1
|
Grill S, Riley A, Selvaraj M, Lehmann R. HP6/Umbrea is dispensable for viability and fertility, suggesting essentiality of newly evolved genes is rare. Proc Natl Acad Sci U S A 2023; 120:e2309478120. [PMID: 37725638 PMCID: PMC10523450 DOI: 10.1073/pnas.2309478120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/15/2023] [Indexed: 09/21/2023] Open
Abstract
The newly evolved gene Heterochromatin Protein 6 (HP6), which has been previously classified as essential, challenged the dogma that functions required for viability are only seen in genes with a long evolutionary history. Based on previous RNA-sequencing analysis in Drosophila germ cells, we asked whether HP6 might play a role in germline development. Surprisingly, we found that CRISPR-generated HP6 mutants are viable and fertile. Using previously generated mutants, we identified an independent lethal allele and an RNAi off-target effect that prevented accurate interpretation of HP6 essentiality. By reviewing existing data, we found that the vast majority of young genes that were previously classified as essential were indeed viable when tested with orthologous methods. Together, our data call into question the frequency with which newly evolved genes gain essential functions and suggest that using multiple independent genetic methods is essential when probing the functions of young genes.
Collapse
Affiliation(s)
- Sherilyn Grill
- Department of Biology, Whitehead Institute, Massachusetts Institute of Technology, Cambridge, MA02142
| | - Ashley Riley
- Department of Biology, Whitehead Institute, Massachusetts Institute of Technology, Cambridge, MA02142
| | - Monica Selvaraj
- Department of Biology, Whitehead Institute, Massachusetts Institute of Technology, Cambridge, MA02142
| | - Ruth Lehmann
- Department of Biology, Whitehead Institute, Massachusetts Institute of Technology, Cambridge, MA02142
| |
Collapse
|
2
|
Meyer-Nava S, Nieto-Caballero VE, Zurita M, Valadez-Graham V. Insights into HP1a-Chromatin Interactions. Cells 2020; 9:E1866. [PMID: 32784937 PMCID: PMC7465937 DOI: 10.3390/cells9081866] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/18/2020] [Accepted: 07/21/2020] [Indexed: 12/17/2022] Open
Abstract
Understanding the packaging of DNA into chromatin has become a crucial aspect in the study of gene regulatory mechanisms. Heterochromatin establishment and maintenance dynamics have emerged as some of the main features involved in genome stability, cellular development, and diseases. The most extensively studied heterochromatin protein is HP1a. This protein has two main domains, namely the chromoshadow and the chromodomain, separated by a hinge region. Over the years, several works have taken on the task of identifying HP1a partners using different strategies. In this review, we focus on describing these interactions and the possible complexes and subcomplexes associated with this critical protein. Characterization of these complexes will help us to clearly understand the implications of the interactions of HP1a in heterochromatin maintenance, heterochromatin dynamics, and heterochromatin's direct relationship to gene regulation and chromatin organization.
Collapse
Affiliation(s)
| | | | | | - Viviana Valadez-Graham
- Instituto de Biotecnología, Departamento de Genética del Desarrollo y Fisiología Molecular, Universidad Nacional Autónoma de México, Cuernavaca Morelos 62210, Mexico; (S.M.-N.); (V.E.N.-C.); (M.Z.)
