed analysis of sequence characteristics in novel horse and all previous known animal miRNAs were carried out. Our study will provide a reference point for further study on miRNAs identification in animals and improve the understanding of genome in horse.
Collapse
Affiliation(s)
- Meng Zhou
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Chaves LD, Harry DE, Reed KM. Genome-wide genetic diversity of 'Nici', the DNA source for the CHORI-260 turkey BAC library and candidate for whole genome sequencing. Anim Genet 2009; 40:348-52. [PMID: 19292710 DOI: 10.1111/j.1365-2052.2008.01845.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Vertebrate whole genome sequence assembly can benefit from a priori knowledge of variability in the target genome, with researchers often selecting highly inbred individuals for sequencing. However, for most species highly inbred research lines are lacking, requiring the use of an outbred individual(s). Here we examined the source DNA [Nicholas inbred (Nici)] of the CHORI-260 turkey bacterial artificial chromosome (BAC) library through analysis of microsatellites and BAC sequences. Heterozygosity of Nici was compared with that of individuals from several breeder lines. Seventy-eight microsatellites were screened for polymorphism in a total of 43 birds, identifying an average individual heterozygosity of 0.39, with Nici at 0.35. Additional loci (total of 147) were examined on a subset of individuals to obtain better genome coverage. The mean heterozygosity for this subset was 0.33 with Nici at 0.31. Examination of approximately 200 kb of genome sequence identified SNPs in the order of one per 200 bp in Nici. These data suggest that the heterozygosity of Nici is comparable to other birds of selected breeder lines and that whole genome sequencing would result in an abundant resource of genome-wide polymorphisms.
Collapse
Affiliation(s)
- L D Chaves
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St Paul, MN 55108, USA.
| | | | | |
Collapse
|
26
|
Tackling the characterization of canine chromosomal breakpoints with an integrated in-situ/in-silico approach: The canine PAR and PAB. Chromosome Res 2008; 16:1193-202. [DOI: 10.1007/s10577-008-1268-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 09/11/2008] [Accepted: 09/11/2008] [Indexed: 11/27/2022]
|
27
|
Raudsepp T, Gustafson-Seabury A, Durkin K, Wagner ML, Goh G, Seabury CM, Brinkmeyer-Langford C, Lee EJ, Agarwala R, Stallknecht-Rice E, Schäffer AA, Skow LC, Tozaki T, Yasue H, Penedo MCT, Lyons LA, Khazanehdari KA, Binns MM, MacLeod JN, Distl O, Guérin G, Leeb T, Mickelson JR, Chowdhary BP. A 4,103 marker integrated physical and comparative map of the horse genome. Cytogenet Genome Res 2008; 122:28-36. [PMID: 18931483 DOI: 10.1159/000151313] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2008] [Indexed: 12/20/2022] Open
Abstract
A comprehensive second-generation whole genome radiation hybrid (RH II), cytogenetic and comparative map of the horse genome (2n = 64) has been developed using the 5000rad horse x hamster radiation hybrid panel and fluorescence in situ hybridization (FISH). The map contains 4,103 markers (3,816 RH; 1,144 FISH) assigned to all 31 pairs of autosomes and the X chromosome. The RH maps of individual chromosomes are anchored and oriented using 857 cytogenetic markers. The overall resolution of the map is one marker per 775 kilobase pairs (kb), which represents a more than five-fold improvement over the first-generation map. The RH II incorporates 920 markers shared jointly with the two recently reported meiotic maps. Consequently the two maps were aligned with the RH II maps of individual autosomes and the X chromosome. Additionally, a comparative map of the horse genome was generated by connecting 1,904 loci on the horse map with genome sequences available for eight diverse vertebrates to highlight regions of evolutionarily conserved syntenies, linkages, and chromosomal breakpoints. The integrated map thus obtained presents the most comprehensive information on the physical and comparative organization of the equine genome and will assist future assemblies of whole genome BAC fingerprint maps and the genome sequence. It will also serve as a tool to identify genes governing health, disease and performance traits in horses and assist us in understanding the evolution of the equine genome in relation to other species.
Collapse
Affiliation(s)
- T Raudsepp
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Chowdhary BP, Paria N, Raudsepp T. Potential applications of equine genomics in dissecting diseases and fertility. Anim Reprod Sci 2008; 107:208-18. [PMID: 18524508 DOI: 10.1016/j.anireprosci.2008.04.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Following the recent development of high-resolution gene maps and generation of several basic tools and resources to use them in analyzing traits that are economically important to horse owners, genome analysis in horses is witnessing a shift towards developing an ability to analyze complex traits. The likelihood of this happening in the very near future is great, mainly because of the recent availability of the whole genome sequence in the horse. The latter has triggered the development of novel tools like SNP-chip and expression arrays that will permit rapid genome-wide analysis. While these tools will be used for a range of multi-factorial disease traits, attempts are underway to develop focused tools that can target reproduction, fertility and sex determination. For this, a catalog of sex and reproduction related (SRR) genes is being developed in horses. A recently developed dense map of the horse Y chromosome will provide genes that are expressed exclusively in males and, therefore, have an impact on stallion fertility. Overall, these advances in equine genome analysis hold promise for improved diagnosis and treatment of various conditions in horses.
Collapse
Affiliation(s)
- Bhanu P Chowdhary
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458, USA.
| | | | | |
Collapse
|