1
|
Pflug FG, Bhat D, Pigolotti S. Genome replication in asynchronously growing microbial populations. PLoS Comput Biol 2024; 20:e1011753. [PMID: 38181054 PMCID: PMC10796026 DOI: 10.1371/journal.pcbi.1011753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/18/2024] [Accepted: 12/11/2023] [Indexed: 01/07/2024] Open
Abstract
Biological cells replicate their genomes in a well-planned manner. The DNA replication program of an organism determines the timing at which different genomic regions are replicated, with fundamental consequences for cell homeostasis and genome stability. In a growing cell culture, genomic regions that are replicated early should be more abundant than regions that are replicated late. This abundance pattern can be experimentally measured using deep sequencing. However, a general quantitative theory linking this pattern to the replication program is still lacking. In this paper, we predict the abundance of DNA fragments in asynchronously growing cultures from any given stochastic model of the DNA replication program. As key examples, we present stochastic models of the DNA replication programs in budding yeast and Escherichia coli. In both cases, our model results are in excellent agreement with experimental data and permit to infer key information about the replication program. In particular, our method is able to infer the locations of known replication origins in budding yeast with high accuracy. These examples demonstrate that our method can provide insight into a broad range of organisms, from bacteria to eukaryotes.
Collapse
Affiliation(s)
- Florian G. Pflug
- Biological Complexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| | - Deepak Bhat
- Department of Physics, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Simone Pigolotti
- Biological Complexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan
| |
Collapse
|
2
|
da Costa-Nunes JA, Gierlinski M, Sasaki T, Haagensen EJ, Gilbert DM, Blow JJ. The location and development of Replicon Cluster Domains in early replicating DNA. Wellcome Open Res 2023; 8:158. [PMID: 37766844 PMCID: PMC10521077 DOI: 10.12688/wellcomeopenres.18742.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Background: It has been known for many years that in metazoan cells, replication origins are organised into clusters where origins within each cluster fire near-synchronously. Despite clusters being a fundamental organising principle of metazoan DNA replication, the genomic location of origin clusters has not been documented. Methods: We synchronised human U2OS by thymidine block and release followed by L-mimosine block and release to create a population of cells progressing into S phase with a high degree of synchrony. At different times after release into S phase, cells were pulsed with EdU; the EdU-labelled DNA was then pulled down, sequenced and mapped onto the human genome. Results: The early replicating DNA showed features at a range of scales. Wavelet analysis showed that the major feature of the early replicating DNA was at a size of 500 kb, consistent with clusters of replication origins. Over the first two hours of S phase, these Replicon Cluster Domains broadened in width, consistent with their being enlarged by the progression of replication forks at their outer boundaries. The total replication signal associated with each Replicon Cluster Domain varied considerably, and this variation was reproducible and conserved over time. We provide evidence that this variability in replication signal was at least in part caused by Replicon Cluster Domains being activated at different times in different cells in the population. We also provide evidence that adjacent clusters had a statistical preference for being activated in sequence across a group, consistent with the 'domino' model of replication focus activation order observed by microscopy. Conclusions: We show that early replicating DNA is organised into Replicon Cluster Domains that behave as expected of replicon clusters observed by DNA fibre analysis. The coordinated activation of different Replicon Cluster Domains can generate the replication timing programme by which the genome is duplicated.
Collapse
Affiliation(s)
- José A. da Costa-Nunes
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Marek Gierlinski
- Data Analysis Group, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Takayo Sasaki
- San Diego Biomedical Research Institute, San Diego, California, CA 92121, USA
| | - Emma J. Haagensen
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Present address: School of Medical Education, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - David M. Gilbert
- San Diego Biomedical Research Institute, San Diego, California, CA 92121, USA
| | - J. Julian Blow
- Division of Molecular, Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| |
Collapse
|
3
|
Rhind N. DNA replication timing: Biochemical mechanisms and biological significance. Bioessays 2022; 44:e2200097. [PMID: 36125226 PMCID: PMC9783711 DOI: 10.1002/bies.202200097] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 12/27/2022]
Abstract
The regulation of DNA replication is a fascinating biological problem both from a mechanistic angle-How is replication timing regulated?-and from an evolutionary one-Why is replication timing regulated? Recent work has provided significant insight into the first question. Detailed biochemical understanding of the mechanism and regulation of replication initiation has made possible robust hypotheses for how replication timing is regulated. Moreover, technical progress, including high-throughput, single-molecule mapping of replication initiation and single-cell assays of replication timing, has allowed for direct testing of these hypotheses in mammalian cells. This work has consolidated the conclusion that differential replication timing is a consequence of the varying probability of replication origin initiation. The second question is more difficult to directly address experimentally. Nonetheless, plausible hypotheses can be made and one-that replication timing contributes to the regulation of chromatin structure-has received new experimental support.
Collapse
Affiliation(s)
- Nicholas Rhind
- Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
4
|
High-throughput analysis of single human cells reveals the complex nature of DNA replication timing control. Nat Commun 2022; 13:2402. [PMID: 35504890 PMCID: PMC9065153 DOI: 10.1038/s41467-022-30212-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/21/2022] [Indexed: 12/28/2022] Open
Abstract
DNA replication initiates from replication origins firing throughout S phase. Debate remains about whether origins are a fixed set of loci, or a loose agglomeration of potential sites used stochastically in individual cells, and about how consistent their firing time is. We develop an approach to profile DNA replication from whole-genome sequencing of thousands of single cells, which includes in silico flow cytometry, a method for discriminating replicating and non-replicating cells. Using two microfluidic platforms, we analyze up to 2437 replicating cells from a single sample. The resolution and scale of the data allow focused analysis of replication initiation sites, demonstrating that most occur in confined genomic regions. While initiation order is remarkably similar across cells, we unexpectedly identify several subtypes of initiation regions in late-replicating regions. Taken together, high throughput, high resolution sequencing of individual cells reveals previously underappreciated variability in replication initiation and progression.
Collapse
|
5
|
Richards L, Das S, Nordman JT. Rif1-Dependent Control of Replication Timing. Genes (Basel) 2022; 13:genes13030550. [PMID: 35328102 PMCID: PMC8955891 DOI: 10.3390/genes13030550] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 02/01/2023] Open
Abstract
Successful duplication of the genome requires the accurate replication of billions of base pairs of DNA within a relatively short time frame. Failure to accurately replicate the genome results in genomic instability and a host of diseases. To faithfully and rapidly replicate the genome, DNA replication must be tightly regulated and coordinated with many other nuclear processes. These regulations, however, must also be flexible as replication kinetics can change through development and differentiation. Exactly how DNA replication is regulated and how this regulation changes through development is an active field of research. One aspect of genome duplication where much remains to be discovered is replication timing (RT), which dictates when each segment of the genome is replicated during S phase. All organisms display some level of RT, yet the precise mechanisms that govern RT remain are not fully understood. The study of Rif1, a protein that actively regulates RT from yeast to humans, provides a key to unlock the underlying molecular mechanisms controlling RT. The paradigm for Rif1 function is to delay helicase activation within certain regions of the genome, causing these regions to replicate late in S phase. Many questions, however, remain about the intricacies of Rif1 function. Here, we review the current models for the activity of Rif1 with the goal of trying to understand how Rif1 functions to establish the RT program.
Collapse
|
6
|
Rhind N. f = m* a: A Framework for Investigating the Regulation of Replication Timing. Genes (Basel) 2022; 13:249. [PMID: 35205293 PMCID: PMC8872135 DOI: 10.3390/genes13020249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 12/04/2022] Open
Abstract
Stochastic models of replication timing posit that origin firing timing is regulated by origin firing probability, with early-firing origins having a high probability of firing and late-firing origins having a lower probability. However, they offer no insight into why one origin should have a higher firing probability than another. Here, a simple framework is suggested for how to approach the question by noting that the firing probability (f) must be the product of the stoichiometry of the MCM replicative helicase loaded at the origin (m) and the probability with which that MCM is activated (a). This framework emphasizes that mechanistic understanding of replication timing must focus on MCM loading and activation and can be simplified to the equation f = m*a.
Collapse
Affiliation(s)
- Nicholas Rhind
- Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
7
|
Super-resolution microscopy reveals stochastic initiation of replication in Drosophila polytene chromosomes. Chromosome Res 2022; 30:361-383. [PMID: 35226231 PMCID: PMC9771856 DOI: 10.1007/s10577-021-09679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/22/2021] [Accepted: 11/23/2021] [Indexed: 01/25/2023]
Abstract
Studying the probability distribution of replication initiation along a chromosome is a huge challenge. Drosophila polytene chromosomes in combination with super-resolution microscopy provide a unique opportunity for analyzing the probabilistic nature of replication initiation at the ultrastructural level. Here, we developed a method for synchronizing S-phase induction among salivary gland cells. An analysis of the replication label distribution in the first minutes of S phase and in the following hours after the induction revealed the dynamics of replication initiation. Spatial super-resolution structured illumination microscopy allowed identifying multiple discrete replication signals and to investigate the behavior of replication signals in the first minutes of the S phase at the ultrastructural level. We identified replication initiation zones where initiation occurs stochastically. These zones differ significantly in the probability of replication initiation per time unit. There are zones in which initiation occurs on most strands of the polytene chromosome in a few minutes. In other zones, the initiation on all strands takes several hours. Compact bands are free of replication initiation events, and the replication runs from outer edges to the middle, where band shapes may alter.