| |
Collapse
|
3
|
Courret C, Chang CH, Wei KHC, Montchamp-Moreau C, Larracuente AM. Meiotic drive mechanisms: lessons from Drosophila. Proc Biol Sci 2019; 286:20191430. [PMID: 31640520 DOI: 10.1098/rspb.2019.1430] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Meiotic drivers are selfish genetic elements that bias their transmission into gametes, often to the detriment of the rest of the genome. The resulting intragenomic conflicts triggered by meiotic drive create evolutionary arms races and shape genome evolution. The phenomenon of meiotic drive is widespread across taxa but is particularly prominent in the Drosophila genus. Recent studies in Drosophila have provided insights into the genetic origins of drivers and their molecular mechanisms. Here, we review the current literature on mechanisms of drive with an emphasis on sperm killers in Drosophila species. In these systems, meiotic drivers often evolve from gene duplications and targets are generally linked to heterochromatin. While dense in repetitive elements and difficult to study using traditional genetic and genomic approaches, recent work in Drosophila has made progress on the heterochromatic compartment of the genome. Although we still understand little about precise drive mechanisms, studies of male drive systems are converging on common themes such as heterochromatin regulation, small RNA pathways, and nuclear transport pathways. Meiotic drive systems are therefore promising models for discovering fundamental features of gametogenesis.
Collapse
Affiliation(s)
- Cécile Courret
- Evolution Génome Comportement et Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette 91190, France
| | - Ching-Ho Chang
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Kevin H-C Wei
- Department of Integrative Biology, University of California, Berkley, CA, USA
| | - Catherine Montchamp-Moreau
- Evolution Génome Comportement et Ecologie, CNRS, IRD, Université Paris-Sud, Université Paris-Saclay, Gif sur Yvette 91190, France
| | | |
Collapse
|
4
|
Popova VV, Brechalov AV, Georgieva SG, Kopytova DV. Nonreplicative functions of the origin recognition complex. Nucleus 2018; 9:460-473. [PMID: 30196754 PMCID: PMC6244734 DOI: 10.1080/19491034.2018.1516484] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/04/2018] [Accepted: 08/16/2018] [Indexed: 12/14/2022] Open
Abstract
Origin recognition complex (ORC), a heteromeric six-subunit complex, is the central component of the eukaryotic pre-replication complex. Recent data from yeast, frogs, flies and mammals present compelling evidence that ORC and its individual subunits have nonreplicative functions as well. The majority of these functions, such as heterochromatin formation, chromosome condensation, and segregation are dependent on ORC-DNA interactions. Furthermore, ORC is involved in the control of cell division via its participation in centrosome duplication and cytokinesis. Recent findings have also demonstrated a direct interaction between ORC and mRNPs and highlighted an essential role of ORC in mRNA nuclear export. Along with the growth of evolutionary complexity of organisms, ORC complex functions become more elaborate and new functions of the ORC sub-complexes and individual subunits have emerged.
Collapse
Affiliation(s)
- Varvara V. Popova
- Department of Transcription Regulation and Chromatin Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander V. Brechalov
- Department of Transcription Regulation and Chromatin Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sofia G. Georgieva
- Department of Transcription Regulation and Chromatin Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Daria V. Kopytova
- Department of Transcription Regulation and Chromatin Dynamics, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
The Hybrid Incompatibility Genes Lhr and Hmr Are Required for Sister Chromatid Detachment During Anaphase but Not for Centromere Function. Genetics 2017; 207:1457-1472. [PMID: 29046402 DOI: 10.1534/genetics.117.300390] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/13/2017] [Indexed: 11/18/2022] Open
Abstract
Crosses between Drosophila melanogaster females and Drosophila simulans males produce hybrid sons that die at the larval stage. This hybrid lethality is suppressed by loss-of-function mutations in the D. melanogaster Hybrid male rescue (Hmr) or in the D. simulans Lethal hybrid rescue (Lhr) genes. Previous studies have shown that Hmr and Lhr interact with heterochromatin proteins and suppress expression of transposable elements within D. melanogaster It also has been proposed that Hmr and Lhr function at the centromere. We examined mitotic divisions in larval brains from Hmr and Lhr single mutants and Hmr; Lhr double mutants in D. melanogaster In none of the mutants did we observe defects in metaphase chromosome alignment or hyperploid cells, which are hallmarks of centromere or kinetochore dysfunction. In addition, we found that Hmr-HA and Lhr-HA do not colocalize with centromeres either during interphase or mitotic division. However, all mutants displayed anaphase bridges and chromosome aberrations resulting from the breakage of these bridges, predominantly at the euchromatin-heterochromatin junction. The few dividing cells present in hybrid males showed fuzzy and irregularly condensed chromosomes with unresolved sister chromatids. Despite this defect in condensation, chromosomes in hybrids managed to align on the metaphase plate and undergo anaphase. We conclude that there is no evidence for a centromeric function of Hmr and Lhr within D. melanogaster nor for a centromere defect causing hybrid lethality. Instead, we find that Hmr and Lhr are required in D. melanogaster for detachment of sister chromatids during anaphase.
