1
|
Kroupin PY, Yurkina AI, Ulyanov DS, Karlov GI, Divashuk MG. Comparative Characterization of Pseudoroegneria libanotica and Pseudoroegneria tauri Based on Their Repeatome Peculiarities. PLANTS (BASEL, SWITZERLAND) 2023; 12:4169. [PMID: 38140496 PMCID: PMC10747672 DOI: 10.3390/plants12244169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Pseudoroegneria species play an important role among Triticeae grasses, as they are the putative donors of the St genome in many polyploid species. Satellite repeats are widely used as a reliable tool for tracking evolutionary changes because they are distributed throughout the genomes of plants. The aim of our work is to perform a comparative characterization of the repeatomes of the closely related species Ps. libanotica and Ps. tauri, and Ps. spicata was also included in the analysis. The overall repeatome structures of Ps. libanotica, Ps. tauri, and Ps. spicata were similar, with some individual peculiarities observed in the abundance of the SIRE (Ty1/Copia) retrotransposons, Mutator and Harbinger transposons, and satellites. Nine new satellite repeats that have been identified from the whole-genome sequences of Ps. spicata and Ps. tauri, as well as the CL244 repeat that was previously found in Aegilops crassa, were localized to the chromosomes of Ps. libanotica and Ps. tauri. Four satellite repeats (CL69, CL101, CL119, CL244) demonstrated terminal and/or distal localization, while six repeats (CL82, CL89, CL168, CL185, CL192, CL207) were pericentromeric. Based on the obtained results, it can be assumed that Ps. libanotica and Ps. tauri are closely related species, although they have individual peculiarities in their repeatome structures and patterns of satellite repeat localization on chromosomes. The evolutionary fate of the identified satellite repeats and their related sequences, as well as their distribution on the chromosomes of Triticeae species, are discussed. The newly developed St genome chromosome markers developed in the present research can be useful in population studies of Ps. libanotica and Ps. tauri; auto- and allopolyploids that contain the St genome, such as Thinopyrum, Elymus, Kengyilia, and Roegneria; and wide hybrids between wheat and related wild species.
Collapse
Affiliation(s)
- Pavel Yu. Kroupin
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya St., 42, 127550 Moscow, Russia (D.S.U.)
| | - Anna I. Yurkina
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya St., 42, 127550 Moscow, Russia (D.S.U.)
| | - Daniil S. Ulyanov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya St., 42, 127550 Moscow, Russia (D.S.U.)
| | - Gennady I. Karlov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya St., 42, 127550 Moscow, Russia (D.S.U.)
| | - Mikhail G. Divashuk
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya St., 42, 127550 Moscow, Russia (D.S.U.)
- Federal Research Center “Nemchinovka”, Bolshoi Blvd., 30 Bld. 1, Skolkovo Innovation Center, 121205 Moscow, Russia
- National Research Center “Kurchatov Institute”, Kurchatov Sq., 1, 123182 Moscow, Russia
| |
Collapse
|
2
|
Kroupin PY, Ulyanov DS, Karlov GI, Divashuk MG. The launch of satellite: DNA repeats as a cytogenetic tool in discovering the chromosomal universe of wild Triticeae. Chromosoma 2023:10.1007/s00412-023-00789-4. [PMID: 36905415 DOI: 10.1007/s00412-023-00789-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/16/2022] [Accepted: 02/22/2023] [Indexed: 03/12/2023]
Abstract
Fluorescence in situ hybridization is a powerful tool that enables plant researchers to perform systematic, evolutionary, and population studies of wheat wild relatives as well as to characterize alien introgression into the wheat genome. This retrospective review reflects on progress made in the development of methods for creating new chromosomal markers since the launch of this cytogenetic satellite instrument to the present day. DNA probes based on satellite repeats have been widely used for chromosome analysis, especially for "classical" wheat probes (pSc119.2 and Afa family) and "universal" repeats (45S rDNA, 5S rDNA, and microsatellites). The rapid development of new-generation sequencing and bioinformatical tools, and the application of oligo- and multioligonucleotides has resulted in an explosion in the discovery of new genome- and chromosome-specific chromosome markers. Owing to modern technologies, new chromosomal markers are appearing at an unprecedented velocity. The present review describes the specifics of localization when employing commonly used vs. newly developed probes for chromosomes in J, E, V, St, Y, and P genomes and their diploid and polyploid carriers Agropyron, Dasypyrum, Thinopyrum, Pseudoroegneria, Elymus, Roegneria, and Kengyilia. Particular attention is paid to the specificity of probes, which determines their applicability for the detection of alien introgression to enhance the genetic diversity of wheat through wide hybridization. The information from the reviewed articles is summarized into the TRepeT database, which may be useful for studying the cytogenetics of Triticeae. The review describes the trends in the development of technology used in establishing chromosomal markers that can be used for prediction and foresight in the field of molecular biology and in methods of cytogenetic analysis.