Collapse
|
8
|
Ciardo D, Haccard O, Narassimprakash H, Cornu D, Guerrera IC, Goldar A, Marheineke K. Polo-like kinase 1 (Plk1) regulates DNA replication origin firing and interacts with Rif1 in Xenopus. Nucleic Acids Res 2021; 49:9851-9869. [PMID: 34469577 PMCID: PMC8464078 DOI: 10.1093/nar/gkab756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 12/12/2022] Open
Abstract
The activation of eukaryotic DNA replication origins needs to be strictly controlled at multiple steps in order to faithfully duplicate the genome and to maintain its stability. How the checkpoint recovery and adaptation protein Polo-like kinase 1 (Plk1) regulates the firing of replication origins during non-challenged S phase remained an open question. Using DNA fiber analysis, we show that immunodepletion of Plk1 in the Xenopus in vitro system decreases replication fork density and initiation frequency. Numerical analyses suggest that Plk1 reduces the overall probability and synchrony of origin firing. We used quantitative chromatin proteomics and co-immunoprecipitations to demonstrate that Plk1 interacts with firing factors MTBP/Treslin/TopBP1 as well as with Rif1, a known regulator of replication timing. Phosphopeptide analysis by LC/MS/MS shows that the C-terminal domain of Rif1, which is necessary for its repressive action on origins through protein phosphatase 1 (PP1), can be phosphorylated in vitro by Plk1 on S2058 in its PP1 binding site. The phosphomimetic S2058D mutant interrupts the Rif1-PP1 interaction and modulates DNA replication. Collectively, our study provides molecular insights into how Plk1 regulates the spatio-temporal replication program and suggests that Plk1 controls origin activation at the level of large chromatin domains in vertebrates.
Collapse
Affiliation(s)
- Diletta Ciardo
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Olivier Haccard
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Hemalatha Narassimprakash
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - David Cornu
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Ida Chiara Guerrera
- Proteomics platform Necker, Université de Paris - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris 75015, France
| | - Arach Goldar
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Kathrin Marheineke
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
9
|
Wang W, Klein KN, Proesmans K, Yang H, Marchal C, Zhu X, Borrman T, Hastie A, Weng Z, Bechhoefer J, Chen CL, Gilbert DM, Rhind N. Genome-wide mapping of human DNA replication by optical replication mapping supports a stochastic model of eukaryotic replication. Mol Cell 2021; 81:2975-2988.e6. [PMID: 34157308 PMCID: PMC8286344 DOI: 10.1016/j.molcel.2021.05.024] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 03/08/2021] [Accepted: 05/20/2021] [Indexed: 12/27/2022]
Abstract
The heterogeneous nature of eukaryotic replication kinetics and the low efficiency of individual initiation sites make mapping the location and timing of replication initiation in human cells difficult. To address this challenge, we have developed optical replication mapping (ORM), a high-throughput single-molecule approach, and used it to map early-initiation events in human cells. The single-molecule nature of our data and a total of >2,500-fold coverage of the human genome on 27 million fibers averaging ∼300 kb in length allow us to identify initiation sites and their firing probability with high confidence. We find that the distribution of human replication initiation is consistent with inefficient, stochastic activation of heterogeneously distributed potential initiation complexes enriched in accessible chromatin. These observations are consistent with stochastic models of initiation-timing regulation and suggest that stochastic regulation of replication kinetics is a fundamental feature of eukaryotic replication, conserved from yeast to humans.
Collapse
Affiliation(s)
- Weitao Wang
- Institut Curie, PSL Research University, CNRS UMR 3244, Paris 75005, France
| | - Kyle N Klein
- Florida State University, Department of Biological Science, Tallahassee, FL 32306, USA
| | - Karel Proesmans
- Simon Fraser University, Department of Physics, Burnaby, BC V5A 1S6, Canada
| | - Hongbo Yang
- Northwestern University, Feinberg School of Medicine, Department of Biochemistry and Molecular Genetics, Chicago, IL 60208, USA
| | - Claire Marchal
- Florida State University, Department of Biological Science, Tallahassee, FL 32306, USA
| | - Xiaopeng Zhu
- Carnegie Mellon University, Computational Biology Department, Pittsburgh, PA 15213, USA
| | - Tyler Borrman
- University of Massachusetts Medical School, Program in Bioinformatics and Integrated Biology, Worcester, MA 01605, USA
| | | | - Zhiping Weng
- University of Massachusetts Medical School, Program in Bioinformatics and Integrated Biology, Worcester, MA 01605, USA
| | - John Bechhoefer
- Simon Fraser University, Department of Physics, Burnaby, BC V5A 1S6, Canada.
| | - Chun-Long Chen
- Institut Curie, PSL Research University, CNRS UMR 3244, Paris 75005, France; Sorbonne University, Paris 75005, France.
| | - David M Gilbert
- Florida State University, Department of Biological Science, Tallahassee, FL 32306, USA.
| | - Nicholas Rhind
- University of Massachusetts Medical School, Department of Biochemistry and Molecular Pharmacology, Worcester, MA 01605, USA.
| |
Collapse
|
10
|
Droghetti R, Agier N, Fischer G, Gherardi M, Cosentino Lagomarsino M. An evolutionary model identifies the main evolutionary biases for the evolution of genome-replication profiles. eLife 2021; 10:63542. [PMID: 34013887 PMCID: PMC8213407 DOI: 10.7554/elife.63542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 05/20/2021] [Indexed: 12/13/2022] Open
Abstract
Recent results comparing the temporal program of genome replication of yeast species belonging to the Lachancea clade support the scenario that the evolution of the replication timing program could be mainly driven by correlated acquisition and loss events of active replication origins. Using these results as a benchmark, we develop an evolutionary model defined as birth-death process for replication origins and use it to identify the evolutionary biases that shape the replication timing profiles. Comparing different evolutionary models with data, we find that replication origin birth and death events are mainly driven by two evolutionary pressures, the first imposes that events leading to higher double-stall probability of replication forks are penalized, while the second makes less efficient origins more prone to evolutionary loss. This analysis provides an empirically grounded predictive framework for quantitative evolutionary studies of the replication timing program.
Collapse
Affiliation(s)
- Rossana Droghetti
- Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, Italy
| | - Nicolas Agier
- Sorbonne Universitè, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, Paris, France
| | - Gilles Fischer
- Sorbonne Universitè, CNRS, Institut de Biologie Paris-Seine, Laboratory of Computational and Quantitative Biology, Paris, France
| | - Marco Gherardi
- Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, Italy and INFN sezione di Milano, Milan, Italy
| | - Marco Cosentino Lagomarsino
- Dipartimento di Fisica, Università degli Studi di Milano, via Celoria 16, Milan, Italy and INFN sezione di Milano, Milan, Italy.,IFOM Foundation, FIRC Institute for Molecular Oncology, via Adamello 16, Milan, Italy
| |
Collapse
|
11
|
Dukaj L, Rhind N. The capacity of origins to load MCM establishes replication timing patterns. PLoS Genet 2021; 17:e1009467. [PMID: 33764973 PMCID: PMC8023499 DOI: 10.1371/journal.pgen.1009467] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/06/2021] [Accepted: 03/04/2021] [Indexed: 11/24/2022] Open
Abstract
Loading of the MCM replicative helicase at origins of replication is a highly regulated process that precedes DNA replication in all eukaryotes. The stoichiometry of MCM loaded at origins has been proposed to be a key determinant of when those origins initiate replication during S phase. Nevertheless, the genome-wide regulation of MCM loading stoichiometry and its direct effect on replication timing remain unclear. In order to investigate why some origins load more MCM than others, we perturbed MCM levels in budding yeast cells and, for the first time, directly measured MCM levels and replication timing in the same experiment. Reduction of MCM levels through degradation of Mcm4, one of the six obligate components of the MCM complex, slowed progression through S phase and increased sensitivity to replication stress. Reduction of MCM levels also led to differential loading at origins during G1, revealing origins that are sensitive to reductions in MCM and others that are not. Sensitive origins loaded less MCM under normal conditions and correlated with a weak ability to recruit the origin recognition complex (ORC). Moreover, reduction of MCM loading at specific origins of replication led to a delay in their replication during S phase. In contrast, overexpression of MCM had no effects on cell cycle progression, relative MCM levels at origins, or replication timing, suggesting that, under optimal growth conditions, cellular MCM levels are not limiting for MCM loading. Our results support a model in which the loading capacity of origins is the primary determinant of MCM stoichiometry in wild-type cells, but that stoichiometry is controlled by origins' ability to recruit ORC and compete for MCM when MCM becomes limiting.
Collapse
Affiliation(s)
- Livio Dukaj
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School Worcester, Massachusetts, United States of America
| | - Nicholas Rhind
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School Worcester, Massachusetts, United States of America
| |
Collapse
|
12
|
Rapsomaniki MA, Maxouri S, Nathanailidou P, Garrastacho MR, Giakoumakis NN, Taraviras S, Lygeros J, Lygerou Z. In silico analysis of DNA re-replication across a complete genome reveals cell-to-cell heterogeneity and genome plasticity. NAR Genom Bioinform 2021; 3:lqaa112. [PMID: 33554116 PMCID: PMC7846089 DOI: 10.1093/nargab/lqaa112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/15/2020] [Accepted: 01/20/2021] [Indexed: 01/06/2023] Open
Abstract
DNA replication is a complex and remarkably robust process: despite its inherent uncertainty, manifested through stochastic replication timing at a single-cell level, multiple control mechanisms ensure its accurate and timely completion across a population. Disruptions in these mechanisms lead to DNA re-replication, closely connected to genomic instability and oncogenesis. Here, we present a stochastic hybrid model of DNA re-replication that accurately portrays the interplay between discrete dynamics, continuous dynamics and uncertainty. Using experimental data on the fission yeast genome, model simulations show how different regions respond to re-replication and permit insight into the key mechanisms affecting re-replication dynamics. Simulated and experimental population-level profiles exhibit a good correlation along the genome, robust to model parameters, validating our approach. At a single-cell level, copy numbers of individual loci are affected by intrinsic properties of each locus, in cis effects from adjoining loci and in trans effects from distant loci. In silico analysis and single-cell imaging reveal that cell-to-cell heterogeneity is inherent in re-replication and can lead to genome plasticity and a plethora of genotypic variations.
