1
|
Kupkova K, Shetty SJ, Hoffman EA, Bekiranov S, Auble DT. Genome-scale chromatin binding dynamics of RNA Polymerase II general transcription machinery components. EMBO J 2024; 43:1799-1821. [PMID: 38565951 PMCID: PMC11066129 DOI: 10.1038/s44318-024-00089-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/20/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
A great deal of work has revealed, in structural detail, the components of the preinitiation complex (PIC) machinery required for initiation of mRNA gene transcription by RNA polymerase II (Pol II). However, less-well understood are the in vivo PIC assembly pathways and their kinetics, an understanding of which is vital for determining how rates of in vivo RNA synthesis are established. We used competition ChIP in budding yeast to obtain genome-scale estimates of the residence times for five general transcription factors (GTFs): TBP, TFIIA, TFIIB, TFIIE and TFIIF. While many GTF-chromatin interactions were short-lived ( < 1 min), there were numerous interactions with residence times in the range of several minutes. Sets of genes with a shared function also shared similar patterns of GTF kinetic behavior. TFIIE, a GTF that enters the PIC late in the assembly process, had residence times correlated with RNA synthesis rates. The datasets and results reported here provide kinetic information for most of the Pol II-driven genes in this organism, offering a rich resource for exploring the mechanistic relationships between PIC assembly, gene regulation, and transcription.
Collapse
Affiliation(s)
- Kristyna Kupkova
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA, 22908, USA
- Center for Public Health Genomics, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Savera J Shetty
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Elizabeth A Hoffman
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA, 22908, USA
| | - David T Auble
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA, 22908, USA.
| |
Collapse
|
2
|
Stossi F, Rivera Tostado A, Johnson HL, Mistry RM, Mancini MG, Mancini MA. Gene transcription regulation by ER at the single cell and allele level. Steroids 2023; 200:109313. [PMID: 37758052 PMCID: PMC10842394 DOI: 10.1016/j.steroids.2023.109313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/12/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
In this short review we discuss the current view of how the estrogen receptor (ER), a pivotal member of the nuclear receptor superfamily of transcription factors, regulates gene transcription at the single cell and allele level, focusing on in vitro cell line models. We discuss central topics and new trends in molecular biology including phenotypic heterogeneity, single cell sequencing, nuclear phase separated condensates, single cell imaging, and image analysis methods, with particular focus on the methodologies and results that have been reported in the last few years using microscopy-based techniques. These observations augment the results from biochemical assays that lead to a much more complex and dynamic view of how ER, and arguably most transcription factors, act to regulate gene transcription.
Collapse
Affiliation(s)
- Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States; GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, United States.
| | | | - Hannah L Johnson
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States; GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, United States
| | - Ragini M Mistry
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States; GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, United States
| | - Maureen G Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States; GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, United States
| | - Michael A Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, United States; GCC Center for Advanced Microscopy and Image Informatics, Houston, TX, United States; Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, United States.
| |
Collapse
|
3
|
Kupkova K, Shetty SJ, Hoffman EA, Bekiranov S, Auble DT. Genome-scale chromatin interaction dynamic measurements for key components of the RNA Pol II general transcription machinery. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550532. [PMID: 37546819 PMCID: PMC10402067 DOI: 10.1101/2023.07.25.550532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Background A great deal of work has revealed in structural detail the components of the machinery responsible for mRNA gene transcription initiation. These include the general transcription factors (GTFs), which assemble at promoters along with RNA Polymerase II (Pol II) to form a preinitiation complex (PIC) aided by the activities of cofactors and site-specific transcription factors (TFs). However, less well understood are the in vivo PIC assembly pathways and their kinetics, an understanding of which is vital for determining on a mechanistic level how rates of in vivo RNA synthesis are established and how cofactors and TFs impact them. Results We used competition ChIP to obtain genome-scale estimates of the residence times for five GTFs: TBP, TFIIA, TFIIB, TFIIE and TFIIF in budding yeast. While many GTF-chromatin interactions were short-lived (< 1 min), there were numerous interactions with residence times in the several minutes range. Sets of genes with a shared function also shared similar patterns of GTF kinetic behavior. TFIIE, a GTF that enters the PIC late in the assembly process, had residence times correlated with RNA synthesis rates. Conclusions The datasets and results reported here provide kinetic information for most of the Pol II-driven genes in this organism and therefore offer a rich resource for exploring the mechanistic relationships between PIC assembly, gene regulation, and transcription. The relationships between gene function and GTF dynamics suggest that shared sets of TFs tune PIC assembly kinetics to ensure appropriate levels of expression.
Collapse
Affiliation(s)
- Kristyna Kupkova
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908
- Center for Public Health Genomics, University of Virginia Health System, Charlottesville, VA 22908
| | - Savera J. Shetty
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908
| | - Elizabeth A. Hoffman
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908
| | - David T. Auble
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908
| |
Collapse
|
4
|
Kalra P, Zahid H, Ayoub A, Dou Y, Pomerantz WCK. Alternative Mechanisms for DNA Engagement by BET Bromodomain-Containing Proteins. Biochemistry 2022; 61:1260-1272. [PMID: 35748495 PMCID: PMC9682295 DOI: 10.1021/acs.biochem.2c00157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Epigenetic reader domains regulate chromatin structure and modulate gene expression through the recognition of post-translational modifications on histones. Recently, reader domains have also been found to harbor double-stranded (ds) DNA-binding activity, which is as functionally critical as histone association. Here, we explore the dsDNA recognition of the N-terminal bromodomain of the bromodomain and extra-terminal (BET) protein, BRD4. Using protein-observed 19F NMR, 1H-15N HSQC NMR, electrophoretic mobility shift assays (EMSA), and competitive-inhibition assays, we establish the binding surface of dsDNA and find it to be largely overlapping with the acetylated histone (KAc)-binding site. Rather than engaging in electrostatic contacts, we find dsDNA to interact competitively within the KAc-binding pocket. These interactions are distinct from the highly homologous BET bromodomain, BRDT. Nine additional bromodomains have also been characterized for interacting with dsDNA, including tandem BET bromodomains. Together, these studies help establish a binding model for dsDNA interactions with BRD4 bromodomains and elucidate the chromatin-recognition mechanisms of the BRD4 protein for regulating gene expression.
Collapse
Affiliation(s)
- Prakriti Kalra
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Huda Zahid
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
| | - Alex Ayoub
- Department of Pathology, University of Michigan, 1301 Catherine St., Ann Arbor, Michigan 48109, United States
| | - Yali Dou
- Norris Comprehensive Cancer Center, University of Southern California, NOR 6314A, 1441 Eastlake Ave., Los Angeles, California 90089, United States
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455, United States
- Department of Medicinal Chemistry, University of Minnesota, 2231 6th St. SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
5
|
Jana T, Brodsky S, Barkai N. Speed-Specificity Trade-Offs in the Transcription Factors Search for Their Genomic Binding Sites. Trends Genet 2021; 37:421-432. [PMID: 33414013 DOI: 10.1016/j.tig.2020.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/17/2022]
Abstract
Transcription factors (TFs) regulate gene expression by binding DNA sequences recognized by their DNA-binding domains (DBDs). DBD-recognized motifs are short and highly abundant in genomes. The ability of TFs to bind a specific subset of motif-containing sites, and to do so rapidly upon activation, is fundamental for gene expression in all eukaryotes. Despite extensive interest, our understanding of the TF-target search process is fragmented; although binding specificity and detection speed are two facets of this same process, trade-offs between them are rarely addressed. In this opinion article, we discuss potential speed-specificity trade-offs in the context of existing models. We further discuss the recently described 'distributed specificity' paradigm, suggesting that intrinsically disordered regions (IDRs) promote specificity while reducing the TF-target search time.