Collapse
Affiliation(s)
- Pavel Yu Kroupin
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550, Moscow, Russia.
| | - Daniil S Ulyanov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550, Moscow, Russia
| | - Gennady I Karlov
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550, Moscow, Russia
| | - Mikhail G Divashuk
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya Street, 42, 127550, Moscow, Russia
| |
Collapse
|
3
|
Fluorescence In Situ Hybridization (FISH) for the Genotyping of Triticeae Tribe Species and Hybrids. Methods Mol Biol 2023; 2638:437-449. [PMID: 36781661 DOI: 10.1007/978-1-0716-3024-2_31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
This chapter is dedicated to using fluorescence in situ hybridization (FISH) for the genotyping of Triticeae tribe species and hybrids. The basic method of FISH on metaphase chromosomes is presented with a discussion on its modifications, and deoxyribonucleic acid (DNA) probes that can be useful for genotyping are proposed.
Collapse
|
4
|
Kroupin PY, Badaeva ED, Sokolova VM, Chikida NN, Belousova MK, Surzhikov SA, Nikitina EA, Kocheshkova AA, Ulyanov DS, Ermolaev AS, Khuat TML, Razumova OV, Yurkina AI, Karlov GI, Divashuk MG. Aegilops crassa Boiss. repeatome characterized using low-coverage NGS as a source of new FISH markers: Application in phylogenetic studies of the Triticeae. FRONTIERS IN PLANT SCIENCE 2022; 13:980764. [PMID: 36325551 PMCID: PMC9621091 DOI: 10.3389/fpls.2022.980764] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/29/2022] [Indexed: 06/13/2023]
Abstract
Aegilops crassa Boiss. is polyploid grass species that grows in the eastern part of the Fertile Crescent, Afghanistan, and Middle Asia. It consists of tetraploid (4x) and hexaploid (6x) cytotypes (2n = 4x = 28, D1D (Abdolmalaki et al., 2019) XcrXcr and 2n = 6x = 42, D1D (Abdolmalaki et al., 2019) XcrXcrD2D (Adams and Wendel, 2005), respectively) that are similar morphologically. Although many Aegilops species were used in wheat breeding, the genetic potential of Ae. crassa has not yet been exploited due to its uncertain origin and significant genome modifications. Tetraploid Ae. crassa is thought to be the oldest polyploid Aegilops species, the subgenomes of which still retain some features of its ancient diploid progenitors. The D1 and D2 subgenomes of Ae. crassa were contributed by Aegilops tauschii (2n = 2x = 14, DD), while the Xcr subgenome donor is still unknown. Owing to its ancient origin, Ae. crassa can serve as model for studying genome evolution. Despite this, Ae. crassa is poorly studied genetically and no genome sequences were available for this species. We performed low-coverage genome sequencing of 4x and 6x cytotypes of Ae. crassa, and four Ae. tauschii accessions belonging to different subspecies; diploid wheatgrass Thinopyrum bessarabicum (Jb genome), which is phylogenetically close to D (sub)genome species, was taken as an outgroup. Subsequent data analysis using the pipeline RepeatExplorer2 allowed us to characterize the repeatomes of these species and identify several satellite sequences. Some of these sequences are novel, while others are found to be homologous to already known satellite sequences of Triticeae species. The copy number of satellite repeats in genomes of different species and their subgenome (D1 or Xcr) affinity in Ae. crassa were assessed by means of comparative bioinformatic analysis combined with quantitative PCR (qPCR). Fluorescence in situ hybridization (FISH) was performed to map newly identified satellite repeats on chromosomes of common wheat, Triticum aestivum, 4x and 6x Ae. crassa, Ae. tauschii, and Th. bessarabicum. The new FISH markers can be used in phylogenetic analyses of the Triticeae for chromosome identification and the assessment of their subgenome affinities and for evaluation of genome/chromosome constitution of wide hybrids or polyploid species.
