1
|
Trinca V, Uliana JVC, Ribeiro GKS, Torres TT, Monesi N. Characterization of the mitochondrial genomes of Bradysia hygida, Phytosciara flavipes and Trichosia splendens (Diptera: Sciaridae) and novel insights on the control region of sciarid mitogenomes. INSECT MOLECULAR BIOLOGY 2022; 31:482-496. [PMID: 35332955 DOI: 10.1111/imb.12774] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/12/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Sciarids, also called "fungus gnats" are small, almost entirely dark-coloured insects. Sciarid larvae feed on different substrates and can infest agricultural crops and mushroom nurseries, causing economic losses. Of the 2174 Diptera mitogenome sequences currently available in GenBank, only eight are from the Sciaridae family, none of which are complete circular molecules. Here we describe the mitogenome sequences of three sciarid species: Phytosciara flavipes, Trichosia splendens and Bradysia hygida and provide novel insights on the control region of sciarid mitogenomes. The assembled mitogenomes range from 16,062 bp in P. flavipes to 17,095 bp in B. hygida. All 13 protein coding genes, 22 tRNAs and 2 rRNAs characteristic of insect mitogenomes were identified, but the sequence of the control region could not be determined. Experimental results suggest that the B. hygida control region is about 21 kb long resulting in a 37 kb long mitogenome which constitutes the largest insect mitochondrial genome described so far. Phylogenetic analysis using all Bibionomorpha mitogenome sequences available in GenBank strongly supports the Sciaridae monophyly and led to the identification of species and subfamily specific gene rearrangements. Our study extends the knowledge of this large and diverse insect family that includes agricultural pest species.
Collapse
Affiliation(s)
- Vitor Trinca
- Programa de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - João Vitor Cardoso Uliana
- Programa de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Geyza Katrinny Sousa Ribeiro
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Tatiana Teixeira Torres
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, Brazil
| | - Nadia Monesi
- Programa de Biologia Celular e Molecular, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
2
|
Transposon control mechanisms in telomere biology. Curr Opin Genet Dev 2018; 49:56-62. [DOI: 10.1016/j.gde.2018.03.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/26/2018] [Accepted: 03/08/2018] [Indexed: 11/23/2022]
|
3
|
Simon CR, Siviero F, Monesi N. Beyond DNA puffs: What can we learn from studying sciarids? Genesis 2016; 54:361-78. [PMID: 27178805 DOI: 10.1002/dvg.22946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 11/07/2022]
Abstract
Members of the Sciaridae family attracted the interest of researchers because of the demonstration that the DNA puff regions, which are formed in the salivary gland polytene chromosomes at the end of the fourth larval instar, constitute sites of developmentally regulated gene amplification. Besides contributing to a deeper understanding of the process of gene amplification, the study of sciarids has also provided important insights on other biological processes such as sex determination, programmed cell death, insect immunity, telomere maintenance, and nucleolar organizing regions (NOR) formation. Open questions in sciarids include among others, early development, the role of noncoding RNAs in gene amplification and the relationship between gene amplification and transcription in DNA puff forming regions. These and other questions can now be pursued with next generation sequencing techniques and experiments using RNAi experiments, since this latter technique has been shown to be feasible in sciarids. These new perspectives in the field of sciarid biology open the opportunity to consolidate sciarid species as important emerging models. genesis 54:361-378, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Claudio Roberto Simon
- Departamento de Biologia Estrutural, Universidade Federal do Triângulo Mineiro-UFTM, Instituto de Ciências Biológicas e Naturais, Uberaba, MG, Brazil, CEP 38025-015
| | - Fábio Siviero
- Departamento de Biologia Celular e do Desenvolvimento, Universidade de São Paulo, Instituto de Ciências Biomédicas, São Paulo, SP, Brazil, CEP 05508-900
| | - Nadia Monesi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Universidade de São Paulo, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Ribeirão Preto, SP, Brazil
| |
Collapse
|
4
|
Rananos expression pattern during oogenesis and early embryonic development in Rhynchosciara americana. Dev Genes Evol 2012; 222:153-64. [DOI: 10.1007/s00427-012-0398-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Accepted: 03/26/2012] [Indexed: 01/01/2023]
|
5
|
Madalena CRG, Fernandes T, Villasante A, Gorab E. Curiously composite structures of a retrotransposon and a complex repeat associated with chromosome ends of Rhynchosciara americana (Diptera: Sciaridae). Chromosome Res 2010; 18:587-98. [PMID: 20607598 DOI: 10.1007/s10577-010-9143-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 05/24/2010] [Accepted: 06/13/2010] [Indexed: 11/28/2022]
Abstract
In Drosophila, telomere retrotransposons counterbalance the loss of telomeric DNA. The exceptional mechanism of telomere recovery characterized in Drosophila has not been found in lower dipterans (Nematocera). However, a retroelement resembling a telomere transposon and termed "RaTART" has been described in the nematoceran Rhynchosciara americana. In this work, DNA and protein sequence analyses, DNA cloning, and chromosomal localization of probes obtained either by PCR or by screening a genomic library were carried out in order to examine additional features of this retroelement. The analyses performed raise the possibility that RaTART represents a genomic clone composed of distinct repetitive elements, one of which is likely to be responsible for its apparent enrichment at chromosome ends. RaTART sequence in addition allowed to assess a novel subtelomeric region of R. americana chromosomes that was analyzed in this work after subcloning a DNA fragment from a phage insert. It contains a complex repeat that is located in the vicinity of simple and complex tandem repeats characterized previously. Quantification data suggest that the copy number of the repeat is significantly lower than that observed for the ribosomal DNA in the salivary gland of R. americana. A short insertion of the RaTART was identified in the cloned segment, which hybridized preferentially to subtelomeres. Like RaTART, it displays truncated sequences related to distinct retrotransposons, one of which has a conceptual translation product with significant identity with an endonuclease from a lepidopteran retrotransposon. The composite structure of this DNA stretch probably reflects mobile element activity in the subtelomeric region analyzed in this work.