Collapse
Affiliation(s)
- Tamar Jana
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Sagie Brodsky
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
6
|
Louphrasitthiphol P, Siddaway R, Loffreda A, Pogenberg V, Friedrichsen H, Schepsky A, Zeng Z, Lu M, Strub T, Freter R, Lisle R, Suer E, Thomas B, Schuster-Böckler B, Filippakopoulos P, Middleton M, Lu X, Patton EE, Davidson I, Lambert JP, Wilmanns M, Steingrímsson E, Mazza D, Goding CR. Tuning Transcription Factor Availability through Acetylation-Mediated Genomic Redistribution. Mol Cell 2020; 79:472-487.e10. [PMID: 32531202 PMCID: PMC7427332 DOI: 10.1016/j.molcel.2020.05.025] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 04/01/2020] [Accepted: 05/19/2020] [Indexed: 11/06/2022]
Abstract
It is widely assumed that decreasing transcription factor DNA-binding affinity reduces transcription initiation by diminishing occupancy of sequence-specific regulatory elements. However, in vivo transcription factors find their binding sites while confronted with a large excess of low-affinity degenerate motifs. Here, using the melanoma lineage survival oncogene MITF as a model, we show that low-affinity binding sites act as a competitive reservoir in vivo from which transcription factors are released by mitogen-activated protein kinase (MAPK)-stimulated acetylation to promote increased occupancy of their regulatory elements. Consequently, a low-DNA-binding-affinity acetylation-mimetic MITF mutation supports melanocyte development and drives tumorigenesis, whereas a high-affinity non-acetylatable mutant does not. The results reveal a paradoxical acetylation-mediated molecular clutch that tunes transcription factor availability via genome-wide redistribution and couples BRAF to tumorigenesis. Our results further suggest that p300/CREB-binding protein-mediated transcription factor acetylation may represent a common mechanism to control transcription factor availability. Reducing transcription factor DNA-binding affinity increases activity in vivo Acetylation is triggered by MAPK signaling Acetylation leads to genome-wide transcription factor redistribution Acetylation of MITF drives tumorigenesis and melanocyte development
Collapse
Affiliation(s)
- Pakavarin Louphrasitthiphol
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK; Department of Gastrointestinal and Hepato-Biliary-Pancreatic Surgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Robert Siddaway
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Alessia Loffreda
- Experimental Imaging Center, Cancer Imaging Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy; Fondazione CEN, European Center for Nanomedicine, 20133 Milan, Italy
| | - Vivian Pogenberg
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 25a, 22607 Hamburg, Germany & University Hamburg Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Hans Friedrichsen
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Alexander Schepsky
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK; Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Iceland, Sturlugata 8, 101 Reykjavik, Iceland
| | - Zhiqiang Zeng
- MRC Institute of Genetics and Molecular Medicine, MRC Human Genetics Unit and Edinburgh Cancer Research UK Centre, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Min Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Thomas Strub
- Institut de Génetique et Biologie Moléculaire et Cellulaire (IGBMC), Equipe labéllisée Ligue contre le Cancer, 1 rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Rasmus Freter
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Richard Lisle
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Eda Suer
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Benjamin Thomas
- Central Proteomics Facility, Sir William Dunn Pathology School, Oxford University, Oxford OX1 3RE, UK
| | - Benjamin Schuster-Böckler
- Ludwig Institute for Cancer Research, Big Data Institute, University of Oxford, Headington, Oxford OX3 7LF, UK
| | - Panagis Filippakopoulos
- Structural Genomics Consortium, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Mark Middleton
- Oxford NIHR Biomedical Research Centre, Department of Oncology, Churchill Hospital, Oxford OX3 7LE, UK
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - E Elizabeth Patton
- MRC Institute of Genetics and Molecular Medicine, MRC Human Genetics Unit and Edinburgh Cancer Research UK Centre, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Irwin Davidson
- Institut de Génetique et Biologie Moléculaire et Cellulaire (IGBMC), Equipe labéllisée Ligue contre le Cancer, 1 rue Laurent Fries, 67404 Illkirch Cedex, France
| | - Jean-Philippe Lambert
- Department of Molecular Medicine and Cancer Research Centre, Université Laval, Quebec, QC, Canada; CHU de Québec Research Center, CHUL, 2705 Boulevard Laurier, Quebec G1V 4G2, QC, Canada
| | - Matthias Wilmanns
- European Molecular Biology Laboratory, Hamburg Unit, Notkestrasse 25a, 22607 Hamburg, Germany & University Hamburg Medical Centre Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Eiríkur Steingrímsson
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Iceland, Sturlugata 8, 101 Reykjavik, Iceland
| | - Davide Mazza
- Experimental Imaging Center, Cancer Imaging Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy; Fondazione CEN, European Center for Nanomedicine, 20133 Milan, Italy.
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK.
| |
Collapse
|
7
|
Brouwer I, Lenstra TL. Visualizing transcription: key to understanding gene expression dynamics. Curr Opin Chem Biol 2019; 51:122-129. [DOI: 10.1016/j.cbpa.2019.05.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/03/2019] [Accepted: 05/28/2019] [Indexed: 12/24/2022]
|
8
|
Keizer VIP, Coppola S, Houtsmuller AB, Geverts B, van Royen ME, Schmidt T, Schaaf MJM. Repetitive switching between DNA binding modes enables target finding by the glucocorticoid receptor. J Cell Sci 2019; 132:jcs.217455. [DOI: 10.1242/jcs.217455] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 01/16/2019] [Indexed: 12/21/2022] Open
Abstract
Transcription factor mobility is a determining factor in the regulation of gene expression. Here, we have studied the intranuclear dynamics of the glucocorticoid receptor (GR) using fluorescence recovery after photobleaching and single-molecule microscopy. First we have described the dynamic states in which the GR occurs. Subsequently we have analyzed the transitions between these states using a continuous time Markov chain model, and functionally investigated these states by making specific mutations in the DNA-binding domain. This analysis revealed that the GR diffuses freely through the nucleus, and once it leaves this free diffusion state it most often enters a repetitive switching mode. In this mode it alternates between slow diffusion as a result of brief nonspecific DNA binding events, and a state of stable binding to specific DNA target sites. This repetitive switching mechanism results in a compact searching strategy which facilitates finding DNA target sites by the GR.
Collapse
Affiliation(s)
| | - Stefano Coppola
- Institute of Physics, Leiden University, Leiden, The Netherlands
| | - Adriaan B. Houtsmuller
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
- Erasmus Optical Imaging Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Bart Geverts
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
- Erasmus Optical Imaging Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Martin E. van Royen
- Department of Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
- Erasmus Optical Imaging Center, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Thomas Schmidt
- Institute of Physics, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
9
|
Weaver TM, Morrison EA, Musselman CA. Reading More than Histones: The Prevalence of Nucleic Acid Binding among Reader Domains. Molecules 2018; 23:molecules23102614. [PMID: 30322003 PMCID: PMC6222470 DOI: 10.3390/molecules23102614] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 01/09/2023] Open
Abstract
The eukaryotic genome is packaged into the cell nucleus in the form of chromatin, a complex of genomic DNA and histone proteins. Chromatin structure regulation is critical for all DNA templated processes and involves, among many things, extensive post-translational modification of the histone proteins. These modifications can be “read out” by histone binding subdomains known as histone reader domains. A large number of reader domains have been identified and found to selectively recognize an array of histone post-translational modifications in order to target, retain, or regulate chromatin-modifying and remodeling complexes at their substrates. Interestingly, an increasing number of these histone reader domains are being identified as also harboring nucleic acid binding activity. In this review, we present a summary of the histone reader domains currently known to bind nucleic acids, with a focus on the molecular mechanisms of binding and the interplay between DNA and histone recognition. Additionally, we highlight the functional implications of nucleic acid binding in chromatin association and regulation. We propose that nucleic acid binding is as functionally important as histone binding, and that a significant portion of the as yet untested reader domains will emerge to have nucleic acid binding capabilities.
Collapse
Affiliation(s)
- Tyler M Weaver
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Emma A Morrison
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| | - Catherine A Musselman
- Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
10
|
Meijer OC, Buurstede JC, Schaaf MJM. Corticosteroid Receptors in the Brain: Transcriptional Mechanisms for Specificity and Context-Dependent Effects. Cell Mol Neurobiol 2018; 39:539-549. [PMID: 30291573 PMCID: PMC6469829 DOI: 10.1007/s10571-018-0625-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/25/2018] [Indexed: 12/22/2022]
Abstract
Corticosteroid hormones act in the brain to support adaptation to stress via binding to mineralocorticoid and glucocorticoid receptors (MR and GR). These receptors act in large measure as transcription factors. Corticosteroid effects can be highly divergent, depending on the receptor type, but also on brain region, cell type, and physiological context. These differences ultimately depend on differential interactions of MR and GR with other proteins, which determine ligand binding, nuclear translocation, and transcriptional activities. In this review, we discuss established and potential mechanisms that confer receptor and cell type-specific effects of the MR and GR-mediated transcriptional effects in the brain.