Collapse
|
6
|
Vo N, Anh Suong DN, Yoshino N, Yoshida H, Cotterill S, Yamaguchi M. Novel roles of HP1a and Mcm10 in DNA replication, genome maintenance and photoreceptor cell differentiation. Nucleic Acids Res 2017; 45:1233-1254. [PMID: 28180289 PMCID: PMC5388399 DOI: 10.1093/nar/gkw1174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 11/04/2016] [Accepted: 11/13/2016] [Indexed: 01/21/2023] Open
Abstract
Both Mcm10 and HP1a are known to be required for DNA replication. However, underlying mechanism is not clarified yet especially for HP1. Knockdown of both HP1a and Mcm10 genes inhibited the progression of S phase in Drosophila eye imaginal discs. Proximity Ligation Assay (PLA) demonstrated that HP1a is in close proximity to DNA replication proteins including Mcm10, RFC140 and DNA polymerase ε 255 kDa subunit in S-phase. This was further confirmed by co-immunoprecipitation assay. The PLA signals between Mcm10 and HP1a are specifically observed in the mitotic cycling cells, but not in the endocycling cells. Interestingly, many cells in the posterior regions of eye imaginal discs carrying a double knockdown of Mcm10 and HP1a induced ectopic DNA synthesis and DNA damage without much of ectopic apoptosis. Therefore, the G1-S checkpoint may be affected by knockdown of both proteins. This event was also the case with other HP family proteins such as HP4 and HP6. In addition, both Mcm10 and HP1a are required for differentiation of photoreceptor cells R1, R6 and R7. Further analyses on several developmental genes involved in the photoreceptor cell differentiation suggest that a role of both proteins is mediated by regulation of the lozenge gene.
Collapse
Affiliation(s)
- Nicole Vo
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan.,The Center for Advanced Insect Research, Kyoto Institute of Technology, Kyoto, Japan
| | - Dang Ngoc Anh Suong
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan.,The Center for Advanced Insect Research, Kyoto Institute of Technology, Kyoto, Japan
| | - Natsuki Yoshino
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan.,The Center for Advanced Insect Research, Kyoto Institute of Technology, Kyoto, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan.,The Center for Advanced Insect Research, Kyoto Institute of Technology, Kyoto, Japan
| | - Sue Cotterill
- Department of Basic Medical Sciences, St Georges, University of London, London, UK
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Kyoto, Japan.,The Center for Advanced Insect Research, Kyoto Institute of Technology, Kyoto, Japan
| |
Collapse
|
7
|
Swenson JM, Colmenares SU, Strom AR, Costes SV, Karpen GH. The composition and organization of Drosophila heterochromatin are heterogeneous and dynamic. eLife 2016; 5:e16096. [PMID: 27514026 PMCID: PMC4981497 DOI: 10.7554/elife.16096] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 07/06/2016] [Indexed: 12/13/2022] Open
Abstract
Heterochromatin is enriched for specific epigenetic factors including Heterochromatin Protein 1a (HP1a), and is essential for many organismal functions. To elucidate heterochromatin organization and regulation, we purified Drosophila melanogaster HP1a interactors, and performed a genome-wide RNAi screen to identify genes that impact HP1a levels or localization. The majority of the over four hundred putative HP1a interactors and regulators identified were previously unknown. We found that 13 of 16 tested candidates (83%) are required for gene silencing, providing a substantial increase in the number of identified components that impact heterochromatin properties. Surprisingly, image analysis revealed that although some HP1a interactors and regulators are broadly distributed within the heterochromatin domain, most localize to discrete subdomains that display dynamic localization patterns during the cell cycle. We conclude that heterochromatin composition and architecture is more spatially complex and dynamic than previously suggested, and propose that a network of subdomains regulates diverse heterochromatin functions.