Collapse
Affiliation(s)
- Maria Anna Rapsomaniki
- Department of Biology, School of Medicine, University of Patras, 26500 Rio Patras, Greece
| | - Stella Maxouri
- Department of Biology, School of Medicine, University of Patras, 26500 Rio Patras, Greece
| | - Patroula Nathanailidou
- Department of Biology, School of Medicine, University of Patras, 26500 Rio Patras, Greece
| | | | | | - Stavros Taraviras
- Department of Physiology, School of Medicine, University of Patras, 26500 Rio Patras, Greece
| | - John Lygeros
- Automatic Control Laboratory, ETH Zurich, 8092 Zurich, Switzerland
| | - Zoi Lygerou
- Department of Biology, School of Medicine, University of Patras, 26500 Rio Patras, Greece
| |
Collapse
|
13
|
Lee PH, Osley M. Chromatin structure restricts origin utilization when quiescent cells re-enter the cell cycle. Nucleic Acids Res 2021; 49:864-878. [PMID: 33367871 PMCID: PMC7826286 DOI: 10.1093/nar/gkaa1148] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 11/04/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Quiescent cells reside in G0 phase, which is characterized by the absence of cell growth and proliferation. These cells remain viable and re-enter the cell cycle when prompted by appropriate signals. Using a budding yeast model of cellular quiescence, we investigated the program that initiated DNA replication when these G0 cells resumed growth. Quiescent cells contained very low levels of replication initiation factors, and their entry into S phase was delayed until these factors were re-synthesized. A longer S phase in these cells correlated with the activation of fewer origins of replication compared to G1 cells. The chromatin structure around inactive origins in G0 cells showed increased H3 occupancy and decreased nucleosome positioning compared to the same origins in G1 cells, inhibiting the origin binding of the Mcm4 subunit of the MCM licensing factor. Thus, quiescent yeast cells are under-licensed during their re-entry into S phase.
Collapse
Affiliation(s)
- Po-Hsuen Lee
- Department of Molecular Genetics and Microbiology University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Mary Ann Osley
- Department of Molecular Genetics and Microbiology University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
14
|
Zhao PA, Sasaki T, Gilbert DM. High-resolution Repli-Seq defines the temporal choreography of initiation, elongation and termination of replication in mammalian cells. Genome Biol 2020; 21:76. [PMID: 32209126 PMCID: PMC7092589 DOI: 10.1186/s13059-020-01983-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 03/04/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND DNA replication in mammalian cells occurs in a defined temporal order during S phase, known as the replication timing (RT) programme. Replication timing is developmentally regulated and correlated with chromatin conformation and local transcriptional potential. Here, we present RT profiles of unprecedented temporal resolution in two human embryonic stem cell lines, human colon carcinoma line HCT116, and mouse embryonic stem cells and their neural progenitor derivatives. RESULTS Fine temporal windows revealed a remarkable degree of cell-to-cell conservation in RT, particularly at the very beginning and ends of S phase, and identified 5 temporal patterns of replication in all cell types, consistent with varying degrees of initiation efficiency. Zones of replication initiation (IZs) were detected throughout S phase and interacted in 3D space preferentially with other IZs of similar firing time. Temporal transition regions were resolved into segments of uni-directional replication punctuated at specific sites by small, inefficient IZs. Sites of convergent replication were divided into sites of termination or large constant timing regions consisting of many synchronous IZs in tandem. Developmental transitions in RT occured mainly by activating or inactivating individual IZs or occasionally by altering IZ firing time, demonstrating that IZs, rather than individual origins, are the units of developmental regulation. Finally, haplotype phasing revealed numerous regions of allele-specific and allele-independent asynchronous replication. Allele-independent asynchronous replication was correlated with the presence of previously mapped common fragile sites. CONCLUSIONS Altogether, these data provide a detailed temporal choreography of DNA replication in mammalian cells.
Collapse
Affiliation(s)
- Peiyao A Zhao
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32306, USA
| | - Takayo Sasaki
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32306, USA
| | - David M Gilbert
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32306, USA.
| |
Collapse
|
15
|
Hulke ML, Massey DJ, Koren A. Genomic methods for measuring DNA replication dynamics. Chromosome Res 2020; 28:49-67. [PMID: 31848781 PMCID: PMC7131883 DOI: 10.1007/s10577-019-09624-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/30/2019] [Accepted: 12/03/2019] [Indexed: 12/27/2022]
Abstract
Genomic DNA replicates according to a defined temporal program in which early-replicating loci are associated with open chromatin, higher gene density, and increased gene expression levels, while late-replicating loci tend to be heterochromatic and show higher rates of genomic instability. The ability to measure DNA replication dynamics at genome scale has proven crucial for understanding the mechanisms and cellular consequences of DNA replication timing. Several methods, such as quantification of nucleotide analog incorporation and DNA copy number analyses, can accurately reconstruct the genomic replication timing profiles of various species and cell types. More recent developments have expanded the DNA replication genomic toolkit to assays that directly measure the activity of replication origins, while single-cell replication timing assays are beginning to reveal a new level of replication timing regulation. The combination of these methods, applied on a genomic scale and in multiple biological systems, promises to resolve many open questions and lead to a holistic understanding of how eukaryotic cells replicate their genomes accurately and efficiently.
Collapse
Affiliation(s)
- Michelle L Hulke
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Dashiell J Massey
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
16
|
Abstract
Each genomic locus in a eukaryotic cell has a distinct average time of replication during S phase that depends on the spatial and temporal pattern of replication initiation events. Replication timing can affect genomic integrity because late replication is associated with an increased mutation rate. For most eukaryotes, the features of the genome that specify the location and timing of initiation events are unknown. To investigate these features for the fission yeast, Schizosaccharomyces pombe, we developed an integrative model to analyze large single-molecule and global genomic datasets. The model provides an accurate description of the complex dynamics of S. pombe DNA replication at high resolution. We present evidence that there are many more potential initiation sites in the S. pombe genome than previously identified and that the distribution of these sites is primarily determined by two factors: the sequence preferences of the origin recognition complex (ORC), and the interference of transcription with the assembly or stability of prereplication complexes (pre-RCs). We suggest that in addition to directly interfering with initiation, transcription has driven the evolution of the binding properties of ORC in S. pombe and other eukaryotic species to target pre-RC assembly to regions of the genome that are less likely to be transcribed.
Collapse
|
17
|
H3K9 Promotes Under-Replication of Pericentromeric Heterochromatin in Drosophila Salivary Gland Polytene Chromosomes. Genes (Basel) 2019; 10:genes10020093. [PMID: 30700014 PMCID: PMC6409945 DOI: 10.3390/genes10020093] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 12/11/2022] Open
Abstract
Chromatin structure and its organization contributes to the proper regulation and timing of DNA replication. Yet, the precise mechanism by which chromatin contributes to DNA replication remains incompletely understood. This is particularly true for cell types that rely on polyploidization as a developmental strategy for growth and high biosynthetic capacity. During Drosophila larval development, cells of the salivary gland undergo endoreplication, repetitive rounds of DNA synthesis without intervening cell division, resulting in ploidy values of ~1350C. S phase of these endocycles displays a reproducible pattern of early and late replicating regions of the genome resulting from the activity of the same replication initiation factors that are used in diploid cells. However, unlike diploid cells, the latest replicating regions of polyploid salivary gland genomes, composed primarily of pericentric heterochromatic enriched in H3K9 methylation, are not replicated each endocycle, resulting in under-replicated domains with reduced ploidy. Here, we employ a histone gene replacement strategy in Drosophila to demonstrate that mutation of a histone residue important for heterochromatin organization and function (H3K9) but not mutation of a histone residue important for euchromatin function (H4K16), disrupts proper endoreplication in Drosophila salivary gland polyploid genomes thereby leading to DNA copy gain in pericentric heterochromatin. These findings reveal that H3K9 is necessary for normal levels of under-replication of pericentric heterochromatin and suggest that under-replication at pericentric heterochromatin is mediated through H3K9 methylation.
Collapse
|
18
|
Armstrong RL, Penke TJR, Strahl BD, Matera AG, McKay DJ, MacAlpine DM, Duronio RJ. Chromatin conformation and transcriptional activity are permissive regulators of DNA replication initiation in Drosophila. Genome Res 2018; 28:1688-1700. [PMID: 30279224 PMCID: PMC6211642 DOI: 10.1101/gr.239913.118] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 09/24/2018] [Indexed: 12/19/2022]
Abstract
Chromatin structure has emerged as a key contributor to spatial and temporal control over the initiation of DNA replication. However, despite genome-wide correlations between early replication of gene-rich, accessible euchromatin and late replication of gene-poor, inaccessible heterochromatin, a causal relationship between chromatin structure and replication initiation remains elusive. Here, we combined histone gene engineering and whole-genome sequencing in Drosophila to determine how perturbing chromatin structure affects replication initiation. We found that most pericentric heterochromatin remains late replicating in H3K9R mutants, even though H3K9R pericentric heterochromatin is depleted of HP1a, more accessible, and transcriptionally active. These data indicate that HP1a loss, increased chromatin accessibility, and elevated transcription do not result in early replication of heterochromatin. Nevertheless, a small amount of pericentric heterochromatin with increased accessibility replicates earlier in H3K9R mutants. Transcription is de-repressed in these regions of advanced replication but not in those regions of the H3K9R mutant genome that replicate later, suggesting that transcriptional repression may contribute to late replication. We also explored relationships among chromatin, transcription, and replication in euchromatin by analyzing H4K16R mutants. In Drosophila, the X Chromosome gene expression is up-regulated twofold and replicates earlier in XY males than it does in XX females. We found that H4K16R mutation prevents normal male development and abrogates hyperexpression and earlier replication of the male X, consistent with previously established genome-wide correlations between transcription and early replication. In contrast, H4K16R females are viable and fertile, indicating that H4K16 modification is dispensable for genome replication and gene expression.