Collapse
Affiliation(s)
- Onno C Meijer
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands. .,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands.
| | - J C Buurstede
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands.,Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA, Leiden, The Netherlands
| | - Marcel J M Schaaf
- Department of Animal Sciences and Health (M.J.M.S.), Institute of Biology, Leiden University, 2333 CC, Leiden, The Netherlands
| |
Collapse
|
11
|
Hoischen C, Monajembashi S, Weisshart K, Hemmerich P. Multimodal Light Microscopy Approaches to Reveal Structural and Functional Properties of Promyelocytic Leukemia Nuclear Bodies. Front Oncol 2018; 8:125. [PMID: 29888200 PMCID: PMC5980967 DOI: 10.3389/fonc.2018.00125] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/05/2018] [Indexed: 12/11/2022] Open
Abstract
The promyelocytic leukemia (pml) gene product PML is a tumor suppressor localized mainly in the nucleus of mammalian cells. In the cell nucleus, PML seeds the formation of macromolecular multiprotein complexes, known as PML nuclear bodies (PML NBs). While PML NBs have been implicated in many cellular functions including cell cycle regulation, survival and apoptosis their role as signaling hubs along major genome maintenance pathways emerged more clearly. However, despite extensive research over the past decades, the precise biochemical function of PML in these pathways is still elusive. It remains a big challenge to unify all the different previously suggested cellular functions of PML NBs into one mechanistic model. With the advent of genetically encoded fluorescent proteins it became possible to trace protein function in living specimens. In parallel, a variety of fluorescence fluctuation microscopy (FFM) approaches have been developed which allow precise determination of the biophysical and interaction properties of cellular factors at the single molecule level in living cells. In this report, we summarize the current knowledge on PML nuclear bodies and describe several fluorescence imaging, manipulation, FFM, and super-resolution techniques suitable to analyze PML body assembly and function. These include fluorescence redistribution after photobleaching, fluorescence resonance energy transfer, fluorescence correlation spectroscopy, raster image correlation spectroscopy, ultraviolet laser microbeam-induced DNA damage, erythrocyte-mediated force application, and super-resolution microscopy approaches. Since most if not all of the microscopic equipment to perform these techniques may be available in an institutional or nearby facility, we hope to encourage more researches to exploit sophisticated imaging tools for their research in cancer biology.
Collapse
|
12
|
Conic S, Desplancq D, Ferrand A, Fischer V, Heyer V, Reina San Martin B, Pontabry J, Oulad-Abdelghani M, Babu N K, Wright GD, Molina N, Weiss E, Tora L. Imaging of native transcription factors and histone phosphorylation at high resolution in live cells. J Cell Biol 2018; 217:1537-1552. [PMID: 29440513 PMCID: PMC5881509 DOI: 10.1083/jcb.201709153] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/15/2017] [Accepted: 01/18/2018] [Indexed: 01/16/2023] Open
Abstract
Conic et al. introduce a versatile antibody-based imaging approach to track endogenous nuclear factors in living cells. It allows efficient intracellular delivery of any fluorescent dye–conjugated antibody, or Fab fragment, into a variety of cell types. The dynamics of nuclear targets or posttranslational modifications can be monitored with high precision using confocal and super-resolution microscopy. Fluorescent labeling of endogenous proteins for live-cell imaging without exogenous expression of tagged proteins or genetic manipulations has not been routinely possible. We describe a simple versatile antibody-based imaging approach (VANIMA) for the precise localization and tracking of endogenous nuclear factors. Our protocol can be implemented in every laboratory allowing the efficient and nonharmful delivery of organic dye-conjugated antibodies, or antibody fragments, into different metazoan cell types. Live-cell imaging permits following the labeled probes bound to their endogenous targets. By using conventional and super-resolution imaging we show dynamic changes in the distribution of several nuclear transcription factors (i.e., RNA polymerase II or TAF10), and specific phosphorylated histones (γH2AX), upon distinct biological stimuli at the nanometer scale. Hence, considering the large panel of available antibodies and the simplicity of their implementation, VANIMA can be used to uncover novel biological information based on the dynamic behavior of transcription factors or posttranslational modifications in the nucleus of single live cells.
Collapse
Affiliation(s)
- Sascha Conic
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | | | - Alexia Ferrand
- Imaging Core Facility, Biozentrum, University of Basel, Basel, Switzerland
| | - Veronique Fischer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Vincent Heyer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Bernardo Reina San Martin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Julien Pontabry
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France.,Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Institute of Epigenetics and Stem Cells, München, Germany
| | - Mustapha Oulad-Abdelghani
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Kishore Babu N
- School of Biological Sciences, Nanyang Technological University, Singapore
| | | | - Nacho Molina
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Etienne Weiss
- Institut de Recherche de l'ESBS, UMR 7242, Illkirch, France
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France.,School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
13
|
Goldstein I, Hager GL. Dynamic enhancer function in the chromatin context. WILEY INTERDISCIPLINARY REVIEWS. SYSTEMS BIOLOGY AND MEDICINE 2018; 10:10.1002/wsbm.1390. [PMID: 28544514 PMCID: PMC6638546 DOI: 10.1002/wsbm.1390] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/21/2017] [Accepted: 03/23/2017] [Indexed: 12/28/2022]
Abstract
Enhancers serve as critical regulatory elements in higher eukaryotic cells. The characterization of enhancer function has evolved primarily from genome-wide methodologies, including chromatin immunoprecipitation (ChIP-seq), DNase-I hypersensitivity (DNase-seq), digital genomic footprinting (DGF), and the chromosome conformation capture techniques (3C, 4C, and Hi-C). These population-based assays average signals across millions of cells and lead to enhancer models characterized by static and sequential binding. More recently, fluorescent microscopy techniques, including fluorescence recovery after photobleaching, fluorescence correlation spectroscopy, and single molecule tracking (SMT), reveal a highly dynamic binding behavior for these factors in live cells. Furthermore, a refined analysis of genomic footprinting suggests that many transcription factors leave minimal or no footprints in chromatin, even when present and active in a given cell type. In this study, we review the implications of these new approaches for an accurate understanding of enhancer function in real time. In vivo SMT, in particular, has recently evolved as a promising methodology to probe enhancer function in live cells. Integration of findings from the many approaches now employed in the study of enhancer function suggest a highly dynamic view for the action of enhancer activating factors, viewed on a time scale of milliseconds to seconds, rather than minutes to hours. WIREs Syst Biol Med 2018, 10:e1390. doi: 10.1002/wsbm.1390 This article is categorized under: Analytical and Computational Methods > Computational Methods Laboratory Methods and Technologies > Genetic/Genomic Methods Laboratory Methods and Technologies > Imaging.
Collapse
Affiliation(s)
- Ido Goldstein
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gordon L. Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
14
|
Vosnakis N, Koch M, Scheer E, Kessler P, Mély Y, Didier P, Tora L. Coactivators and general transcription factors have two distinct dynamic populations dependent on transcription. EMBO J 2017; 36:2710-2725. [PMID: 28724529 PMCID: PMC5599802 DOI: 10.15252/embj.201696035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 06/08/2017] [Accepted: 06/15/2017] [Indexed: 12/29/2022] Open
Abstract
SAGA and ATAC are two distinct chromatin modifying co‐activator complexes with distinct enzymatic activities involved in RNA polymerase II (Pol II) transcription regulation. To investigate the mobility of co‐activator complexes and general transcription factors in live‐cell nuclei, we performed imaging experiments based on photobleaching. SAGA and ATAC, but also two general transcription factors (TFIID and TFIIB), were highly dynamic, exhibiting mainly transient associations with chromatin, contrary to Pol II, which formed more stable chromatin interactions. Fluorescence correlation spectroscopy analyses revealed that the mobile pool of the two co‐activators, as well as that of TFIID and TFIIB, can be subdivided into “fast” (free) and “slow” (chromatin‐interacting) populations. Inhibiting transcription elongation decreased H3K4 trimethylation and reduced the “slow” population of SAGA, ATAC, TFIIB and TFIID. In addition, inhibiting histone H3K4 trimethylation also reduced the “slow” populations of SAGA and ATAC. Thus, our results demonstrate that in the nuclei of live cells the equilibrium between fast and slow population of SAGA or ATAC complexes is regulated by active transcription via changes in the abundance of H3K4me3 on chromatin.