Collapse
Affiliation(s)
- Joel M Swenson
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Serafin U Colmenares
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Amy R Strom
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Sylvain V Costes
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
| | - Gary H Karpen
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
8
|
Fang C, Schmitz L, Ferree PM. An unusually simple HP1 gene set in Hymenopteran insects. Biochem Cell Biol 2015; 93:596-603. [PMID: 26419616 DOI: 10.1139/bcb-2015-0046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The heterochromatin protein 1 (HP1) gene family includes a set of paralogs in higher eukaryotes that serve fundamental roles in heterochromatin structure and maintenance, and other chromatin-related functions. At least 10 full and 16 partial HP1 genes exist among Drosophila species, with multiple gene gains, losses, and sub-functionalizations within this insect group. An important question is whether this diverse set of HP1 genes and their dynamic evolution represent the standard rule in eukaryotic groups. Here we have begun to address this question by bio-informatically identifying the HP1 family genes in representative species of the insect order Hymenoptera, which includes all ants, bees, wasps, and sawflies. Compared to Drosophila species, Hymenopterans have a much simpler set of HP1 genes, including one full and two partial HP1s. All 3 genes appear to have been present in the common ancestor of the Hymenopterans and they derive from a Drosophila HP1B-like gene. In ants, a partial HP1 gene containing only a chromoshadow domain harbors amino acid changes at highly conserved sites within the PxVxL recognition region, suggesting that this gene has undergone sub-functionalization. In the jewel wasp Nasonia vitripennis, the full HP1 and partial chromoshadow-only HP1 are expressed in both germ line and somatic tissues. However, the partial chromodomain-only HP1 is expressed exclusively in the ovary and testis, suggesting that it may have a specialized chromatin role during gametogenesis. Our findings demonstrate that the HP1 gene family is much simpler and evolutionarily less dynamic within the Hymenopterans compared to the much younger Drosophila group, a pattern that may reflect major differences in the range of chromatin-related functions present in these and perhaps other insect groups.
Collapse
Affiliation(s)
- C Fang
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711, USA.,W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711, USA
| | - L Schmitz
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711, USA.,W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711, USA
| | - P M Ferree
- W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711, USA.,W. M. Keck Science Department, Claremont McKenna, Pitzer, and Scripps Colleges, Claremont, CA 91711, USA
| |
Collapse
|
9
|
Abstract
During the course of evolution, genomes acquire novel genetic elements as sources of functional and phenotypic diversity, including new genes that originated in recent evolution. In the past few years, substantial progress has been made in understanding the evolution and phenotypic effects of new genes. In particular, an emerging picture is that new genes, despite being present in the genomes of only a subset of species, can rapidly evolve indispensable roles in fundamental biological processes, including development, reproduction, brain function and behaviour. The molecular underpinnings of how new genes can develop these roles are starting to be characterized. These recent discoveries yield fresh insights into our broad understanding of biological diversity at refined resolution.
Collapse
|
10
|
Ross BD, Rosin L, Thomae AW, Hiatt MA, Vermaak D, de la Cruz AFA, Imhof A, Mellone BG, Malik HS. Stepwise evolution of essential centromere function in a Drosophila neogene. Science 2013; 340:1211-4. [PMID: 23744945 DOI: 10.1126/science.1234393] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Evolutionarily young genes that serve essential functions represent a paradox; they must perform a function that either was not required until after their birth or was redundant with another gene. How young genes rapidly acquire essential function is largely unknown. We traced the evolutionary steps by which the Drosophila gene Umbrea acquired an essential role in chromosome segregation in D. melanogaster since the gene's origin less than 15 million years ago. Umbrea neofunctionalization occurred via loss of an ancestral heterochromatin-localizing domain, followed by alterations that rewired its protein interaction network and led to species-specific centromere localization. Our evolutionary cell biology approach provides temporal and mechanistic detail about how young genes gain essential function. Such innovations may constantly alter the repertoire of centromeric proteins in eukaryotes.