Collapse
Affiliation(s)
- Robin L Armstrong
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Taylor J R Penke
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Brian D Strahl
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - A Gregory Matera
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Department of Genetics.,Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - Daniel J McKay
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Department of Genetics.,Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | - David M MacAlpine
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina 27710, USA
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, North Carolina 27599, USA.,Department of Genetics.,Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
19
|
Dileep V, Gilbert DM. Single-cell replication profiling to measure stochastic variation in mammalian replication timing. Nat Commun 2018; 9:427. [PMID: 29382831 PMCID: PMC5789892 DOI: 10.1038/s41467-017-02800-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/27/2017] [Indexed: 01/17/2023] Open
Abstract
Mammalian DNA replication is regulated via multi-replicon segments that replicate in a defined temporal order during S-phase. Further, early/late replication of RDs corresponds to active/inactive chromatin interaction compartments. Although replication origins are selected stochastically, variation in replication timing is poorly understood. Here we devise a strategy to measure variation in replication timing using DNA copy number in single mouse embryonic stem cells. We find that borders between replicated and unreplicated DNA are highly conserved between cells, demarcating active and inactive compartments of the nucleus. Fifty percent of replication events deviated from their average replication time by ± 15% of S phase. This degree of variation is similar between cells, between homologs within cells and between all domains genomewide, regardless of their replication timing. These results demonstrate that stochastic variation in replication timing is independent of elements that dictate timing or extrinsic environmental variation.
Collapse
Affiliation(s)
- Vishnu Dileep
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32306, USA
| | - David M Gilbert
- Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32306, USA.
| |
Collapse
|
20
|
Zhao PA, Rivera-Mulia JC, Gilbert DM. Replication Domains: Genome Compartmentalization into Functional Replication Units. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1042:229-257. [DOI: 10.1007/978-981-10-6955-0_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
21
|
Hiraga SI, Ly T, Garzón J, Hořejší Z, Ohkubo YN, Endo A, Obuse C, Boulton SJ, Lamond AI, Donaldson AD. Human RIF1 and protein phosphatase 1 stimulate DNA replication origin licensing but suppress origin activation. EMBO Rep 2017; 18:403-419. [PMID: 28077461 PMCID: PMC5331243 DOI: 10.15252/embr.201641983] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 11/08/2016] [Accepted: 12/05/2016] [Indexed: 01/13/2023] Open
Abstract
The human RIF1 protein controls DNA replication, but the molecular mechanism is largely unknown. Here, we demonstrate that human RIF1 negatively regulates DNA replication by forming a complex with protein phosphatase 1 (PP1) that limits phosphorylation-mediated activation of the MCM replicative helicase. We identify specific residues on four MCM helicase subunits that show hyperphosphorylation upon RIF1 depletion, with the regulatory N-terminal domain of MCM4 being particularly strongly affected. In addition to this role in limiting origin activation, we discover an unexpected new role for human RIF1-PP1 in mediating efficient origin licensing. Specifically, during the G1 phase of the cell cycle, RIF1-PP1 protects the origin-binding ORC1 protein from untimely phosphorylation and consequent degradation by the proteasome. Depletion of RIF1 or inhibition of PP1 destabilizes ORC1, thereby reducing origin licensing. Consistent with reduced origin licensing, RIF1-depleted cells exhibit increased spacing between active origins. Human RIF1 therefore acts as a PP1-targeting subunit that regulates DNA replication positively by stimulating the origin licensing step, and then negatively by counteracting replication origin activation.
Collapse
Affiliation(s)
- Shin-Ichiro Hiraga
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| | - Tony Ly
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Javier Garzón
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| | - Zuzana Hořejší
- The Francis Crick Institute, Clare Hall Laboratories, South Mimms, UK
| | - Yoshi-Nobu Ohkubo
- Graduate School of Life Science, Hokkaido University, Sapporo Hokkaido, Japan
| | - Akinori Endo
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Chikashi Obuse
- Graduate School of Life Science, Hokkaido University, Sapporo Hokkaido, Japan
| | - Simon J Boulton
- The Francis Crick Institute, Clare Hall Laboratories, South Mimms, UK
| | - Angus I Lamond
- Centre for Gene Regulation & Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Anne D Donaldson
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
22
|
Gispan A, Carmi M, Barkai N. Model-based analysis of DNA replication profiles: predicting replication fork velocity and initiation rate by profiling free-cycling cells. Genome Res 2016; 27:310-319. [PMID: 28028072 PMCID: PMC5287236 DOI: 10.1101/gr.205849.116] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 12/12/2016] [Indexed: 12/24/2022]
Abstract
Eukaryotic cells initiate DNA synthesis by sequential firing of hundreds of origins. This ordered replication is described by replication profiles, which measure the DNA content within a cell population. Here, we show that replication dynamics can be deduced from replication profiles of free-cycling cells. While such profiles lack explicit temporal information, they are sensitive to fork velocity and initiation capacity through the passive replication pattern, namely the replication of origins by forks emanating elsewhere. We apply our model-based approach to a compendium of profiles that include most viable budding yeast mutants implicated in replication. Predicted changes in fork velocity or initiation capacity are verified by profiling synchronously replicating cells. Notably, most mutants implicated in late (or early) origin effects are explained by global modulation of fork velocity or initiation capacity. Our approach provides a rigorous framework for analyzing DNA replication profiles of free-cycling cells.
Collapse
Affiliation(s)
- Ariel Gispan
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Miri Carmi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
23
|
Selectivity of ORC binding sites and the relation to replication timing, fragile sites, and deletions in cancers. Proc Natl Acad Sci U S A 2016; 113:E4810-9. [PMID: 27436900 DOI: 10.1073/pnas.1609060113] [Citation(s) in RCA: 128] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The origin recognition complex (ORC) binds sites from which DNA replication is initiated. We address ORC binding selectivity in vivo by mapping ∼52,000 ORC2 binding sites throughout the human genome. The ORC binding profile is broader than those of sequence-specific transcription factors, suggesting that ORC is not bound or recruited to specific DNA sequences. Instead, ORC binds nonspecifically to open (DNase I-hypersensitive) regions containing active chromatin marks such as H3 acetylation and H3K4 methylation. ORC sites in early and late replicating regions have similar properties, but there are far more ORC sites in early replicating regions. This suggests that replication timing is due primarily to ORC density and stochastic firing of origins. Computational simulation of stochastic firing from identified ORC sites is in accord with replication timing data. Large genomic regions with a paucity of ORC sites are strongly associated with common fragile sites and recurrent deletions in cancers. We suggest that replication origins, replication timing, and replication-dependent chromosome breaks are determined primarily by the genomic distribution of activator proteins at enhancers and promoters. These activators recruit nucleosome-modifying complexes to create the appropriate chromatin structure that allows ORC binding and subsequent origin firing.
Collapse
|
24
|
Abstract
Recent work suggests that DNA replication origins are regulated by the number of multiple mini-chromosome maintenance (MCM) complexes loaded. Origins are defined by the loading of MCM - the replicative helicase which initiates DNA replication and replication kinetics determined by origin's location and firing times. However, activation of MCM is heterogeneous; different origins firing at different times in different cells. Also, more MCMs are loaded in G1 than are used in S phase. These aspects of MCM biology are explained by the observation that multiple MCMs are loaded at origins. Having more MCMs at early origins makes them more likely to fire, effecting differences in origin efficiency that define replication timing. Nonetheless, multiple MCM loading raises new questions, such as how they are loaded, where these MCMs reside at origins, and how their presence affects replication timing. In this review, we address these questions and discuss future avenues of research.
Collapse
Affiliation(s)
- Shankar P Das
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Nicholas Rhind
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
25
|
Seplyarskiy VB, Soldatov RA, Popadin KY, Antonarakis SE, Bazykin GA, Nikolaev SI. APOBEC-induced mutations in human cancers are strongly enriched on the lagging DNA strand during replication. Genome Res 2016; 26:174-82. [PMID: 26755635 PMCID: PMC4728370 DOI: 10.1101/gr.197046.115] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/10/2015] [Indexed: 12/31/2022]
Abstract
APOBEC3A and APOBEC3B, cytidine deaminases of the APOBEC family, are among the main factors causing mutations in human cancers. APOBEC deaminates cytosines in single-stranded DNA (ssDNA). A fraction of the APOBEC-induced mutations occur as clusters ("kataegis") in single-stranded DNA produced during repair of double-stranded breaks (DSBs). However, the properties of the remaining 87% of nonclustered APOBEC-induced mutations, the source and the genomic distribution of the ssDNA where they occur, are largely unknown. By analyzing genomic and exomic cancer databases, we show that >33% of dispersed APOBEC-induced mutations occur on the lagging strand during DNA replication, thus unraveling the major source of ssDNA targeted by APOBEC in cancer. Although methylated cytosine is generally more mutation-prone than nonmethylated cytosine, we report that methylation reduces the rate of APOBEC-induced mutations by a factor of roughly two. Finally, we show that in cancers with extensive APOBEC-induced mutagenesis, there is almost no increase in mutation rates in late replicating regions (contrary to other cancers). Because late-replicating regions are depleted in exons, this results in a 1.3-fold higher fraction of mutations residing within exons in such cancers. This study provides novel insight into the APOBEC-induced mutagenesis and describes the peculiarity of the mutational processes in cancers with the signature of APOBEC-induced mutations.