Collapse
Affiliation(s)
- Nikolaos Vosnakis
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Marc Koch
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Elisabeth Scheer
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Pascal Kessler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Yves Mély
- Université de Strasbourg, Illkirch, France.,Laboratoire de Biophotonique et Pharmacologie, Illkirch, France
| | - Pascal Didier
- Université de Strasbourg, Illkirch, France.,Laboratoire de Biophotonique et Pharmacologie, Illkirch, France
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France .,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| |
Collapse
|
15
|
Paakinaho V, Presman DM, Ball DA, Johnson TA, Schiltz RL, Levitt P, Mazza D, Morisaki T, Karpova TS, Hager GL. Single-molecule analysis of steroid receptor and cofactor action in living cells. Nat Commun 2017. [PMID: 28635963 PMCID: PMC5482060 DOI: 10.1038/ncomms15896] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Population-based assays have been employed extensively to investigate the interactions of transcription factors (TFs) with chromatin and are often interpreted in terms of static and sequential binding. However, fluorescence microscopy techniques reveal a more dynamic binding behaviour of TFs in live cells. Here we analyse the strengths and limitations of in vivo single-molecule tracking and performed a comprehensive analysis on the intranuclear dwell times of four steroid receptors and a number of known cofactors. While the absolute residence times estimates can depend on imaging acquisition parameters due to sampling bias, our results indicate that only a small proportion of factors are specifically bound to chromatin at any given time. Interestingly, the glucocorticoid receptor and its cofactors affect each other’s dwell times in an asymmetric manner. Overall, our data indicate transient rather than stable TF-cofactors chromatin interactions at response elements at the single-molecule level. Transcription factors (TFs) are thought to regulate gene expression by stably binding to target DNA elements. Here, the authors use single-molecule tracking to analyse the dynamic behaviour of steroid receptors TFs and show that most specific interactions with chromatin are transient and dynamic.
Collapse
Affiliation(s)
- Ville Paakinaho
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Building 41, 41 Library Drive, Bethesda, Maryland 20892, USA
| | - Diego M Presman
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Building 41, 41 Library Drive, Bethesda, Maryland 20892, USA
| | - David A Ball
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Building 41, 41 Library Drive, Bethesda, Maryland 20892, USA
| | - Thomas A Johnson
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Building 41, 41 Library Drive, Bethesda, Maryland 20892, USA
| | - R Louis Schiltz
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Building 41, 41 Library Drive, Bethesda, Maryland 20892, USA
| | - Peter Levitt
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Building 41, 41 Library Drive, Bethesda, Maryland 20892, USA
| | - Davide Mazza
- Istituto Scientifico Ospedale San Raffaele, Centro di Imaging Sperimentale e Università Vita-Salute San Raffaele, 20132 Milano, Italy
| | - Tatsuya Morisaki
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Building 41, 41 Library Drive, Bethesda, Maryland 20892, USA
| | - Tatiana S Karpova
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Building 41, 41 Library Drive, Bethesda, Maryland 20892, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Building 41, 41 Library Drive, Bethesda, Maryland 20892, USA
| |
Collapse
|
16
|
Chiu CL, Patsch K, Cutrale F, Soundararajan A, Agus DB, Fraser SE, Ruderman D. Intracellular kinetics of the androgen receptor shown by multimodal Image Correlation Spectroscopy (mICS). Sci Rep 2016; 6:22435. [PMID: 26936218 PMCID: PMC4776155 DOI: 10.1038/srep22435] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Accepted: 02/15/2016] [Indexed: 12/31/2022] Open
Abstract
The androgen receptor (AR) pathway plays a central role in prostate cancer (PCa) growth and progression and is a validated therapeutic target. In response to ligand binding AR translocates to the nucleus, though the molecular mechanism is not well understood. We therefore developed multimodal Image Correlation Spectroscopy (mICS) to measure anisotropic molecular motion across a live cell. We applied mICS to AR translocation dynamics to reveal its multimodal motion. By integrating fluorescence imaging methods we observed evidence for diffusion, confined movement, and binding of AR within both the cytoplasm and nucleus of PCa cells. Our findings suggest that in presence of cytoplasmic diffusion, the probability of AR crossing the nuclear membrane is an important factor in determining the AR distribution between cytoplasm and the nucleus, independent of functional microtubule transport. These findings may have implications for the future design of novel therapeutics targeting the AR pathway in PCa.
Collapse
Affiliation(s)
- Chi-Li Chiu
- Center for Applied Molecular Medicine, University of Southern, California, USA
| | - Katherin Patsch
- Center for Applied Molecular Medicine, University of Southern, California, USA
| | - Francesco Cutrale
- Translational Imaging Center, University of Southern, California, USA
| | | | - David B Agus
- Center for Applied Molecular Medicine, University of Southern, California, USA
| | - Scott E Fraser
- Translational Imaging Center, University of Southern, California, USA
| | - Daniel Ruderman
- Center for Applied Molecular Medicine, University of Southern, California, USA
| |
Collapse
|
17
|
Krasnov AN, Mazina MY, Nikolenko JV, Vorobyeva NE. On the way of revealing coactivator complexes cross-talk during transcriptional activation. Cell Biosci 2016; 6:15. [PMID: 26913181 PMCID: PMC4765067 DOI: 10.1186/s13578-016-0081-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 02/09/2016] [Indexed: 08/07/2023] Open
Abstract
Transcriptional activation is a complex, multistage process implemented by hundreds of proteins. Many transcriptional proteins are organized into coactivator complexes, which participate in transcription regulation at numerous genes and are a driver of this process. The molecular action mechanisms of coactivator complexes remain largely understudied. Relevant publications usually deal with the involvement of these complexes in the entire process of transcription, and only a few studies are aimed to elucidate their functions at its particular stages. This review summarizes available information on the participation of key coactivator complexes in transcriptional activation. The timing of coactivator complex binding/removal has been used for restructuring previously described information about the transcriptional process. Several major stages of transcriptional activation have been distinguished based on the presence of covalent histone modifications and general transcriptional factors, and the recruitment and/or removal phases have been determined for each coactivator included in analysis. Recruitment of Mediator, SWItch/Sucrose Non-Fermentable and NUcleosome Remodeling Factor complexes during transcription activation has been investigated thoroughly; CHD and INOsitol auxotrophy 80 families are less well studied. In most cases, the molecular mechanisms responsible for the removal of certain coactivator complexes after the termination of their functions at the promoters are still not understood. On the basis of the summarized information, we propose a scheme that illustrates the involvement of coactivator complexes in different stages of the transcription activation process. This scheme may help to gain a deeper insight into the molecular mechanism of functioning of coactivator complexes, find novel participants of the process, and reveal novel structural or functional connections between different coactivators.
Collapse
Affiliation(s)
- Aleksey N Krasnov
- Department of Transcription Regulation and Chromatin Dynamic, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - Marina Yu Mazina
- Department of Transcription Regulation and Chromatin Dynamic, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - Julia V Nikolenko
- Department of Transcription Regulation and Chromatin Dynamic, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| | - Nadezhda E Vorobyeva
- Department of Transcription Regulation and Chromatin Dynamic, Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334 Russia
| |
Collapse
|
18
|
Guantes R, Díaz-Colunga J, Iborra FJ. Mitochondria and the non-genetic origins of cell-to-cell variability: More is different. Bioessays 2015; 38:64-76. [PMID: 26660201 DOI: 10.1002/bies.201500082] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Gene expression activity is heterogeneous in a population of isogenic cells. Identifying the molecular basis of this variability will improve our understanding of phenomena like tumor resistance to drugs, virus infection, or cell fate choice. The complexity of the molecular steps and machines involved in transcription and translation could introduce sources of randomness at many levels, but a common constraint to most of these processes is its energy dependence. In eukaryotic cells, most of this energy is provided by mitochondria. A clonal population of cells may show a large variability in the number and functionality of mitochondria. Here, we discuss how differences in the mitochondrial content of each cell contribute to heterogeneity in gene products. Changes in the amount of mitochondria can also entail drastic alterations of a cell's gene expression program, which ultimately leads to phenotypic diversity. Also watch the Video Abstract.
Collapse
Affiliation(s)
- Raúl Guantes
- Department of Condensed Matter Physics, Materials Science Institute 'Nicolás Cabrera' and Institute of Condensed Matter Physics (IFIMAC), Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid, Spain
| | - Juan Díaz-Colunga
- Centro Nacional de Biotecnología, CSIC, Campus de Cantoblanco, Madrid, Spain
| | - Francisco J Iborra
- Centro Nacional de Biotecnología, CSIC, Campus de Cantoblanco, Madrid, Spain
| |
Collapse
|
19
|
Rodriguez Y, Hinz JM, Smerdon MJ. Accessing DNA damage in chromatin: Preparing the chromatin landscape for base excision repair. DNA Repair (Amst) 2015; 32:113-119. [PMID: 25957487 PMCID: PMC4522338 DOI: 10.1016/j.dnarep.2015.04.021] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
DNA damage in chromatin comes in many forms, including single base lesions that induce base excision repair (BER). We and others have shown that the structural location of DNA lesions within nucleosomes greatly influences their accessibility to repair enzymes. Indeed, a difference in the location of uracil as small as one-half turn of the DNA backbone on the histone surface can result in a 10-fold difference in the time course of its removal in vitro. In addition, the cell has evolved several interdependent processes capable of enhancing the accessibility of excision repair enzymes to DNA lesions in nucleosomes, including post-translational modification of histones, ATP-dependent chromatin remodeling and interchange of histone variants in nucleosomes. In this review, we focus on different factors that affect accessibility of BER enzymes to nucleosomal DNA.