Collapse
Affiliation(s)
- Benjamin D Ross
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Levine MT, McCoy C, Vermaak D, Lee YCG, Hiatt MA, Matsen FA, Malik HS. Phylogenomic analysis reveals dynamic evolutionary history of the Drosophila heterochromatin protein 1 (HP1) gene family. PLoS Genet 2012; 8:e1002729. [PMID: 22737079 PMCID: PMC3380853 DOI: 10.1371/journal.pgen.1002729] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 04/10/2012] [Indexed: 01/12/2023] Open
Abstract
Heterochromatin is the gene-poor, satellite-rich eukaryotic genome compartment that supports many essential cellular processes. The functional diversity of proteins that bind and often epigenetically define heterochromatic DNA sequence reflects the diverse functions supported by this enigmatic genome compartment. Moreover, heterogeneous signatures of selection at chromosomal proteins often mirror the heterogeneity of evolutionary forces that act on heterochromatic DNA. To identify new such surrogates for dissecting heterochromatin function and evolution, we conducted a comprehensive phylogenomic analysis of the Heterochromatin Protein 1 gene family across 40 million years of Drosophila evolution. Our study expands this gene family from 5 genes to at least 26 genes, including several uncharacterized genes in Drosophila melanogaster. The 21 newly defined HP1s introduce unprecedented structural diversity, lineage-restriction, and germline-biased expression patterns into the HP1 family. We find little evidence of positive selection at these HP1 genes in both population genetic and molecular evolution analyses. Instead, we find that dynamic evolution occurs via prolific gene gains and losses. Despite this dynamic gene turnover, the number of HP1 genes is relatively constant across species. We propose that karyotype evolution drives at least some HP1 gene turnover. For example, the loss of the male germline-restricted HP1E in the obscura group coincides with one episode of dramatic karyotypic evolution, including the gain of a neo-Y in this lineage. This expanded compendium of ovary- and testis-restricted HP1 genes revealed by our study, together with correlated gain/loss dynamics and chromosome fission/fusion events, will guide functional analyses of novel roles supported by germline chromatin. Our genome is comprised of two compartments. The euchromatin harbors abundant genes and regulatory information, while heterochromatin harbors few genes and abundant repetitive DNA. These characteristic features of heterochromatin challenge traditional methods of sequence assembly and molecular dissection. The analysis, instead, of proteins that localize to and often functionally define heterochromatic sequence has illuminated numerous heterochromatin-dependent, essential cellular processes, including chromosome segregation, telomere stability, and gene regulation. With the aim of increasing our sample of heterochromatin-localizing proteins, we performed a comprehensive search for new members of Heterochromatin Protein 1 gene family over 40 million years of Drosophila evolution. Our report expands this family from a modest five genes to 26 genes. Unlike the founding family members, the HP1s we describe are structurally diverse, largely restricted to male reproductive tissue, and highly dynamic over evolutionary time. Despite recurrent HP1 gene birth and death, gene numbers per species are relatively constant. These gene “replacements” likely support a dynamic biological process. We propose, and present evidence for, the hypothesis that recurrent chromosomal rearrangements drive at least some HP1 gene family dynamics observed. We anticipate that these HP1 genes will help define new heterochromatin-dependent processes in the male germline.