Collapse
Affiliation(s)
- Pavel Yu. Kroupin
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Ekaterina D. Badaeva
- N.I.Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Victoria M. Sokolova
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Nadezhda N. Chikida
- All-Russian Institute of Plant Genetic Resources (VIR), Department of Wheat Genetic Resources, St. Petersburg, Russia
| | - Maria Kh. Belousova
- All-Russian Institute of Plant Genetic Resources (VIR), Department of Wheat Genetic Resources, St. Petersburg, Russia
| | - Sergei A. Surzhikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina A. Nikitina
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Alina A. Kocheshkova
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Daniil S. Ulyanov
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Aleksey S. Ermolaev
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Thi Mai Luong Khuat
- Agricultural Genetics Institute, Department of Molecular Biology, Hanoi, Vietnam
| | - Olga V. Razumova
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Anna I. Yurkina
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Gennady I. Karlov
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| | - Mikhail G. Divashuk
- All-Russia Research Institute of Agricultural Biotechnology, Kurchatov Genomics Centre – ARRIAB, Moscow, Russia
| |
Collapse
|
5
|
Badaeva ED, Fisenko AV, Surzhikov SA, Yankovskaya AA, Chikida NN, Zoshchuk SA, Belousova MK, Dragovich AY. Genetic Heterogeneity of a Diploid Grass Aegilops tauschii Revealed by Chromosome Banding Methods and Electrophoretic Analysis of the Seed Storage Proteins (Gliadins). RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419110024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Kong L, Song X, Xiao J, Sun H, Dai K, Lan C, Singh P, Yuan C, Zhang S, Singh R, Wang H, Wang X. Development and characterization of a complete set of Triticum aestivum-Roegneria ciliaris disomic addition lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1793-1806. [PMID: 29855671 DOI: 10.1007/s00122-018-3114-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/14/2018] [Indexed: 05/14/2023]
Abstract
A complete set wheat-R. ciliaris disomic addition lines (DALs) were characterized and the homoeologous groups and genome affinities of R. ciliaris chromosomes were determined. Wild relatives are rich gene resources for cultivated wheat. The development of alien addition chromosome lines not only greatly broadens the genetic diversity, but also provides genetic stocks for comparative genomics studies. Roegneria ciliaris (genome ScScYcYc), a tetraploid wild relative of wheat, is tolerant or resistant to many abiotic and biotic stresses. To develop a complete set of wheat-R. ciliaris disomic addition lines (DALs), we undertook a euplasmic backcrossing program to overcome allocytoplasmic effects and preferential chromosome transmission. To improve the efficiency of identifying chromosomes from Sc and Yc, we established techniques including sequential genomic in situ hybridization/fluorescence in situ hybridization (FISH) and molecular marker analysis. Fourteen DALs of wheat, each containing one pair of R. ciliaris chromosomes pairs, were characterized by FISH using four repetitive sequences [pTa794, pTa71, RcAfa and (GAA)10] as probes. One hundred and sixty-two R. ciliaris-specific markers were developed. FISH and marker analysis enabled us to assign the homoeologous groups and genome affinities of R. ciliaris chromosomes. FHB resistance evaluation in successive five growth seasons showed that the amphiploid, DA2Yc, DA5Yc and DA6Sc had improved FHB resistance, indicating their potential value in wheat improvement. The 14 DALs are likely new gene resources and will be phenotyped for more agronomic performances traits.
Collapse
Affiliation(s)
- Lingna Kong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Xinying Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Jin Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Haojie Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Keli Dai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Caixia Lan
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, D.F., Mexico
| | - Pawan Singh
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, D.F., Mexico
| | - Chunxia Yuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Shouzhong Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China
| | - Ravi Singh
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, D.F., Mexico
| | - Haiyan Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China.
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, D.F., Mexico.
| | - Xiue Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JCIC-MCP, Nanjing, 210095, Jiangsu, China.
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600, Mexico, D.F., Mexico.
| |
Collapse
|
7
|
Linc G, Gaál E, Molnár I, Icsó D, Badaeva E, Molnár-Láng M. Molecular cytogenetic (FISH) and genome analysis of diploid wheatgrasses and their phylogenetic relationship. PLoS One 2017; 12:e0173623. [PMID: 28278169 PMCID: PMC5344461 DOI: 10.1371/journal.pone.0173623] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 02/23/2017] [Indexed: 11/22/2022] Open
Abstract
This paper reports detailed FISH-based karyotypes for three diploid wheatgrass species Agropyron cristatum (L.) Beauv., Thinopyrum bessarabicum (Savul.&Rayss) A. Löve, Pseudoroegneria spicata (Pursh) A. Löve, the supposed ancestors of hexaploid Thinopyrum intermedium (Host) Barkworth & D.R.Dewey, compiled using DNA repeats and comparative genome analysis based on COS markers. Fluorescence in situ hybridization (FISH) with repetitive DNA probes proved suitable for the identification of individual chromosomes in the diploid JJ, StSt and PP genomes. Of the seven microsatellite markers tested only the (GAA)n trinucleotide sequence was appropriate for use as a single chromosome marker for the P. spicata AS chromosome. Based on COS marker analysis, the phylogenetic relationship between diploid wheatgrasses and the hexaploid bread wheat genomes was established. These findings confirmed that the J and E genomes are in neighbouring clusters.