Collapse
Affiliation(s)
- Yesenia Rodriguez
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, United States
| | - John M Hinz
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, United States
| | - Michael J Smerdon
- School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, United States.
| |
Collapse
|
20
|
A charge-dependent mechanism is responsible for the dynamic accumulation of proteins inside nucleoli. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:101-10. [DOI: 10.1016/j.bbamcr.2014.10.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 10/02/2014] [Accepted: 10/06/2014] [Indexed: 01/19/2023]
|
21
|
Feilke M, Schneider K, Schmid VJ. Bayesian mixed-effects model for the analysis of a series of FRAP images. Stat Appl Genet Mol Biol 2014; 14:35-51. [PMID: 25503866 DOI: 10.1515/sagmb-2014-0013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The binding behavior of molecules in nuclei of living cells can be studied through the analysis of images from fluorescence recovery after photobleaching experiments. However, there is still a lack of methodology for the statistical evaluation of FRAP data, especially for the joint analysis of multiple dynamic images. We propose a hierarchical Bayesian nonlinear model with mixed-effect priors based on local compartment models in order to obtain joint parameter estimates for all nuclei as well as to account for the heterogeneity of the nuclei population. We apply our method to a series of FRAP experiments of DNA methyltransferase 1 tagged to green fluorescent protein expressed in a somatic mouse cell line and compare the results to the application of three different fixed-effects models to the same series of FRAP experiments. With the proposed model, we get estimates of the off-rates of the interactions of the molecules under study together with credible intervals, and additionally gain information about the variability between nuclei. The proposed model is superior to and more robust than the tested fixed-effects models. Therefore, it can be used for the joint analysis of data from FRAP experiments on various similar nuclei.
Collapse
|
22
|
Ochiai H, Sugawara T, Sakuma T, Yamamoto T. Stochastic promoter activation affects Nanog expression variability in mouse embryonic stem cells. Sci Rep 2014; 4:7125. [PMID: 25410303 PMCID: PMC4238020 DOI: 10.1038/srep07125] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 10/30/2014] [Indexed: 02/07/2023] Open
Abstract
Mouse embryonic stem cells (mESCs) are self-renewing and capable of differentiating into any of the three germ layers. An interesting feature of mESCs is the presence of cell-to-cell heterogeneity in gene expression that may be responsible for cell fate decisions. Nanog, a key transcription factor for pluripotency, displays heterogeneous expression in mESCs, via mechanisms that are not fully understood. To understand this variability, we quantitatively analyzed Nanog transcription and found that Nanog was both infrequently transcribed, and transcribed in a pulsatile and stochastic manner. It is possible that such stochastic transcriptional activation could contribute to the heterogeneity observed in Nanog expression as "intrinsic noise." To discriminate the effects of both intrinsic noise from other (extrinsic) noise on the expression variability of Nanog mRNA, we performed allele-specific single-molecule RNA fluorescent in situ hybridization in a reporter cell line and found that intrinsic noise contributed to approximately 45% of the total variability in Nanog expression. Furthermore, we found that Nanog mRNA and protein levels were well correlated in individual cells. These results suggest that stochastic promoter activation significantly affects the Nanog expression variability in mESCs.
Collapse
Affiliation(s)
- Hiroshi Ochiai
- Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Takeshi Sugawara
- Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Tetsushi Sakuma
- Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| | - Takashi Yamamoto
- 1] Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, Higashi-Hiroshima 739-8530, Japan [2] Department of Mathematical and Life Sciences, Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
| |
Collapse
|
23
|
Bendtsen KM, Jensen MB, May A, Rasmussen LJ, Trusina A, Bohr VA, Jensen MH. Dynamics of the DNA repair proteins WRN and BLM in the nucleoplasm and nucleoli. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:509-16. [PMID: 25119658 DOI: 10.1007/s00249-014-0981-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 06/20/2014] [Accepted: 07/21/2014] [Indexed: 11/30/2022]
Abstract
We have investigated the mobility of two EGFP-tagged DNA repair proteins, WRN and BLM. In particular, we focused on the dynamics in two locations, the nucleoli and the nucleoplasm. We found that both WRN and BLM use a "DNA-scanning" mechanism, with rapid binding-unbinding to DNA resulting in effective diffusion. In the nucleoplasm WRN and BLM have effective diffusion coefficients of 1.62 and 1.34 μm(2)/s, respectively. Likewise, the dynamics in the nucleoli are also best described by effective diffusion, but with diffusion coefficients a factor of ten lower than in the nucleoplasm. From this large reduction in diffusion coefficient we were able to classify WRN and BLM as DNA damage scanners. In addition to WRN and BLM we also classified other DNA damage proteins and found they all fall into one of two categories. Either they are scanners, similar to WRN and BLM, with very low diffusion coefficients, suggesting a scanning mechanism, or they are almost freely diffusing, suggesting that they interact with DNA only after initiation of a DNA damage response.
Collapse
|
24
|
Bernas T, Brutkowski W, Zarębski M, Dobrucki J. Spatial heterogeneity of dynamics of H1 linker histone. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2014; 43:287-300. [PMID: 24830851 PMCID: PMC4053610 DOI: 10.1007/s00249-014-0962-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 04/10/2014] [Accepted: 04/25/2014] [Indexed: 02/04/2023]
Abstract
Linker histone H1 participates in maintaining higher order chromatin structures. It is a dynamic protein that binds to DNA and exchanges rapidly with a mobile pool. Therefore, the dynamics of H1 were probed in the nuclei of intact, live cells, using an array of microscopy techniques: fluorescence recovery after photobleaching (FRAP), raster image correlation spectroscopy (RICS), fluorescence correlation spectroscopy (FCS), pair correlation functions (pCF) and fluorescence anisotropy. Combination of these techniques yielded information on H1 dynamics at small (1–100 μs: FCS, RICS, anisotropy), moderate (1–100 ms: FCS, RICS, pCF) and large (1–100 s: pCF and FRAP) time scales. These results indicate that the global movement of H1 in nuclei (at distances >1 µm) occurs at the time scale of seconds and is determined by processes other than diffusion. Moreover, a fraction of H1, which remains immobile at the time scale of tenths of seconds, is detectable. However, local (at distances <0.7 µm) H1 dynamics comprises a process occurring at a short (~3 ms) time scale and multiple processes occurring at longer (10–2,500 ms) scales. The former (fast) process (corresponding probably to H1 diffusion) is more pronounced in the nuclear regions characterized by low H1 concentration, but the latter (slow, attributable to H1 binding) in the regions of high H1 concentration. Furthermore, some regions in nuclei (possibly containing dense chromatin) may constitute barriers that impair or block movement of H1 histones within short (<1 µm) distances.
Collapse
Affiliation(s)
- T Bernas
- Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland,
| | | | | | | |
Collapse
|
25
|
Wachsmuth M. Molecular diffusion and binding analyzed with FRAP. PROTOPLASMA 2014; 251:373-382. [PMID: 24390250 DOI: 10.1007/s00709-013-0604-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Accepted: 12/16/2013] [Indexed: 06/03/2023]
Abstract
Intracellular molecular transport and localization are crucial for cells (plant cells as much as mammalian cells) to proliferate and to adapt to diverse environmental conditions. Here, some aspects of the microscopy-based method of fluorescence recovery after photobleaching (FRAP) are introduced. In the course of the last years, this has become a very powerful tool to study dynamic processes in living cells and tissue, and it is expected to experience further increasing demand because quantitative information on biological systems becomes more and more important. This review introduces the FRAP methodology, including some theoretical background, describes challenges and pitfalls, and presents some recent advanced applications.