Collapse
Affiliation(s)
- Vladimir B Seplyarskiy
- Institute of Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia, 127051; Lomonosov Moscow State University, Moscow, Russia, 119991; Pirogov Russian National Research Medical University, Moscow, Russia, 117997
| | - Ruslan A Soldatov
- Institute of Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia, 127051; Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Konstantin Y Popadin
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland; Institute of Genetics and Genomics in Geneva, 1211 Geneva, Switzerland
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland; Institute of Genetics and Genomics in Geneva, 1211 Geneva, Switzerland
| | - Georgii A Bazykin
- Institute of Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia, 127051; Lomonosov Moscow State University, Moscow, Russia, 119991; Pirogov Russian National Research Medical University, Moscow, Russia, 117997
| | - Sergey I Nikolaev
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland; Institute of Genetics and Genomics in Geneva, 1211 Geneva, Switzerland; Service of Genetic Medicine, University Hospitals of Geneva, 1211 Geneva, Switzerland
| |
Collapse
|
26
|
Das SP, Borrman T, Liu VWT, Yang SCH, Bechhoefer J, Rhind N. Replication timing is regulated by the number of MCMs loaded at origins. Genome Res 2015; 25:1886-92. [PMID: 26359232 PMCID: PMC4665009 DOI: 10.1101/gr.195305.115] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/08/2015] [Indexed: 11/29/2022]
Abstract
Replication timing is a crucial aspect of genome regulation that is strongly correlated with chromatin structure, gene expression, DNA repair, and genome evolution. Replication timing is determined by the timing of replication origin firing, which involves activation of MCM helicase complexes loaded at replication origins. Nonetheless, how the timing of such origin firing is regulated remains mysterious. Here, we show that the number of MCMs loaded at origins regulates replication timing. We show for the first time in vivo that multiple MCMs are loaded at origins. Because early origins have more MCMs loaded, they are, on average, more likely to fire early in S phase. Our results provide a mechanistic explanation for the observed heterogeneity in origin firing and help to explain how defined replication timing profiles emerge from stochastic origin firing. These results establish a framework in which further mechanistic studies on replication timing, such as the strong effect of heterochromatin, can be pursued.
Collapse
Affiliation(s)
- Shankar P Das
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Tyler Borrman
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Victor W T Liu
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Scott C-H Yang
- Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - John Bechhoefer
- Department of Physics, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Nicholas Rhind
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| |
Collapse
|
27
|
Topologically associating domains are stable units of replication-timing regulation. Nature 2015; 515:402-5. [PMID: 25409831 PMCID: PMC4251741 DOI: 10.1038/nature13986] [Citation(s) in RCA: 613] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Accepted: 10/22/2014] [Indexed: 02/06/2023]
Abstract
Eukaryotic chromosomes replicate in a temporal order known as the replication-timing program. In mammals, replication timing is cell-type-specific with at least half the genome switching replication timing during development, primarily in units of 400-800 kilobases ('replication domains'), whose positions are preserved in different cell types, conserved between species, and appear to confine long-range effects of chromosome rearrangements. Early and late replication correlate, respectively, with open and closed three-dimensional chromatin compartments identified by high-resolution chromosome conformation capture (Hi-C), and, to a lesser extent, late replication correlates with lamina-associated domains (LADs). Recent Hi-C mapping has unveiled substructure within chromatin compartments called topologically associating domains (TADs) that are largely conserved in their positions between cell types and are similar in size to replication domains. However, TADs can be further sub-stratified into smaller domains, challenging the significance of structures at any particular scale. Moreover, attempts to reconcile TADs and LADs to replication-timing data have not revealed a common, underlying domain structure. Here we localize boundaries of replication domains to the early-replicating border of replication-timing transitions and map their positions in 18 human and 13 mouse cell types. We demonstrate that, collectively, replication domain boundaries share a near one-to-one correlation with TAD boundaries, whereas within a cell type, adjacent TADs that replicate at similar times obscure replication domain boundaries, largely accounting for the previously reported lack of alignment. Moreover, cell-type-specific replication timing of TADs partitions the genome into two large-scale sub-nuclear compartments revealing that replication-timing transitions are indistinguishable from late-replicating regions in chromatin composition and lamina association and accounting for the reduced correlation of replication timing to LADs and heterochromatin. Our results reconcile cell-type-specific sub-nuclear compartmentalization and replication timing with developmentally stable structural domains and offer a unified model for large-scale chromosome structure and function.
Collapse
|
28
|
Gispan A, Carmi M, Barkai N. Checkpoint-independent scaling of the Saccharomyces cerevisiae DNA replication program. BMC Biol 2014; 12:79. [PMID: 25288172 PMCID: PMC4218987 DOI: 10.1186/s12915-014-0079-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 12/22/2022] Open
Abstract
Background In budding yeast, perturbations that prolong S phase lead to a proportionate delay in the activation times of most origins. The DNA replication checkpoint was implicated in this scaling phenotype, as an intact checkpoint was shown to be required for the delayed activation of late origins in response to hydroxyurea treatment. In support of that, scaling is lost in cells deleted of mrc1, a mediator of the replication checkpoint signal. Mrc1p, however, also plays a role in normal replication. Results To examine whether the replication checkpoint is required for scaling the replication profile with S phase duration we measured the genome-wide replication profile of different MRC1 alleles that separate its checkpoint function from its role in normal replication, and further analyzed the replication profiles of S phase mutants that are checkpoint deficient. We found that the checkpoint is not required for scaling; rather the unique replication phenotype of mrc1 deleted cells is attributed to the role of Mrc1 in normal replication. This is further supported by the replication profiles of tof1Δ which functions together with Mrc1p in normal replication, and by the distinct replication profiles of specific POL2 alleles which differ in their interaction with Mrc1p. Conclusions We suggest that the slow fork progression in mrc1 deleted cells reduces the likelihood of passive replication leading to the activation of origins that remain mostly dormant in wild-type cells. Electronic supplementary material The online version of this article (doi:10.1186/s12915-014-0079-z) contains supplementary material, which is available to authorized users.
Collapse
|
29
|
Alver RC, Chadha GS, Blow JJ. The contribution of dormant origins to genome stability: from cell biology to human genetics. DNA Repair (Amst) 2014; 19:182-9. [PMID: 24767947 PMCID: PMC4065331 DOI: 10.1016/j.dnarep.2014.03.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The ability of a eukaryotic cell to precisely and accurately replicate its DNA is crucial to maintain genome stability. Here we describe our current understanding of the process by which origins are licensed for DNA replication and review recent work suggesting that fork stalling has exerted a strong selective pressure on the positioning of licensed origins. In light of this, we discuss the complex and disparate phenotypes observed in mouse models and humans patients that arise due to defects in replication licensing proteins.
Collapse
Affiliation(s)
- Robert C Alver
- Centre for Gene Regulation & Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Gaganmeet Singh Chadha
- Centre for Gene Regulation & Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - J Julian Blow
- Centre for Gene Regulation & Expression, College of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
30
|
Rif1 controls DNA replication timing in yeast through the PP1 phosphatase Glc7. Cell Rep 2014; 7:62-9. [PMID: 24685139 DOI: 10.1016/j.celrep.2014.03.010] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 02/15/2014] [Accepted: 03/06/2014] [Indexed: 12/27/2022] Open
Abstract
The Rif1 protein, originally identified as a telomere-binding factor in yeast, has recently been implicated in DNA replication control from yeast to metazoans. Here, we show that budding yeast Rif1 protein inhibits activation of prereplication complexes (pre-RCs). This inhibitory function requires two N-terminal motifs, RVxF and SILK, associated with recruitment of PP1 phosphatase (Glc7). In G1 phase, we show both that Glc7 interacts with Rif1 in an RVxF/SILK-dependent manner and that two proteins implicated in pre-RC activation, Mcm4 and Sld3, display increased Dbf4-dependent kinase (DDK) phosphorylation in rif1 mutants. Rif1 also interacts with Dbf4 in yeast two-hybrid assays, further implicating this protein in direct modulation of pre-RC activation through the DDK. Finally, we demonstrate Rif1 RVxF/SILK motif-dependent recruitment of Glc7 to telomeres and earlier replication of these regions in cells where the motifs are mutated. Our data thus link Rif1 to negative regulation of replication origin firing through recruitment of the Glc7 phosphatase.
Collapse
|
31
|
Magiera MM, Gueydon E, Schwob E. DNA replication and spindle checkpoints cooperate during S phase to delay mitosis and preserve genome integrity. ACTA ACUST UNITED AC 2014; 204:165-75. [PMID: 24421333 PMCID: PMC3897190 DOI: 10.1083/jcb.201306023] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Deoxyribonucleic acid (DNA) replication and chromosome segregation must occur in ordered sequence to maintain genome integrity during cell proliferation. Checkpoint mechanisms delay mitosis when DNA is damaged or upon replication stress, but little is known on the coupling of S and M phases in unperturbed conditions. To address this issue, we postponed replication onset in budding yeast so that DNA synthesis is still underway when cells should enter mitosis. This delayed mitotic entry and progression by transient activation of the S phase, G2/M, and spindle assembly checkpoints. Disabling both Mec1/ATR- and Mad2-dependent controls caused lethality in cells with deferred S phase, accompanied by Rad52 foci and chromosome missegregation. Thus, in contrast to acute replication stress that triggers a sustained Mec1/ATR response, multiple pathways cooperate to restrain mitosis transiently when replication forks progress unhindered. We suggest that these surveillance mechanisms arose when both S and M phases were coincidently set into motion by a unique ancestral cyclin-Cdk1 complex.
Collapse
Affiliation(s)
- Maria M Magiera
- Institute of Molecular Genetics, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5535 and University of Montpellier, 34293 Montpellier, France
| | | | | |
Collapse
|
32
|
Comoglio F, Paro R. Combinatorial modeling of chromatin features quantitatively predicts DNA replication timing in Drosophila. PLoS Comput Biol 2014; 10:e1003419. [PMID: 24465194 PMCID: PMC3900380 DOI: 10.1371/journal.pcbi.1003419] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 11/18/2013] [Indexed: 01/14/2023] Open
Abstract
In metazoans, each cell type follows a characteristic, spatio-temporally regulated DNA replication program. Histone modifications (HMs) and chromatin binding proteins (CBPs) are fundamental for a faithful progression and completion of this process. However, no individual HM is strictly indispensable for origin function, suggesting that HMs may act combinatorially in analogy to the histone code hypothesis for transcriptional regulation. In contrast to gene expression however, the relationship between combinations of chromatin features and DNA replication timing has not yet been demonstrated. Here, by exploiting a comprehensive data collection consisting of 95 CBPs and HMs we investigated their combinatorial potential for the prediction of DNA replication timing in Drosophila using quantitative statistical models. We found that while combinations of CBPs exhibit moderate predictive power for replication timing, pairwise interactions between HMs lead to accurate predictions genome-wide that can be locally further improved by CBPs. Independent feature importance and model analyses led us to derive a simplified, biologically interpretable model of the relationship between chromatin landscape and replication timing reaching 80% of the full model accuracy using six model terms. Finally, we show that pairwise combinations of HMs are able to predict differential DNA replication timing across different cell types. All in all, our work provides support to the existence of combinatorial HM patterns for DNA replication and reveal cell-type independent key elements thereof, whose experimental investigation might contribute to elucidate the regulatory mode of this fundamental cellular process.