Collapse
Affiliation(s)
- Gabriella Linc
- Department of Plant Genetic Resources, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
- * E-mail:
| | - Eszter Gaál
- Department of Plant Genetic Resources, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - István Molnár
- Department of Plant Genetic Resources, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Diana Icsó
- Department of Plant Genetic Resources, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| | - Ekaterina Badaeva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Márta Molnár-Láng
- Department of Plant Genetic Resources, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár, Hungary
| |
Collapse
|
8
|
Adonina IG, Leonova IN, Badaeva ED, Salina EA. Genotyping of hexaploid wheat varieties from different Russian regions. ACTA ACUST UNITED AC 2017. [DOI: 10.1134/s2079059717010014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Zelenin AV, Rodionov AV, Bolsheva NL, Badaeva ED, Muravenko OV. Genome: Origins and evolution of the term. Mol Biol 2016. [DOI: 10.1134/s0026893316040178] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Badaeva ED, Amosova AV, Goncharov NP, Macas J, Ruban AS, Grechishnikova IV, Zoshchuk SA, Houben A. A Set of Cytogenetic Markers Allows the Precise Identification of All A-Genome Chromosomes in Diploid and Polyploid Wheat. Cytogenet Genome Res 2015; 146:71-9. [PMID: 26160023 DOI: 10.1159/000433458] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/14/2015] [Indexed: 11/19/2022] Open
Abstract
Karyotypes of 3 diploid wheat species containing different variants of the A-genome, Triticum boeoticum (A(b)), T. monococcum (A(b)), and T. urartu (A(u)), were examined using C-banding and FISH with DNA probes representing 5S and 45S rDNA families, the microsatellite sequences GAAn and GTTn, the already known satellite sequences pSc119.2, Spelt52, Fat, pAs1, and pTa535, and a newly identified repeat called Aesp_SAT86. The C-banding patterns of the 3 species in general were similar; differences were observed in chromosomes 4A and 6A. Besides 2 major 45S rDNA loci on chromosomes 1A and 5A, 2 minor polymorphic NORs were observed in the terminal part of 5AL and in the distal part of 6AS in all species. An additional minor locus was found in the distal part of 7A(b)L of T. boeoticum and T. monococcum, but not in T. urartu. Two 5S rDNA loci were observed in 1AS and 5AS. The pTa535 probe displayed species- and chromosome-specific hybridization patterns, allowing complete chromosome identification and species discrimination. The distribution of pTa535 on the A(u)-genome chromosomes was more similar to that on the A-genome chromosomes of T. dicoccoides and T. araraticum, thus confirming the origin of these genomes from T. urartu. The probe pAs1 allowed the identification of 4 chromosomes of T. urartu and 2 of T. boeoticum or T. monococcum. The Aesp_SAT86-derived patterns were polymorphic; main clusters were observed on chromosomes 1A(u )and 3A(u) of T. urartu and chromosomes 3A(b) and 6A(b) of T. boeoticum. Thus, a set of probes, pTa535, pAs1, GAAn and GTTn, pTa71, pTa794, and Aesp_SAT86, proved to be most informative for the analysis of A-genomes in diploid and polyploid wheat species.