Collapse
Affiliation(s)
- Mia T Levine
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | | | | | | | | | | | | |
Collapse
|
12
|
Abstract
The chromatin organization modifier domain (chromodomain) was first identified as a motif associated with chromatin silencing in Drosophila. There is growing evidence that chromodomains are evolutionary conserved across different eukaryotic species to control diverse aspects of epigenetic regulation. Although originally reported as histone H3 methyllysine readers, the chromodomain functions have now expanded to recognition of other histone and non-histone partners as well as interaction with nucleic acids. Chromodomain binding to a diverse group of targets is mediated by a conserved substructure called the chromobox homology region. This motif can be used to predict methyllysine binding and distinguish chromodomains from related Tudor "Royal" family members. In this review, we discuss and classify various chromodomains according to their context, structure and the mechanism of target recognition.
Collapse
Affiliation(s)
- Bartlomiej J Blus
- Diabetes and Obesity Research Center, Sanford-Burnham Medical Research Institute, Orlando, FL, USA
| | | | | |
Collapse
|
13
|
Brideau NJ, Barbash DA. Functional conservation of the Drosophila hybrid incompatibility gene Lhr. BMC Evol Biol 2011; 11:57. [PMID: 21366928 PMCID: PMC3060119 DOI: 10.1186/1471-2148-11-57] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 03/02/2011] [Indexed: 01/01/2023] Open
Abstract
Background Hybrid incompatibilities such as sterility and lethality are commonly modeled as being caused by interactions between two genes, each of which has diverged separately in one of the hybridizing lineages. The gene Lethal hybrid rescue (Lhr) encodes a rapidly evolving heterochromatin protein that causes lethality of hybrid males in crosses between Drosophila melanogaster females and D. simulans males. Previous genetic analyses showed that hybrid lethality is caused by D. simulans Lhr but not by D. melanogaster Lhr, confirming a critical prediction of asymmetry in the evolution of a hybrid incompatibility gene. Results Here we have examined the functional properties of Lhr orthologs from multiple Drosophila species, including interactions with other heterochromatin proteins, localization to heterochromatin, and ability to complement hybrid rescue in D. melanogaster/D. simulans hybrids. We find that these properties are conserved among most Lhr orthologs, including Lhr from D. melanogaster, D. simulans and the outgroup species D. yakuba. Conclusions We conclude that evolution of the hybrid lethality properties of Lhr between D. melanogaster and D. simulans did not involve extensive loss or gain of functions associated with protein interactions or localization to heterochromatin.
Collapse
Affiliation(s)
- Nicholas J Brideau
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | | |
Collapse
|
14
|
Abstract
To investigate the origin and evolution of essential genes, we identified and phenotyped 195 young protein-coding genes, which originated 3 to 35 million years ago in Drosophila. Knocking down expression with RNA interference showed that 30% of newly arisen genes are essential for viability. The proportion of genes that are essential is similar in every evolutionary age group that we examined. Under constitutive silencing of these young essential genes, lethality was high in the pupal stage and also found in the larval stages. Lethality was attributed to diverse cellular and developmental defects, such as organ formation and patterning defects. These data suggest that new genes frequently and rapidly evolve essential functions and participate in development.