Collapse
Affiliation(s)
- Federico Comoglio
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Renato Paro
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
- Faculty of Science, University of Basel, Basel, Switzerland
| |
Collapse
|
33
|
Masai H. A personal reflection on the replicon theory: from R1 plasmid to replication timing regulation in human cells. J Mol Biol 2013; 425:4663-72. [PMID: 23579064 DOI: 10.1016/j.jmb.2013.03.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 03/15/2013] [Accepted: 03/21/2013] [Indexed: 01/09/2023]
Abstract
Fifty years after the Replicon Theory was originally presented, detailed mechanistic insight into prokaryotic replicons has been obtained and rapid progress is being made to elucidate the more complex regulatory mechanisms of replicon regulation in eukaryotic cells. Here, I present my personal perspectives on how studies of model replicons have contributed to our understanding of the basic mechanisms of DNA replication as well as the evolution of replication regulation in human cells. I will also discuss how replication regulation contributes to the stable maintenance of the genome and how disruption of replication regulation leads to human diseases.
Collapse
Affiliation(s)
- Hisao Masai
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamkitazawa, Setagaya-ku, Tokyo 156-8506, Japan.
| |
Collapse
|
34
|
Newman TJ, Mamun MA, Nieduszynski CA, Blow JJ. Replisome stall events have shaped the distribution of replication origins in the genomes of yeasts. Nucleic Acids Res 2013; 41:9705-18. [PMID: 23963700 PMCID: PMC3834809 DOI: 10.1093/nar/gkt728] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 07/24/2013] [Accepted: 07/25/2013] [Indexed: 01/21/2023] Open
Abstract
During S phase, the entire genome must be precisely duplicated, with no sections of DNA left unreplicated. Here, we develop a simple mathematical model to describe the probability of replication failing due to the irreversible stalling of replication forks. We show that the probability of complete genome replication is maximized if replication origins are evenly spaced, the largest inter-origin distances are minimized, and the end-most origins are positioned close to chromosome ends. We show that origin positions in the yeast Saccharomyces cerevisiae genome conform to all three predictions thereby maximizing the probability of complete replication if replication forks stall. Origin positions in four other yeasts-Kluyveromyces lactis, Lachancea kluyveri, Lachancea waltii and Schizosaccharomyces pombe-also conform to these predictions. Equating failure rates at chromosome ends with those in chromosome interiors gives a mean per nucleotide fork stall rate of ∼5 × 10(-8), which is consistent with experimental estimates. Using this value in our theoretical predictions gives replication failure rates that are consistent with data from replication origin knockout experiments. Our theory also predicts that significantly larger genomes, such as those of mammals, will experience a much greater probability of replication failure genome-wide, and therefore will likely require additional compensatory mechanisms.
Collapse
Affiliation(s)
- Timothy J. Newman
- College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK, School of Engineering, Physics and Mathematics, University of Dundee, Dundee, DD1 4HN, UK and Centre for Genetics and Genomics, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Mohammed A. Mamun
- College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK, School of Engineering, Physics and Mathematics, University of Dundee, Dundee, DD1 4HN, UK and Centre for Genetics and Genomics, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Conrad A. Nieduszynski
- College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK, School of Engineering, Physics and Mathematics, University of Dundee, Dundee, DD1 4HN, UK and Centre for Genetics and Genomics, University of Nottingham, Nottingham, NG7 2UH, UK
| | - J. Julian Blow
- College of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK, School of Engineering, Physics and Mathematics, University of Dundee, Dundee, DD1 4HN, UK and Centre for Genetics and Genomics, University of Nottingham, Nottingham, NG7 2UH, UK
| |
Collapse
|
35
|
Yoshida K, Poveda A, Pasero P. Time to be versatile: regulation of the replication timing program in budding yeast. J Mol Biol 2013; 425:4696-705. [PMID: 24076190 DOI: 10.1016/j.jmb.2013.09.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 09/17/2013] [Accepted: 09/18/2013] [Indexed: 01/24/2023]
Abstract
Eukaryotic replication origins are activated at different times during the S phase of the cell cycle, following a temporal program that is stably transmitted to daughter cells. Although the mechanisms that control initiation at the level of individual origins are now well understood, much less is known on how cells coordinate replication at hundreds of origins distributed on the chromosomes. In this review, we discuss recent advances shedding new light on how this complex process is regulated in the budding yeast Saccharomyces cerevisiae. The picture that emerges from these studies is that replication timing is regulated in cis by mechanisms modulating the chromatin structure and the subnuclear organization of origins. These mechanisms do not affect the licensing of replication origins but determine their ability to compete for limiting initiation factors, which are recycled from early to late origins throughout the length of the S phase.
Collapse
Affiliation(s)
- Kazumasa Yoshida
- Institute of Human Genetics, CNRS UPR 1142, 141 rue de la Cardonille, Equipe Labellisée Ligue Contre le Cancer, 34396 Montpellier cedex 5, France; Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | |
Collapse
|
36
|
Hoggard T, Shor E, Müller CA, Nieduszynski CA, Fox CA. A Link between ORC-origin binding mechanisms and origin activation time revealed in budding yeast. PLoS Genet 2013; 9:e1003798. [PMID: 24068963 PMCID: PMC3772097 DOI: 10.1371/journal.pgen.1003798] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 07/30/2013] [Indexed: 01/19/2023] Open
Abstract
Eukaryotic DNA replication origins are selected in G1-phase when the origin recognition complex (ORC) binds chromosomal positions and triggers molecular events culminating in the initiation of DNA replication (a.k.a. origin firing) during S-phase. Each chromosome uses multiple origins for its duplication, and each origin fires at a characteristic time during S-phase, creating a cell-type specific genome replication pattern relevant to differentiation and genome stability. It is unclear whether ORC-origin interactions are relevant to origin activation time. We applied a novel genome-wide strategy to classify origins in the model eukaryote Saccharomyces cerevisiae based on the types of molecular interactions used for ORC-origin binding. Specifically, origins were classified as DNA-dependent when the strength of ORC-origin binding in vivo could be explained by the affinity of ORC for origin DNA in vitro, and, conversely, as ‘chromatin-dependent’ when the ORC-DNA interaction in vitro was insufficient to explain the strength of ORC-origin binding in vivo. These two origin classes differed in terms of nucleosome architecture and dependence on origin-flanking sequences in plasmid replication assays, consistent with local features of chromatin promoting ORC binding at ‘chromatin-dependent’ origins. Finally, the ‘chromatin-dependent’ class was enriched for origins that fire early in S-phase, while the DNA-dependent class was enriched for later firing origins. Conversely, the latest firing origins showed a positive association with the ORC-origin DNA paradigm for normal levels of ORC binding, whereas the earliest firing origins did not. These data reveal a novel association between ORC-origin binding mechanisms and the regulation of origin activation time. Cell division requires the duplication of chromosomes, protein-DNA complexes harboring genetic information. Specific chromosomal positions, origins, initiate this duplication. Multiple origins are required for accurate, efficient duplication—an insufficient number leads to mistakes in the genetic material and pathologies such as cancer. Origins are chosen when the origin recognition complex (ORC) binds to them. The molecular interactions controlling this binding remain unclear. Understanding these interactions will lead to new ways to control cell division, which could aid in treatments of disease. Experiments were performed in the eukaryotic microbe budding yeast to define the types of molecular interactions ORC uses to bind origins. Yeasts are useful for these studies because chromosome duplication and structure are well conserved from yeast to humans. While ORC-DNA interactions were important, interactions between ORC and chromosomal proteins played a role. In addition, different origins relied on different types of molecular interactions with ORC. Finally, ORC-protein interactions but not ORC-DNA interactions were associated with enhanced origin function during chromosome-duplication, revealing an unanticipated link between the types of molecular interactions ORC uses to select an origin and the ultimate function of that origin. These results have implications for interfering with ORC-origin interactions to control cell division.
Collapse
Affiliation(s)
- Timothy Hoggard
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Program in Cellular and Molecular Biology, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Erika Shor
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Carolin A. Müller
- Centre for Genetics and Genomics, University of Nottingham Queen's Medical Centre, Nottingham, United Kingdom
| | - Conrad A. Nieduszynski
- Centre for Genetics and Genomics, University of Nottingham Queen's Medical Centre, Nottingham, United Kingdom
- * E-mail: (CAN); (CAF)
| | - Catherine A. Fox
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Program in Cellular and Molecular Biology, College of Agriculture and Life Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (CAN); (CAF)
| |
Collapse
|
37
|
Abstract
Patterns of replication within eukaryotic genomes correlate with gene expression, chromatin structure, and genome evolution. Recent advances in genome-scale mapping of replication kinetics have allowed these correlations to be explored in many species, cell types, and growth conditions, and these large data sets have allowed quantitative and computational analyses. One striking new correlation to emerge from these analyses is between replication timing and the three-dimensional structure of chromosomes. This correlation, which is significantly stronger than with any single histone modification or chromosome-binding protein, suggests that replication timing is controlled at the level of chromosomal domains. This conclusion dovetails with parallel work on the heterogeneity of origin firing and the competition between origins for limiting activators to suggest a model in which the stochastic probability of individual origin firing is modulated by chromosomal domain structure to produce patterns of replication. Whether these patterns have inherent biological functions or simply reflect higher-order genome structure is an open question.