Collapse
Affiliation(s)
- Malte Wachsmuth
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany,
| |
Collapse
|
26
|
Poorey K, Viswanathan R, Carver MN, Karpova TS, Cirimotich SM, McNally JG, Bekiranov S, Auble DT. Measuring chromatin interaction dynamics on the second time scale at single-copy genes. Science 2013; 342:369-72. [PMID: 24091704 PMCID: PMC3997053 DOI: 10.1126/science.1242369] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The chromatin immunoprecipitation (ChIP) assay is widely used to capture interactions between chromatin and regulatory proteins, but it is unknown how stable most native interactions are. Although live-cell imaging suggests short-lived interactions at tandem gene arrays, current methods cannot measure rapid binding dynamics at single-copy genes. We show, by using a modified ChIP assay with subsecond temporal resolution, that the time dependence of formaldehyde cross-linking can be used to extract in vivo on and off rates for site-specific chromatin interactions varying over a ~100-fold dynamic range. By using the method, we show that a regulatory process can shift weakly bound TATA-binding protein to stable promoter interactions, thereby facilitating transcription complex formation. This assay provides an approach for systematic, quantitative analyses of chromatin binding dynamics in vivo.
Collapse
Affiliation(s)
- Kunal Poorey
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Ramya Viswanathan
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Melissa N. Carver
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Tatiana S. Karpova
- Center for Cancer Research Core Fluorescence Imaging Facility, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Shana M. Cirimotich
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - James G. McNally
- Center for Cancer Research Core Fluorescence Imaging Facility, Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Stefan Bekiranov
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - David T. Auble
- Department of Biochemistry and Molecular Genetics, University of Virginia Health System, Charlottesville, VA 22908, USA
| |
Collapse
|
27
|
ELL, a novel TFIIH partner, is involved in transcription restart after DNA repair. Proc Natl Acad Sci U S A 2013; 110:17927-32. [PMID: 24127601 DOI: 10.1073/pnas.1305009110] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
DNA lesions that block transcription may cause cell death even when repaired, if transcription does not restart to reestablish cellular metabolism. However, transcription resumption after individual DNA-lesion repair remains poorly described in mechanistic terms and its players are largely unknown. The general transcription factor II H (TFIIH) is a major actor of both nucleotide excision repair subpathways of which transcription-coupled repair highlights the interplay between DNA repair and transcription. Using an unbiased proteomic approach, we have identified the protein eleven-nineteen lysine-rich leukemia (ELL) as a TFIIH partner. Here we show that ELL is recruited to UV-damaged chromatin in a Cdk7- dependent manner (a component of the cyclin-dependent activating kinase subcomplex of TFIIH). We demonstrate that depletion of ELL strongly hinders RNA polymerase II (RNA Pol II) transcription resumption after lesion removal and DNA gap filling. Lack of ELL was also observed to increase RNA Pol II retention to the chromatin during this process. Identifying ELL as an essential player for RNA Pol II restart during cellular DNA damage response opens the way to obtaining a mechanistic description of transcription resumption after DNA repair.
Collapse
|
28
|
Mutations in DNA binding and transactivation domains affect the dynamics of parvovirus NS1 protein. J Virol 2013; 87:11762-74. [PMID: 23986577 DOI: 10.1128/jvi.01678-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The multifunctional replication protein of autonomous parvoviruses, NS1, is vital for viral genome replication and for the control of viral protein production. Two DNA-interacting domains of NS1, the N-terminal and helicase domains, are necessary for these functions. In addition, the N and C termini of NS1 are required for activation of viral promoter P38. By comparison with the structural and biochemical data from other parvoviruses, we identified potential DNA-interacting amino acid residues from canine parvovirus NS1. The role of the identified amino acids in NS1 binding dynamics was studied by mutagenesis, fluorescence recovery after photobleaching, and computer simulations. Mutations in the predicted DNA-interacting amino acids of the N-terminal and helicase domains increased the intranuclear binding dynamics of NS1 dramatically. A substantial increase in binding dynamics was also observed for NS1 mutants that targeted the metal ion coordination site in the N terminus. Interestingly, contrary to other mutants, deletion of the C terminus resulted in slower binding dynamics of NS1. P38 transactivation was severely reduced in both N-terminal DNA recognition and in C-terminal deletion mutants. These data suggest that the intranuclear dynamics of NS1 are largely characterized by its sequence-specific and -nonspecific binding to double-stranded DNA. Moreover, binding of NS1 is equally dependent on the N-terminal domain and conserved β-loop of the helicase domain.
Collapse
|
29
|
Eukaryotic transcriptional dynamics: from single molecules to cell populations. Nat Rev Genet 2013; 14:572-84. [PMID: 23835438 DOI: 10.1038/nrg3484] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Transcriptional regulation is achieved through combinatorial interactions between regulatory elements in the human genome and a vast range of factors that modulate the recruitment and activity of RNA polymerase. Experimental approaches for studying transcription in vivo now extend from single-molecule techniques to genome-wide measurements. Parallel to these developments is the need for testable quantitative and predictive models for understanding gene regulation. These conceptual models must also provide insight into the dynamics of transcription and the variability that is observed at the single-cell level. In this Review, we discuss recent results on transcriptional regulation and also the models those results engender. We show how a non-equilibrium description informs our view of transcription by explicitly considering time- and energy-dependence at the molecular level.
Collapse
|
30
|
van Royen ME, van de Wijngaart DJ, Cunha SM, Trapman J, Houtsmuller AB. A multi-parameter imaging assay identifies different stages of ligand-induced androgen receptor activation. Cytometry A 2013; 83:806-17. [DOI: 10.1002/cyto.a.22284] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 02/09/2013] [Accepted: 02/26/2013] [Indexed: 12/29/2022]
Affiliation(s)
- Martin E. van Royen
- Department of Pathology; Josephine Nefkens Institute; Erasmus MC; 3000 CA Rotterdam; The Netherlands
| | | | - Sónia M. Cunha
- Department of Pathology; Josephine Nefkens Institute; Erasmus MC; 3000 CA Rotterdam; The Netherlands
| | - Jan Trapman
- Department of Pathology; Josephine Nefkens Institute; Erasmus MC; 3000 CA Rotterdam; The Netherlands
| | - Adriaan B. Houtsmuller
- Department of Pathology; Josephine Nefkens Institute; Erasmus MC; 3000 CA Rotterdam; The Netherlands
| |
Collapse
|
31
|
Tobias F, Löb D, Lengert N, Durante M, Drossel B, Taucher-Scholz G, Jakob B. Spatiotemporal dynamics of early DNA damage response proteins on complex DNA lesions. PLoS One 2013; 8:e57953. [PMID: 23469115 PMCID: PMC3582506 DOI: 10.1371/journal.pone.0057953] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 01/29/2013] [Indexed: 11/18/2022] Open
Abstract
The response of cells to ionizing radiation-induced DNA double-strand breaks (DSB) is determined by the activation of multiple pathways aimed at repairing the injury and maintaining genomic integrity. Densely ionizing radiation induces complex damage consisting of different types of DNA lesions in close proximity that are difficult to repair and may promote carcinogenesis. Little is known about the dynamic behavior of repair proteins on complex lesions. In this study we use live-cell imaging for the spatio-temporal characterization of early protein interactions at damage sites of increasing complexity. Beamline microscopy was used to image living cells expressing fluorescently-tagged proteins during and immediately after charged particle irradiation to reveal protein accumulation at damaged sites in real time. Information on the mobility and binding rates of the recruited proteins was obtained from fluorescence recovery after photobleaching (FRAP). Recruitment of the DNA damage sensor protein NBS1 accelerates with increasing lesion density and saturates at very high damage levels. FRAP measurements revealed two different binding modalities of NBS1 to damage sites and a direct impact of lesion complexity on the binding. Faster recruitment with increasing lesion complexity was also observed for the mediator MDC1, but mobility was limited at very high damage densities due to nuclear-wide binding. We constructed a minimal computer model of the initial response to DSB based on known protein interactions only. By fitting all measured data using the same set of parameters, we can reproduce the experimentally characterized steps of the DNA damage response over a wide range of damage densities. The model suggests that the influence of increasing lesion density accelerating NBS1 recruitment is only dependent on the different binding modes of NBS1, directly to DSB and to the surrounding chromatin via MDC1. This elucidates an impact of damage clustering on repair without the need of invoking extra processing steps.