Collapse
Affiliation(s)
- Ekaterina D Badaeva
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhang W, Zhang R, Feng Y, Bie T, Chen P. Distribution of highly repeated DNA sequences in Haynaldia villosa and its application in the identification of alien chromatin. ACTA ACUST UNITED AC 2013. [DOI: 10.1007/s11434-012-5598-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Tomas P, González G, Schrauf G, Poggio L. Chromosomal characterization in native populations of Elymus scabrifolius from Argentina through classical and molecular cytogenetics (FISH–GISH). Genome 2012; 55:591-8. [DOI: 10.1139/g2012-046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The karyotype of Elymus scabrifolius (Döll) J.H. Hunz. (2n = 4x = 28) was investigated by DAPI staining and in situ hybridization. All the accessions studied presented a symmetric and uniform karyotype constituted by 9m+2m–sm+3sm. DAPI stain showed 1–7 conspicuous bands in all the chromosomes and polymorphisms between accessions. FISH experiments carried out with 45S rDNA as probe (pTa71) showed strong hybridization signals on the metacentric SAT-chromosome pair 8; the submetacentric SAT-chromosome pair 13 presented weaker hybridization. FISH using pSc119.2 clone as probe identified five chromosome pairs. Then, the combination of chromosome morphology, DAPI-staining, and FISH enabled the accurate identification of each chromosome pair in E. scabrifolius. Genomic in situ hybridization (GISH) experiments using Hordeum DNA as probe on mitotic metaphases confirmed unequivocally the presence of the H genome in E. scabrifolius, allowing us to observe six uniformly labeled chromosome pairs and two chromosome pairs with only one arm labeled. The remaining six chromosome pairs were weakly labeled. The rehybridization of FISH slides with Hordeum DNA as probe allow us to assign the genomic provenance of most of the chromosomes in the studied accessions. Moreover, intergenomic rearrangement was detected between genome H and the still unknown progenitor genome.
Collapse
Affiliation(s)
- P.A. Tomas
- Cátedra de Genética – Fac. Cs. Agrarias – Univ. Nacional del Litoral – R.P. Kreder 2805 (3080) Esperanza (Santa Fe), Argentina
| | - G.E. González
- Dpto. Ecología, Genética y Evolución – Fac. Cs. Exactas y Naturales – Univ. de Buenos Aires – Ciudad Universitaria, Pabellón II, Lab. 62, 4° Piso (1400) Ciudad Autónoma de Buenos Aires, Argentina
| | - G.E. Schrauf
- Cátedra de Genética – Fac. de Agronomía – Univ. de Buenos Aires – San Martín 4457 (1457) Ciudad Autónoma de Buenos Aires, Argentina
| | - L. Poggio
- Dpto. Ecología, Genética y Evolución – Fac. Cs. Exactas y Naturales – Univ. de Buenos Aires – Ciudad Universitaria, Pabellón II, Lab. 62, 4° Piso (1400) Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
13
|
Badaeva ED, Dedkova OS, Pukhalskiy VA, Zelenin AV. Cytogenetic comparison of N-genome Aegilops L. Species. RUSS J GENET+ 2012. [DOI: 10.1134/s1022795412050031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Raskina O, Brodsky L, Belyayev A. Tandem repeats on an eco-geographical scale: outcomes from the genome of Aegilops speltoides. Chromosome Res 2011; 19:607-23. [PMID: 21656077 DOI: 10.1007/s10577-011-9220-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/21/2011] [Accepted: 05/12/2011] [Indexed: 11/30/2022]
Abstract
The chromosomal pattern of tandem repeat fractions of repetitive DNA is one of the most important characteristics of a species. In the present research, we aimed to detect and evaluate the level of intraspecific variability in the chromosomal distribution of species-specific Spelt 1 and Aegilops-Triticum-specific Spelt 52 tandem repeats in Aegilops speltoides and in closely related diploid and polyploid species. There is a distinct eco-geographical gradient in Spelt 1 and Spelt 52 blocks abundance in Ae. speltoides. In marginal populations, the number of Spelt 1 chromosomal blocks could be 12-14 times lower than in the center of the species distribution. Also, in related diploid species, the abundance of Spelt 52 correlates with evolutionary proximity to Ae. speltoides. Finally, the B- and G-genomes of allopolyploid wheats have Spelt 1 chromosomal distribution patterns similar to those of the types of Ae. speltoides with poor and rich contents of Spelt 1, respectively. The observed changes in numbers of blocks of Spelt 1 and Spelt 52 tandem repeats along the eco-geographical gradient may due to their depletion in the marginal populations as a result of increased recombination frequency under stressful conditions. Alternatively, it may be accumulation of tandem repeats in conducive climatic/edaphic environments in the center of the species' geographical distribution. Anyway, we observe a bidirectional shift of repetitive DNA genomic patterns on the population level leading to the formation of population-specific chromosomal patterns of tandem repeats. The appearance of a new chromosomal pattern is considered an important factor in promoting the emergence of interbreeding barriers.
Collapse
Affiliation(s)
- Olga Raskina
- Laboratory of Plant Molecular Cytogenetics, Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel.
| | | | | |
Collapse
|
15
|
Comparative analysis of the N-genome in diploid and polyploid Aegilops species. Chromosome Res 2011; 19:541-8. [DOI: 10.1007/s10577-011-9211-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 10/18/2022]
|