Collapse
Affiliation(s)
- Christiane Rodriguez Gutierrez Madalena
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, Cidade Universitária, São Paulo, SP, 05508-090, Brazil
| | | | | | | |
Collapse
|
6
|
Rezende-Teixeira P, Lauand C, Siviero F, Machado-Santelli GM. Normal and defective mariner-like elements in Rhynchosciara species (Sciaridae, Diptera). GENETICS AND MOLECULAR RESEARCH 2010; 9:849-57. [PMID: 20449818 DOI: 10.4238/vol9-2gmr796] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Mariner-like elements are widely present in diverse organisms. These elements constitute a large fraction of the eukaryotic genome; they transpose by a "cut-and-paste" mechanism with their own transposase protein. We found two groups of mobile elements in the genus Rhynchosciara. PCR using primers designed from R. americana transposons (Ramar1 and Ramar2) were the starting point for this comparative study. Genomic DNA templates of four species: R. hollaenderi, R. millerii, R. baschanti, and Rhynchosciara sp were used and genomic sequences were amplified, sequenced and the molecular structures of the elements characterized as being putative mariner-like elements. The first group included the putative full-length elements. The second group was composed of defective mariner elements that contain a deletion overlapping most of the internal region of the transposase open reading frame. They were named Rmar1 (type 1) and Rmar2 (type 2), respectively. Many conserved amino acid blocks were identified, as well as a specific D,D(34)D signature motif that was defective in some elements. Based on predicted transposase sequences, these elements encode truncated proteins and are phylogenetically very close to mariner-like elements of the mauritiana subfamily. The inverted terminal repeat sequences that flanked the mariner-like elements are responsible for their mobility. These inverted terminal repeat sequences were identified by inverse PCR.
Collapse
Affiliation(s)
- P Rezende-Teixeira
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brazil.
| | | | | | | |
Collapse
|
7
|
de Andrade A, Siviero F, Rezende-Teixeira P, Santelli RV, Machado-Santelli GM. Molecular characterization of a putative heat shock protein cognate gene in Rhynchosciara americana. Chromosome Res 2009; 17:935-45. [PMID: 19768564 DOI: 10.1007/s10577-009-9081-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Accepted: 09/02/2009] [Indexed: 11/24/2022]
Abstract
An hsc70 homologue gene (Rahsc70) of the diptera Rhynchosciara americana was isolated and characterized. We were able to determine the mRNA sequence from an EST of salivary gland cDNA library, and a Rahsc70 cDNA cassette was used as a probe to isolate the genomic region from a genomic library. The mRNA expression of this gene parallels the 2B puff expansion, suggesting its involvement in protein processing, since this larval period corresponds to a high synthetic activity period. During heat shock stress conditions, hsc70 expression decreased. In situ hybridization of polytene chromosomes showed that the Rahsc70 gene is located near the C3 DNA puff. The cellular localization of Hsc70 protein showed this protein in the cytoplasm and in the nucleus.
Collapse
Affiliation(s)
- Alexandre de Andrade
- Instituto de Química, Departamento de Bioquímica, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP, 05508-900, Brazil
| | | | | | | | | |
Collapse
|
8
|
The R2 mobile element of Rhynchosciara americana: molecular, cytological and dynamic aspects. Chromosome Res 2009; 17:455-67. [PMID: 19350401 DOI: 10.1007/s10577-009-9038-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 03/03/2009] [Accepted: 03/03/2009] [Indexed: 10/20/2022]
Abstract
Ribosomal RNA genes are encoded by large units clustered (18S, 5S, and 28S) in the nucleolar organizer region in several organisms. Sometimes additional insertions are present in the coding region for the 28S rDNA. These insertions are specific non-long terminal repeat retrotransposons that have very restricted integration targets within the genome. The retrotransposon present in the genome of Rhynchosciara americana, RaR2, was isolated by the screening of a genomic library. Sequence analysis showed the presence of conserved regions, such as a reverse transcriptase domain and a zinc finger motif in the amino terminal region. The insertion site was highly conserved in R. americana and a phylogenetic analysis showed that this element belongs to the R2 clade. The chromosomal localization confirmed that the RaR2 mobile element was inserted into a specific site in the rDNA gene. The expression level of RaR2 in salivary glands during larval development was determined by quantitative RT-PCR, and the increase of relative expression in the 3P of the fourth instar larval could be related to intense gene activity characteristic of this stage. 5'-Truncated elements were identified in different DNA samples. Additionally, in three other Rhynchosciara species, the R2 element was present as a full-length element.
Collapse
|