Collapse
Affiliation(s)
- Frank Tobias
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
| | - Daniel Löb
- TU Darmstadt, Institut für Festkörperphysik, Darmstadt, Germany
| | - Nicor Lengert
- TU Darmstadt, Institut für Festkörperphysik, Darmstadt, Germany
| | - Marco Durante
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- TU Darmstadt, Institut für Festkörperphysik, Darmstadt, Germany
| | - Barbara Drossel
- TU Darmstadt, Institut für Festkörperphysik, Darmstadt, Germany
| | | | - Burkhard Jakob
- GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
- * E-mail:
| |
Collapse
|
32
|
Elfferich P, van Royen M, van de Wijngaart D, Trapman J, Drop S, van den Akker E, Lusher S, Bosch R, Bunch T, Hughes I, Houtsmuller A, Cools M, Faradz S, Bisschop P, Bunck M, Oostdijk W, Brüggenwirth H, Brinkmann A. Variable Loss of Functional Activities of Androgen Receptor Mutants in Patients with Androgen Insensitivity Syndrome. Sex Dev 2013; 7:223-34. [DOI: 10.1159/000351820] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2013] [Indexed: 01/05/2023] Open
|
33
|
Erdel F, Rippe K. Quantifying transient binding of ISWI chromatin remodelers in living cells by pixel-wise photobleaching profile evolution analysis. Proc Natl Acad Sci U S A 2012; 109:E3221-30. [PMID: 23129662 PMCID: PMC3511136 DOI: 10.1073/pnas.1209579109] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Interactions between nuclear proteins and chromatin frequently occur on the time scale of seconds and below. These transient binding events are important for the fast identification of target sites as concluded from our previous analysis of the human chromatin remodelers Snf2H and Snf2L from the imitation switch (ISWI) family. Both ATP-driven molecular motor proteins are able to translocate nucleosomes along the DNA and appear to exert this activity only on a small number of nucleosomes to which they bind more tightly. For mechanistic studies, one needs to distinguish such translocation reactions or other long-lived interactions associated with conformational changes and/or ATP hydrolysis from nonproductive chromatin sampling during target search. These processes can be separated by measuring the duration of nucleosome binding with subsecond time resolution. To reach this goal, we have developed a fluorescence bleaching technique termed pixel-wise photobleaching profile evolution analysis (3PEA). It exploits the inherent time structure of confocal microscopy images and yields millisecond resolution. 3PEA represents a generally applicable approach to quantitate transient chromatin interactions in the 2- to 500-ms time regime within only ∼1 s needed for a measurement. The green autofluorescent protein (GFP)-tagged Snf2H and Snf2L and the inactive Snf2L+13 splice variant were studied by 3PEA in comparison to the isolated GFP or red autofluorescent protein and a GFP pentamer. Our results reveal that the residence time for transient chromatin binding of Snf2H and Snf2L is <2 ms, and strongly support the view that ISWI-type remodelers are only rarely active in unperturbed cells during G1 phase.
Collapse
Affiliation(s)
- Fabian Erdel
- Research Group Genome Organization and Function, Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, 69120 Heidelberg, Germany
| | - Karsten Rippe
- Research Group Genome Organization and Function, Deutsches Krebsforschungszentrum (DKFZ) and BioQuant, 69120 Heidelberg, Germany
| |
Collapse
|
34
|
Hable V, Drexler GA, Brüning T, Burgdorf C, Greubel C, Derer A, Seel J, Strickfaden H, Cremer T, Friedl AA, Dollinger G. Recruitment kinetics of DNA repair proteins Mdc1 and Rad52 but not 53BP1 depend on damage complexity. PLoS One 2012; 7:e41943. [PMID: 22860035 PMCID: PMC3408406 DOI: 10.1371/journal.pone.0041943] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/27/2012] [Indexed: 11/19/2022] Open
Abstract
The recruitment kinetics of double-strand break (DSB) signaling and repair proteins Mdc1, 53BP1 and Rad52 into radiation-induced foci was studied by live-cell fluorescence microscopy after ion microirradiation. To investigate the influence of damage density and complexity on recruitment kinetics, which cannot be done by UV laser irradiation used in former studies, we utilized 43 MeV carbon ions with high linear energy transfer per ion (LET = 370 keV/µm) to create a large fraction of clustered DSBs, thus forming complex DNA damage, and 20 MeV protons with low LET (LET = 2.6 keV/µm) to create mainly isolated DSBs. Kinetics for all three proteins was characterized by a time lag period T0 after irradiation, during which no foci are formed. Subsequently, the proteins accumulate into foci with characteristic mean recruitment times τ1. Mdc1 accumulates faster (T0 = 17±2 s, τ1 = 98±11 s) than 53BP1 (T0 = 77±7 s, τ1 = 310±60 s) after high LET irradiation. However, recruitment of Mdc1 slows down (T0 = 73±16 s, τ1 = 1050±270 s) after low LET irradiation. The recruitment kinetics of Rad52 is slower than that of Mdc1, but exhibits the same dependence on LET. In contrast, the mean recruitment time τ1 of 53BP1 remains almost constant when varying LET. Comparison to literature data on Mdc1 recruitment after UV laser irradiation shows that this rather resembles recruitment after high than low LET ionizing radiation. So this work shows that damage quality has a large influence on repair processes and has to be considered when comparing different studies.
Collapse
Affiliation(s)
- Volker Hable
- Angewandte Physik und Messtechnik LRT2, UniBw-München, Neubiberg, Germany
| | - Guido A. Drexler
- Klinik und Poliklinik für Strahlentherapie und Radioonkologie, LMU-München, München, Germany
| | - Tino Brüning
- Angewandte Physik und Messtechnik LRT2, UniBw-München, Neubiberg, Germany
| | - Christian Burgdorf
- Angewandte Physik und Messtechnik LRT2, UniBw-München, Neubiberg, Germany
| | - Christoph Greubel
- Angewandte Physik und Messtechnik LRT2, UniBw-München, Neubiberg, Germany
| | - Anja Derer
- Klinik und Poliklinik für Strahlentherapie und Radioonkologie, LMU-München, München, Germany
| | - Judith Seel
- Angewandte Physik und Messtechnik LRT2, UniBw-München, Neubiberg, Germany
| | | | - Thomas Cremer
- Department Biologie II, LMU-München, Martinsried, Germany
| | - Anna A. Friedl
- Klinik und Poliklinik für Strahlentherapie und Radioonkologie, LMU-München, München, Germany
| | - Günther Dollinger
- Angewandte Physik und Messtechnik LRT2, UniBw-München, Neubiberg, Germany
- * E-mail:
| |
Collapse
|
35
|
Speil J, Baumgart E, Siebrasse JP, Veith R, Vinkemeier U, Kubitscheck U. Activated STAT1 transcription factors conduct distinct saltatory movements in the cell nucleus. Biophys J 2012; 101:2592-600. [PMID: 22261046 DOI: 10.1016/j.bpj.2011.10.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 09/13/2011] [Accepted: 10/03/2011] [Indexed: 01/13/2023] Open
Abstract
The activation of STAT transcription factors is a critical determinant of their subcellular distribution and their ability to regulate gene expression. Yet, it is not known how activation affects the behavior of individual STAT molecules in the cytoplasm and nucleus. To investigate this issue, we injected fluorescently labeled STAT1 in living HeLa cells and traced them by single-molecule microscopy. We determined that STAT1 moved stochastically in the cytoplasm and nucleus with very short residence times (<0.03 s) before activation. Upon activation, STAT1 mobility in the cytoplasm decreased ∼2.5-fold, indicating reduced movement of STAT1/importinα/β complexes to the nucleus. In the nucleus, activated STAT1 displayed a distinct saltatory mobility, with residence times of up to 5 s and intermittent diffusive motion. In this manner, activated STAT1 factors can occupy their putative chromatin target sites within ∼2 s. These results provide a better understanding of the timescales on which cellular signaling and regulated gene transcription operate at the single-molecule level.
Collapse
Affiliation(s)
- Jasmin Speil
- Institute of Physical and Theoretical Chemistry, Rheinische Friedrich Wilhelms University Bonn, Bonn, Germany
| | | | | | | | | | | |
Collapse
|
36
|
van de Wijngaart DJ, Dubbink HJ, van Royen ME, Trapman J, Jenster G. Androgen receptor coregulators: recruitment via the coactivator binding groove. Mol Cell Endocrinol 2012; 352:57-69. [PMID: 21871527 DOI: 10.1016/j.mce.2011.08.007] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 08/08/2011] [Accepted: 08/10/2011] [Indexed: 02/08/2023]
Abstract
Androgens are key regulators of male sexual differentiation and essential for development and maintenance of male reproductive tissues. The androgens testosterone and dihydrotestosterone mediate their effect by binding to, and activation of the androgen receptor (AR). Upon activation, the AR is able to recognize specific DNA sequences in gene promoters and enhancers from where it recruits coregulators to orchestrate chromatin remodeling and transcription regulation. The number of proteins that bind to the AR has surpassed 200 and many of them enhance (coactivator) or repress (corepressor) its transactivating capacity. For most of these coregulators, their AR binding interface and their exact mode of action still needs to be elucidated, but for some of the more classical coactivators and corepressors, we gained insight in their working mechanisms. Of particular interest are specific sequences (LxxLL and FxxLF-like motifs) in a subset of coactivators that interact with the AR via a coactivator binding groove in the ligand-binding domain. As compared to other steroid receptors, the conformation of the AR coactivator binding pocket is unique and preferentially binds FxxLF-like motifs. This predisposition is expected to contribute to the regulation of specific sets of target genes via recruitment of selected coregulators. This review provides an overview of these (inter)actions with a focus on the unique characteristics of the AR coactivator binding groove.