Collapse
Affiliation(s)
- Nicholas Rhind
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA.
| | | |
Collapse
|
38
|
Supady A, Klipp E, Barberis M. A variable fork rate affects timing of origin firing and S phase dynamics in Saccharomyces cerevisiae. J Biotechnol 2013; 168:174-84. [PMID: 23850861 DOI: 10.1016/j.jbiotec.2013.06.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 05/23/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
Abstract
Activation (in the following referred to as firing) of replication origins is a continuous and irreversible process regulated by availability of DNA replication molecules and cyclin-dependent kinase activities, which are often altered in human cancers. The temporal, progressive origin firing throughout S phase appears as a characteristic replication profile, and computational models have been developed to describe this process. Although evidence from yeast to human indicates that a range of replication fork rates is observed experimentally in order to complete a timely S phase, those models incorporate velocities that are uniform across the genome. Taking advantage of the availability of replication profiles, chromosomal position and replication timing, here we investigated how fork rate may affect origin firing in budding yeast. Our analysis suggested that patterns of origin firing can be observed from a modulation of the fork rate that strongly correlates with origin density. Replication profiles of chromosomes with a low origin density were fitted with a variable fork rate, whereas for the ones with a high origin density a constant fork rate was appropriate. This indeed supports the previously reported correlation between inter-origin distance and fork rate changes. Intriguingly, the calculated correlation between fork rate and timing of origin firing allowed the estimation of firing efficiencies for the replication origins. This approach correctly retrieved origin efficiencies previously determined for chromosome VI and provided testable prediction for other chromosomal origins. Our results gain deeper insights into the temporal coordination of genome duplication, indicating that control of the replication fork rate is required for the timely origin firing during S phase.
Collapse
Affiliation(s)
- Adriana Supady
- Institute for Biology, Theoretical Biophysics, Humboldt University Berlin, Invalidenstraβe 42, 10115 Berlin, Germany
| | | | | |
Collapse
|
39
|
Yekezare M, Gómez-González B, Diffley JFX. Controlling DNA replication origins in response to DNA damage - inhibit globally, activate locally. J Cell Sci 2013; 126:1297-306. [PMID: 23645160 DOI: 10.1242/jcs.096701] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
DNA replication in eukaryotic cells initiates from multiple replication origins that are distributed throughout the genome. Coordinating the usage of these origins is crucial to ensure complete and timely replication of the entire genome precisely once in each cell cycle. Replication origins fire according to a cell-type-specific temporal programme, which is established in the G1 phase of each cell cycle. In response to conditions causing the slowing or stalling of DNA replication forks, the programme of origin firing is altered in two contrasting ways, depending on chromosomal context. First, inactive or 'dormant' replication origins in the vicinity of the stalled replication fork become activated and, second, the S phase checkpoint induces a global shutdown of further origin firing throughout the genome. Here, we review our current understanding on the role of dormant origins and the S phase checkpoint in the rescue of stalled forks and the completion of DNA replication in the presence of replicative stress.
Collapse
Affiliation(s)
- Mona Yekezare
- Cancer Research UK London Research Institute, Clare Hall Laboratories, South Mimms EN6 3LD, UK
| | | | | |
Collapse
|
40
|
Aparicio OM. Location, location, location: it's all in the timing for replication origins. Genes Dev 2013; 27:117-28. [PMID: 23348837 DOI: 10.1101/gad.209999.112] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The differential replication timing of eukaryotic replication origins has long been linked with epigenetic regulation of gene expression and more recently with genome stability and mutation rates; however, the mechanism has remained obscure. Recent studies have shed new light by identifying novel factors that determine origin timing in yeasts and mammalian cells and implicate the spatial organization of origins within nuclear territories in the mechanism. These new insights, along with recent findings that several initiation factors are limiting relative to licensed origins, support and shape an emerging model for replication timing control. The mechanisms that control the spatial organization of replication origins have potential impacts for genome regulation beyond replication.
Collapse
Affiliation(s)
- Oscar M Aparicio
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, California 90089, USA.
| |
Collapse
|
41
|
Audit B, Baker A, Chen CL, Rappailles A, Guilbaud G, Julienne H, Goldar A, d'Aubenton-Carafa Y, Hyrien O, Thermes C, Arneodo A. Multiscale analysis of genome-wide replication timing profiles using a wavelet-based signal-processing algorithm. Nat Protoc 2012; 8:98-110. [PMID: 23237832 DOI: 10.1038/nprot.2012.145] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this protocol, we describe the use of the LastWave open-source signal-processing command language (http://perso.ens-lyon.fr/benjamin.audit/LastWave/) for analyzing cellular DNA replication timing profiles. LastWave makes use of a multiscale, wavelet-based signal-processing algorithm that is based on a rigorous theoretical analysis linking timing profiles to fundamental features of the cell's DNA replication program, such as the average replication fork polarity and the difference between replication origin density and termination site density. We describe the flow of signal-processing operations to obtain interactive visual analyses of DNA replication timing profiles. We focus on procedures for exploring the space-scale map of apparent replication speeds to detect peaks in the replication timing profiles that represent preferential replication initiation zones, and for delimiting U-shaped domains in the replication timing profile. In comparison with the generally adopted approach that involves genome segmentation into regions of constant timing separated by timing transition regions, the present protocol enables the recognition of more complex patterns of the spatio-temporal replication program and has a broader range of applications. Completing the full procedure should not take more than 1 h, although learning the basics of the program can take a few hours and achieving full proficiency in the use of the software may take days.
Collapse
|
42
|
Retkute R, Nieduszynski CA, de Moura A. Mathematical modeling of genome replication. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2012; 86:031916. [PMID: 23030953 PMCID: PMC3671344 DOI: 10.1103/physreve.86.031916] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 08/15/2012] [Indexed: 06/01/2023]
Abstract
Eukaryotic DNA replication is initiated from multiple sites on the chromosome, but little is known about the global and local regulation of replication. We present a mathematical model for the spatial dynamics of DNA replication, which offers insight into the kinetics of replication in different types of organisms. Most biological experiments involve average quantities over large cell populations (typically >10(7) cells) and therefore can mask the cell-to-cell variability present in the system. Although the model is formulated in terms of a population of cells, using mathematical analysis we show that one can obtain signatures of stochasticity in individual cells from averaged quantities. This work generalizes the result by Retkute et al. [Phys. Rev. Lett. 107, 068103 (2011)] to a broader set of parameter regimes.
Collapse
Affiliation(s)
- Renata Retkute
- Centre for Genetics and Genomics, University of Nottingham, Nottingham NG7 2UH, United Kingdom
| | | | | |
Collapse
|
43
|
Demczuk A, Gauthier MG, Veras I, Kosiyatrakul S, Schildkraut CL, Busslinger M, Bechhoefer J, Norio P. Regulation of DNA replication within the immunoglobulin heavy-chain locus during B cell commitment. PLoS Biol 2012; 10:e1001360. [PMID: 22807655 PMCID: PMC3393677 DOI: 10.1371/journal.pbio.1001360] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 05/30/2012] [Indexed: 12/03/2022] Open
Abstract
The temporal order of replication of mammalian chromosomes appears to be linked to their functional organization, but the process that establishes and modifies this order during cell differentiation remains largely unknown. Here, we studied how the replication of the Igh locus initiates, progresses, and terminates in bone marrow pro-B cells undergoing B cell commitment. We show that many aspects of DNA replication can be quantitatively explained by a mechanism involving the stochastic firing of origins (across the S phase and the Igh locus) and extensive variations in their firing rate (along the locus). The firing rate of origins shows a high degree of coordination across Igh domains that span tens to hundreds of kilobases, a phenomenon not observed in simple eukaryotes. Differences in domain sizes and firing rates determine the temporal order of replication. During B cell commitment, the expression of the B-cell-specific factor Pax5 sharply alters the temporal order of replication by modifying the rate of origin firing within various Igh domains (particularly those containing Pax5 binding sites). We propose that, within the Igh CH-3′RR domain, Pax5 is responsible for both establishing and maintaining high rates of origin firing, mostly by controlling events downstream of the assembly of pre-replication complexes. Each time a mammalian cell duplicates its genome in preparation for cell division it activates thousands of so called “DNA origins of replication.” The timely and complete duplication of the genome depends on careful orchestration of origin activation, which is modified when cells differentiate to perform a specific function. We currently lack a universally accepted model of origin regulation that can explain the replication dynamics in complex eukaryotes. Here, we studied the mouse immunoglobulin heavy-chain locus, one of the antibody-encoding portions of the genome, where origins change activity when antibody-producing B cells differentiate in the bone marrow. We show that multiple aspects of DNA replication initiation, progression, and termination can be explained mathematically by the interplay between randomly firing origins and two independent variables: the speed of progression of replication forks and the firing rate of origins along the locus. The rate of origin firing varies extensively along the locus during B cell differentiation and, thus, is a dominant factor in establishing the temporal order of replication. A differentiation factor called Pax5 can alter the temporal order of replication by modifying the rate of origin firing across various parts of the locus.
Collapse
Affiliation(s)
- Agnieszka Demczuk
- Department of Oncology, Montefiore Medical Center, Moses Division, Bronx, New York, United States of America
| | | | - Ingrid Veras
- Department of Oncology, Montefiore Medical Center, Moses Division, Bronx, New York, United States of America
| | - Settapong Kosiyatrakul
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Carl L. Schildkraut
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Meinrad Busslinger
- Research Institute of Molecular Pathology, Vienna Biocenter, Vienna, Austria
| | - John Bechhoefer
- Department of Physics, Simon Fraser University, Burnaby, Canada
| | - Paolo Norio
- Department of Oncology, Montefiore Medical Center, Moses Division, Bronx, New York, United States of America
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, United States of America
- * E-mail:
| |
Collapse
|
44
|
Bechhoefer J, Rhind N. Replication timing and its emergence from stochastic processes. Trends Genet 2012; 28:374-81. [PMID: 22520729 DOI: 10.1016/j.tig.2012.03.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Revised: 03/21/2012] [Accepted: 03/22/2012] [Indexed: 01/28/2023]
Abstract
The temporal organization of DNA replication has puzzled cell biologists since before the mechanism of replication was understood. The realization that replication timing correlates with important features, such as transcription, chromatin structure and genome evolution, and is misregulated in cancer and aging has only deepened the fascination. Many ideas about replication timing have been proposed, but most have been short on mechanistic detail. However, recent work has begun to elucidate basic principles of replication timing. In particular, mathematical modeling of replication kinetics in several systems has shown that the reproducible replication timing patterns seen in population studies can be explained by stochastic origin firing at the single-cell level. This work suggests that replication timing need not be controlled by a hierarchical mechanism that imposes replication timing from a central regulator, but instead results from simple rules that affect individual origins.