Collapse
Affiliation(s)
- Sidi Chen
- Department of Ecology and Evolution, The University of Chicago, 1101 East 57th Street, Chicago, IL 60637, USA
| | | | | |
Collapse
|
15
|
Dubruille R, Orsi GA, Delabaere L, Cortier E, Couble P, Marais GAB, Loppin B. Specialization of a Drosophila capping protein essential for the protection of sperm telomeres. Curr Biol 2010; 20:2090-9. [PMID: 21093267 DOI: 10.1016/j.cub.2010.11.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 10/28/2010] [Accepted: 11/02/2010] [Indexed: 11/26/2022]
Abstract
BACKGROUND A critical function of telomeres is to prevent fusion of chromosome ends by the DNA repair machinery. In Drosophila somatic cells, assembly of the protecting capping complex at telomeres notably involves the recruitment of HOAP, HP1, and their recently identified partner, HipHop. We previously showed that the hiphop gene was duplicated before the radiation of the melanogaster subgroup of species, giving birth to K81, a unique paternal effect gene specifically expressed in the male germline. RESULTS Here we show that K81 specifically associates with telomeres during spermiogenesis, along with HOAP and HP1, and is retained on paternal chromosomes until zygote formation. In K81 mutant testes, capping proteins are not maintained at telomeres in differentiating spermatids, resulting in the transmission of uncapped paternal chromosomes that fail to properly divide during the first zygotic mitosis. Despite the apparent similar capping roles of K81 and HipHop in their respective domain of expression, we demonstrate by in vivo reciprocal complementation analyses that they are not interchangeable. Strikingly, HipHop appeared to be unable to maintain capping proteins at telomeres during the global chromatin remodeling of spermatid nuclei. CONCLUSIONS Our data demonstrate that K81 is essential for the maintenance of capping proteins at telomeres in postmeiotic male germ cells. In species of the melanogaster subgroup, HipHop and K81 have not only acquired complementary expression domains, they have also functionally diverged following the gene duplication event. We propose that K81 specialized in the maintenance of telomere protection in the highly peculiar chromatin environment of differentiating male gametes.
Collapse
|
16
|
Hofmann A, Brünner M, Schwendemann A, Strödicke M, Karberg S, Klebes A, Saumweber H, Korge G. The winged-helix transcription factor JUMU regulates development, nucleolus morphology and function, and chromatin organization of Drosophila melanogaster. Chromosome Res 2010; 18:307-24. [PMID: 20213139 DOI: 10.1007/s10577-010-9118-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Accepted: 02/05/2010] [Indexed: 01/10/2023]
Abstract
The PEV-modifying winged-helix/forkhead domain transcription factor JUMU of Drosophila is an essential protein of pleiotropic function. The correct gene dose of jumu is required for nucleolar integrity and correct nucleolus function. Overexpression of jumu results in bloating of euchromatic chromosome arms, displacement of the JUMU protein from the chromocenter and the nucleolus, fragile weak points, and disrupted chromocenter of polytene chromosomes. Overexpression of the acidic C terminus of JUMU alone causes nucleolus disorganization. In addition, euchromatic genes are overexpressed and HP1, which normally accumulates in the pericentric heterochromatin and spreads into euchromatic chromosome arms, although H3-K9 di-methylation remains restricted to the pericentric heterochromatin. The human winged-helix nude gene shows similarities to jumu and its overexpression in Drosophila causes bristle mutations.
Collapse
Affiliation(s)
- Annemarie Hofmann
- Institut für Biologie-Genetik, Freie Universität Berlin, Takustr. 6, 14195, Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Vermaak D, Malik HS. Multiple roles for heterochromatin protein 1 genes in Drosophila. Annu Rev Genet 2009; 43:467-92. [PMID: 19919324 DOI: 10.1146/annurev-genet-102108-134802] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heterochromatin is the gene-poor, transposon-rich, late-replicating chromatin compartment that was first cytologically defined more than 70 years ago. The identification of heterochromatin protein 1 (HP1) paved the way for a molecular dissection of this important component of complex eukaryotic genomes. Although initial studies revealed HP1's key role in heterochromatin maintenance and function, more recent studies have discovered a role for HP1 in numerous processes including, surprisingly, euchromatic gene expression. Drosophila genomes possess at least five HP1 paralogs that have significantly different roles, ranging from canonical heterochromatic function at pericentric and telomeric regions to exclusive localization and regulation of euchromatic genes. They also possess paralogs exclusively involved in defending the germline against mobile elements. Pursuing a survey of recent genetic and evolutionary findings, we highlight how Drosophila genomes represent the best opportunity to dissect the diversity and incredible versatility of HP1 proteins in organizing and protecting eukaryotic genomes.
Collapse
Affiliation(s)
- Danielle Vermaak
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|