Collapse
|
37
|
Ishikawa-Ankerhold HC, Ankerhold R, Drummen GPC. Advanced fluorescence microscopy techniques--FRAP, FLIP, FLAP, FRET and FLIM. Molecules 2012; 17:4047-132. [PMID: 22469598 PMCID: PMC6268795 DOI: 10.3390/molecules17044047] [Citation(s) in RCA: 291] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 03/21/2012] [Accepted: 03/21/2012] [Indexed: 12/19/2022] Open
Abstract
Fluorescence microscopy provides an efficient and unique approach to study fixed and living cells because of its versatility, specificity, and high sensitivity. Fluorescence microscopes can both detect the fluorescence emitted from labeled molecules in biological samples as images or photometric data from which intensities and emission spectra can be deduced. By exploiting the characteristics of fluorescence, various techniques have been developed that enable the visualization and analysis of complex dynamic events in cells, organelles, and sub-organelle components within the biological specimen. The techniques described here are fluorescence recovery after photobleaching (FRAP), the related fluorescence loss in photobleaching (FLIP), fluorescence localization after photobleaching (FLAP), Förster or fluorescence resonance energy transfer (FRET) and the different ways how to measure FRET, such as acceptor bleaching, sensitized emission, polarization anisotropy, and fluorescence lifetime imaging microscopy (FLIM). First, a brief introduction into the mechanisms underlying fluorescence as a physical phenomenon and fluorescence, confocal, and multiphoton microscopy is given. Subsequently, these advanced microscopy techniques are introduced in more detail, with a description of how these techniques are performed, what needs to be considered, and what practical advantages they can bring to cell biological research.
Collapse
Affiliation(s)
- Hellen C. Ishikawa-Ankerhold
- Ludwig Maximilian University of Munich, Institute of Anatomy and Cell Biology, Schillerstr. 42, 80336 München, Germany
| | - Richard Ankerhold
- Carl Zeiss Microimaging GmbH, Kistlerhofstr. 75, 81379 München, Germany
| | - Gregor P. C. Drummen
- Bionanoscience and Bio-Imaging Program, Cellular Stress and Ageing Program, Bio&Nano-Solutions, Helmutstr. 3A, 40472 Düsseldorf, Germany
| |
Collapse
|
38
|
Erdel F, Rippe K. Binding kinetics of human ISWI chromatin-remodelers to DNA repair sites elucidate their target location mechanism. Nucleus 2012; 2:105-12. [PMID: 21738833 DOI: 10.4161/nucl.2.2.15209] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 02/18/2011] [Indexed: 01/08/2023] Open
Abstract
Chromatin remodelers translocate nucleosomes along the DNA chain in an ATP-dependent manner. This catalytic activity is particularly important for DNA replication and repair since both processes require a significant amount of nucleosome translocations and assembly during DNA synthesis. Recently, we have studied the mobility and interactions of the human ISWI family chromatin remodelers Snf2H and Snf2L as well as Acf1, one of the non-catalytic subunits present in the ACF and CHRAC complexes of Snf2H. We proposed that these protein complexes identify their nucleosomal substrates via a continuous sampling mechanism. It rationalizes the relatively high nuclear mobility and abundance observed for all ISWI proteins in terms of fast target location. According to our model a certain type of ISWI complex visits a given nucleosome in the human genome on the timescale of several seconds to a few minutes. Here, we show that the ISWI proteins Snf2H, Snf2L as well as Acf1 accumulate at UV-induced DNA damage sites within tens of seconds and reach a plateau after a few minutes. These findings corroborate the predictions of the continuous sampling mechanism as an efficient way for targeting chromatin remodelers to sites in the genome that require their activity. In comparison to the mobility of PCNA (proliferating cell nuclear antigen) that also accumulates at DNA repair sites the specifics of substrate location by chromatin remodelers are further characterized.
Collapse
Affiliation(s)
- Fabian Erdel
- Research Group Genome Organization & Function, Deutsches Krebsforschungszentrum & BioQuant, Heidelberg, Germany
| | | |
Collapse
|
39
|
Monitoring dynamic binding of chromatin proteins in vivo by fluorescence correlation spectroscopy and temporal image correlation spectroscopy. Methods Mol Biol 2012; 833:177-200. [PMID: 22183595 DOI: 10.1007/978-1-61779-477-3_12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Live-cell microscopy has demonstrated that many nuclear proteins bind transiently to target sites in chromatin. These binding interactions can be detected and quantified by two related live-cell imaging techniques, Fluorescence Correlation Spectroscopy (FCS) and Temporal Image Correlation Spectroscopy (TICS). With proper quantitative modeling, it is possible to obtain estimates from FCS and TICS data of the association and dissociation rates of nuclear protein binding to chromatin. These binding rates permit calculating the fractions of free and bound protein in the nucleus, plus the time required to diffuse from one binding site to the next and the dwell time on a chromatin target. In this protocol, we summarize the underlying principles of FCS and TICS, and then describe how these data should be collected and analyzed to extract estimates of in vivo binding.
Collapse
|
40
|
Erdel F, Krug J, Längst G, Rippe K. Targeting chromatin remodelers: signals and search mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1809:497-508. [PMID: 21704204 DOI: 10.1016/j.bbagrm.2011.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 06/02/2011] [Accepted: 06/06/2011] [Indexed: 12/26/2022]
Abstract
Chromatin remodeling complexes are ATP-driven molecular machines that change chromatin structure by translocating nucleosomes along the DNA, evicting nucleosomes, or changing the nucleosomal histone composition. They are highly abundant in the cell and numerous different complexes exist that display distinct activity patterns. Here we review chromatin-associated signals that are recognized by remodelers. It is discussed how these regulate the remodeling reaction via changing the nucleosome substrate/product binding affinity or the catalytic translocation rate. Finally, we address the question of how chromatin remodelers operate in the cell nucleus to find specifically marked nucleosome substrates via a diffusion driven target location mechanism, and estimate the search times of this process. This article is part of a Special Issue entitled:Snf2/Swi2 ATPase structure and function.
Collapse
Affiliation(s)
- Fabian Erdel
- Research Group Genome Organization & Function, Deutsches Krebsforschungszentrum (DKFZ) & BioQuant, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
41
|
Abstract
Despite detailed knowledge on the genetic network and biochemical properties of most of the nucleotide excision repair (NER) proteins, cell biological analysis has only recently made it possible to investigate the temporal and spatial organization of NER. In contrast to several other DNA damage response mechanisms that occur in specific subnuclear structures, NER is not confined to nuclear foci, which has severely hampered the analysis of its arrangement in time and space. In this review the recently developed tools to study the dynamic molecular transactions between the NER factors and the chromatin template are summarized. First, different procedures to inflict DNA damage in a part of the cell nucleus are discussed. In addition, technologies to measure protein dynamics of NER factors tagged with the green fluorescent protein (GFP) will be reviewed. Most of the dynamic parameters of GFP-tagged NER factors are deduced from different variants of 'fluorescence recovery after photobleaching' (FRAP) experiments and FRAP analysis procedures will be briefly evaluated. The combination of local damage induction, genetic tagging of repair factors with GFP and microscopy innovations have provided the basis for the determination of NER kinetics within living mammalian cells. These new cell biological approaches have disclosed a highly dynamic arrangement of NER factors that assemble in an orderly fashion on damaged DNA. The spatio-temporal analysis tools developed for the study of NER and the kinetic model derived from these studies can serve as a paradigm for the understanding of other chromatin-associated processes.
Collapse
Affiliation(s)
- Wim Vermeulen
- Department of Genetics, Erasmus University Medical Center, GE Rotterdam, The Netherlands.
| |
Collapse
|