Collapse
Affiliation(s)
- John Bechhoefer
- Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.
| | | |
Collapse
|
45
|
Sacco E, Hasan MM, Alberghina L, Vanoni M. Comparative analysis of the molecular mechanisms controlling the initiation of chromosomal DNA replication in yeast and in mammalian cells. Biotechnol Adv 2012; 30:73-98. [DOI: 10.1016/j.biotechadv.2011.09.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/14/2011] [Indexed: 11/26/2022]
|
46
|
Evidence for sequential and increasing activation of replication origins along replication timing gradients in the human genome. PLoS Comput Biol 2011; 7:e1002322. [PMID: 22219720 PMCID: PMC3248390 DOI: 10.1371/journal.pcbi.1002322] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Accepted: 11/07/2011] [Indexed: 12/28/2022] Open
Abstract
Genome-wide replication timing studies have suggested that mammalian chromosomes consist of megabase-scale domains of coordinated origin firing separated by large originless transition regions. Here, we report a quantitative genome-wide analysis of DNA replication kinetics in several human cell types that contradicts this view. DNA combing in HeLa cells sorted into four temporal compartments of S phase shows that replication origins are spaced at 40 kb intervals and fire as small clusters whose synchrony increases during S phase and that replication fork velocity (mean 0.7 kb/min, maximum 2.0 kb/min) remains constant and narrowly distributed through S phase. However, multi-scale analysis of a genome-wide replication timing profile shows a broad distribution of replication timing gradients with practically no regions larger than 100 kb replicating at less than 2 kb/min. Therefore, HeLa cells lack large regions of unidirectional fork progression. Temporal transition regions are replicated by sequential activation of origins at a rate that increases during S phase and replication timing gradients are set by the delay and the spacing between successive origin firings rather than by the velocity of single forks. Activation of internal origins in a specific temporal transition region is directly demonstrated by DNA combing of the IGH locus in HeLa cells. Analysis of published origin maps in HeLa cells and published replication timing and DNA combing data in several other cell types corroborate these findings, with the interesting exception of embryonic stem cells where regions of unidirectional fork progression seem more abundant. These results can be explained if origins fire independently of each other but under the control of long-range chromatin structure, or if replication forks progressing from early origins stimulate initiation in nearby unreplicated DNA. These findings shed a new light on the replication timing program of mammalian genomes and provide a general model for their replication kinetics. Eukaryotic chromosomes replicate from multiple replication origins that fire at different times in S phase. The mechanisms that specify origin position and firing time and coordinate origins to ensure complete genome duplication are unclear. Previous studies proposed either that origins are arranged in temporally coordinated groups or fire independently of each other in a stochastic manner. Here, we have performed a quantitative analysis of human genome replication kinetics using a combination of DNA combing, which reveals local patterns of origin firing and replication fork progression on single DNA molecules, and massive sequencing of newly replicated DNA, which reveals the population-averaged replication timing profile of the entire genome. We show that origins are activated synchronously in large regions of uniform replication timing but more gradually in temporal transition regions and that the rate of origin firing increases as replication progresses. Large regions of unidirectional fork progression are abundant in embryonic stem cells but rare in differentiated cells. We propose a model in which replication forks progressing from early origins stimulate initiation in nearby unreplicated DNA in a manner that explains the shape of the replication timing profile. These results provide a fundamental insight into the temporal regulation of mammalian genome replication.
Collapse
|
47
|
Ma E, Hyrien O, Goldar A. Do replication forks control late origin firing in Saccharomyces cerevisiae? Nucleic Acids Res 2011; 40:2010-9. [PMID: 22086957 PMCID: PMC3300028 DOI: 10.1093/nar/gkr982] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Recent studies of eukaryotic DNA replication timing profiles suggest that the time-dependent rate of origin firing, I(t), has a universal shape, which ensures a reproducible replication completion time. However, measurements of I(t) are based on population averages, which may bias the shape of the I(t) because of imperfect cell synchrony and cell-to-cell variability. Here, we measure the population-averaged I(t) profile from synchronized Saccharomyces cerevisiae cells using DNA combing and we extract the single-cell I(t) profile using numerical deconvolution. The single cell I(t) and the population-averaged I(t) extracted from DNA combing and replication timing profiles are similar, indicating a genome scale invariance of the replication process, and excluding cell-to-cell variability in replication time as an explanation for the shape of I(t). The single cell I(t) correlates with fork density in wild-type cells, which is specifically loosened in late S phase in the clb5Δ mutant. A previously proposed numerical model that reproduces the wild-type I(t) profile, could also describe the clb5Δ mutant I(t) once modified to incorporate the decline in CDK activity and the looser dependency of initiation on fork density in the absence of Clb5p. Overall, these results suggest that the replication forks emanating from early fired origins facilitate origin firing in later-replicating regions.
Collapse
Affiliation(s)
- Emilie Ma
- Commissariat à l'Energie Atomique (CEA), iBiTec-S, 91191 Gif-sur-Yvette, France
| | | | | |
Collapse
|
48
|
Marsolier-Kergoat MC, Goldar A. DNA replication induces compositional biases in yeast. Mol Biol Evol 2011; 29:893-904. [PMID: 21948086 DOI: 10.1093/molbev/msr240] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Asymmetries intrinsic to the process of DNA replication are expected to cause differences in the substitution patterns of the leading and the lagging strands and to induce compositional biases. These biases have been detected in the majority of eubacterial genomes but rarely in eukaryotes. Only in the human genome, the activity of a minority of replication origins seems to generate compositional biases. In this work, we provide evidence for replication-associated GC and TA skews in the genomes of two yeast species, Saccharomyces cerevisiae and Kluyveromyces lactis, whereas the data for the Schizosaccharomyces pombe genome are less conclusive. In contrast with the genomes of Homo sapiens and of the majority of eubacteria, the leading strand is enriched in cytosine and adenine in both S. cerevisiae and K. lactis. We observed significant variations across the interorigin intervals of several substitution rates in the S. cerevisiae lineage since its divergence from S. paradoxus. We also found that the S. cerevisiae genome is far from compositional equilibrium and that its present compositional biases are due to substitution rates operating before its divergence from S. paradoxus. Finally, we observed that replication and transcription tend to be cooriented in the S. cerevisiae genome, especially for genes encoding subunits of protein complexes. Taken together, our results suggest that replication-related compositional biases may be a feature of many eukaryotic genomes despite the stochastic nature of the firing of replication origins in these genomes.
Collapse
|
49
|
Abstract
Mutation rates vary significantly within the genome and across species. Recent studies revealed a long suspected replication-timing effect on mutation rate, but the mechanisms that regulate the increase in mutation rate as the genome is replicated remain unclear. Evidence is emerging, however, that DNA repair systems, in general, are less efficient in late replicating heterochromatic regions compared to early replicating euchromatic regions of the genome. At the same time, mutation rates in both vertebrates and invertebrates have been shown to vary with generation time (GT). GT is correlated with genome size, which suggests a possible nucleotypic effect on species-specific mutation rates. These and other observations all converge on a role for DNA replication checkpoints in modulating generation times and mutation rates during the DNA synthetic phase (S phase) of the cell cycle. The following will examine the potential role of the intra-S checkpoint in regulating cell cycle times (GT) and mutation rates in eukaryotes. This article was published online on August 5, 2011. An error was subsequently identified. This notice is included in the online and print versions to indicate that both have been corrected October 4, 2011.
Collapse
Affiliation(s)
- John Herrick
- Department of Physics, Simon Fraser University, 8888 University Drive, Burnaby, British Columbia, Canada.
| |
Collapse
|
50
|
Barberis M, Spiesser TW, Klipp E. Replication origins and timing of temporal replication in budding yeast: how to solve the conundrum? Curr Genomics 2011; 11:199-211. [PMID: 21037857 PMCID: PMC2878984 DOI: 10.2174/138920210791110942] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 01/08/2010] [Accepted: 01/14/2010] [Indexed: 11/22/2022] Open
Abstract
Similarly to metazoans, the budding yeast Saccharomyces cereviasiae replicates its genome with a defined timing. In this organism, well-defined, site-specific origins, are efficient and fire in almost every round of DNA replication. However, this strategy is neither conserved in the fission yeast Saccharomyces pombe, nor in Xenopus or Drosophila embryos, nor in higher eukaryotes, in which DNA replication initiates asynchronously throughout S phase at random sites. Temporal and spatial controls can contribute to the timing of replication such as Cdk activity, origin localization, epigenetic status or gene expression. However, a debate is going on to answer the question how individual origins are selected to fire in budding yeast. Two opposing theories were proposed: the "replicon paradigm" or "temporal program" vs. the "stochastic firing". Recent data support the temporal regulation of origin activation, clustering origins into temporal blocks of early and late replication. Contrarily, strong evidences suggest that stochastic processes acting on origins can generate the observed kinetics of replication without requiring a temporal order. In mammalian cells, a spatiotemporal model that accounts for a partially deterministic and partially stochastic order of DNA replication has been proposed. Is this strategy the solution to reconcile the conundrum of having both organized replication timing and stochastic origin firing also for budding yeast? In this review we discuss this possibility in the light of our recent study on the origin activation, suggesting that there might be a stochastic component in the temporal activation of the replication origins, especially under perturbed conditions.
Collapse
Affiliation(s)
- Matteo Barberis
- Institute for Biology, Theoretical Biophysics, Humboldt University Berlin, Invalidenstraβe 42, 10115 Berlin, Germany
| | | | | |
Collapse
|