1
|
Remnant L, Kochanova NY, Reid C, Cisneros-Soberanis F, Earnshaw WC. The intrinsically disorderly story of Ki-67. Open Biol 2021; 11:210120. [PMID: 34375547 PMCID: PMC8354752 DOI: 10.1098/rsob.210120] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/13/2021] [Indexed: 01/14/2023] Open
Abstract
Ki-67 is one of the most famous marker proteins used by histologists to identify proliferating cells. Indeed, over 30 000 articles referring to Ki-67 are listed on PubMed. Here, we review some of the current literature regarding the protein. Despite its clinical importance, our knowledge of the molecular biology and biochemistry of Ki-67 is far from complete, and its exact molecular function(s) remain enigmatic. Furthermore, reports describing Ki-67 function are often contradictory, and it has only recently become clear that this proliferation marker is itself dispensable for cell proliferation. We discuss the unusual organization of the protein and its mRNA and how they relate to various models for its function. In particular, we focus on ways in which the intrinsically disordered structure of Ki-67 might aid in the assembly of the still-mysterious mitotic chromosome periphery compartment by controlling liquid-liquid phase separation of nucleolar proteins and RNAs.
Collapse
Affiliation(s)
- Lucy Remnant
- Wellcome Centre for Cell Biology, University of Edinburgh, ICB, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Natalia Y. Kochanova
- Wellcome Centre for Cell Biology, University of Edinburgh, ICB, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Caitlin Reid
- Wellcome Centre for Cell Biology, University of Edinburgh, ICB, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - Fernanda Cisneros-Soberanis
- Wellcome Centre for Cell Biology, University of Edinburgh, ICB, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| | - William C. Earnshaw
- Wellcome Centre for Cell Biology, University of Edinburgh, ICB, Michael Swann Building, King's Buildings, Max Born Crescent, Edinburgh EH9 3BF, UK
| |
Collapse
|
2
|
Mills WE, Spence JM, Fukagawa T, Farr CJ. Site-Specific Cleavage by Topoisomerase 2: A Mark of the Core Centromere. Int J Mol Sci 2018; 19:E534. [PMID: 29439406 PMCID: PMC5855756 DOI: 10.3390/ijms19020534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 12/12/2022] Open
Abstract
In addition to its roles in transcription and replication, topoisomerase 2 (topo 2) is crucial in shaping mitotic chromosomes and in ensuring the orderly separation of sister chromatids. As well as its recruitment throughout the length of the mitotic chromosome, topo 2 accumulates at the primary constriction. Here, following cohesin release, the enzymatic activity of topo 2 acts to remove residual sister catenations. Intriguingly, topo 2 does not bind and cleave all sites in the genome equally; one preferred site of cleavage is within the core centromere. Discrete topo 2-centromeric cleavage sites have been identified in α-satellite DNA arrays of active human centromeres and in the centromere regions of some protozoans. In this study, we show that topo 2 cleavage sites are also a feature of the centromere in Schizosaccharomyces pombe, the metazoan Drosophila melanogaster and in another vertebrate species, Gallus gallus (chicken). In vertebrates, we show that this site-specific cleavage is diminished by depletion of CENP-I, an essential constitutive centromere protein. The presence, within the core centromere of a wide range of eukaryotes, of precise sites hypersensitive to topo 2 cleavage suggests that these mark a fundamental and conserved aspect of this functional domain, such as a non-canonical secondary structure.
Collapse
Affiliation(s)
- Walter E Mills
- Department of Genetics, University of Cambridge, Downing St, Cambridge CB2 3EH, UK.
| | - Jennifer M Spence
- Department of Genetics, University of Cambridge, Downing St, Cambridge CB2 3EH, UK.
| | - Tatsuo Fukagawa
- Laboratory of Chromosome Biology, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Christine J Farr
- Department of Genetics, University of Cambridge, Downing St, Cambridge CB2 3EH, UK.
| |
Collapse
|
3
|
Stepwise unfolding supports a subunit model for vertebrate kinetochores. Proc Natl Acad Sci U S A 2017; 114:3133-3138. [PMID: 28265097 DOI: 10.1073/pnas.1614145114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
During cell division, interactions between microtubules and chromosomes are mediated by the kinetochore, a proteinaceous structure located at the primary constriction of chromosomes. In addition to the centromere histone centromere protein A (CENP-A), 15 other members of the constitutive centromere associated network (CCAN) participate in the formation of a chromatin-associated scaffold that supports kinetochore structure. We performed a targeted screen analyzing unfolded centrochromatin from CENP-depleted chromosomes. Our results revealed that CENP-C and CENP-S are critical for the stable folding of mitotic kinetochore chromatin. Multipeak fitting algorithms revealed the presence of an organized pattern of centrochromatin packing consistent with arrangement of CENP-A-containing nucleosomes into up to five chromatin "subunits"-each containing roughly 20-30 nucleosomes. These subunits could be either layers of a boustrophedon or small loops of centromeric chromatin.
Collapse
|
4
|
Abstract
Centromeric chromatin undergoes major changes in composition and architecture during each cell cycle. These changes in specialized chromatin facilitate kinetochore formation in mitosis to ensure proper chromosome segregation. Thus, proper orchestration of centromeric chromatin dynamics during interphase, including replication in S phase, is crucial. We provide the current view concerning the centromeric architecture associated with satellite repeat sequences in mammals and its dynamics during the cell cycle. We summarize the contributions of deposited histone variants and their chaperones, other centromeric components - including proteins and their post-translational modifications, and RNAs - and we link the expression and deposition timing of each component during the cell cycle. Because neocentromeres occur at ectopic sites, we highlight how cell cycle processes can go wrong, leading to neocentromere formation and potentially disease.
Collapse
Affiliation(s)
- Sebastian Müller
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, F-75005 Paris, France.,Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR3664, F-75005 Paris, France
| | - Geneviève Almouzni
- Institut Curie, PSL Research University, CNRS, UMR3664, Equipe Labellisée Ligue contre le Cancer, F-75005 Paris, France.,Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR3664, F-75005 Paris, France
| |
Collapse
|
5
|
Steiner FA, Henikoff S. Diversity in the organization of centromeric chromatin. Curr Opin Genet Dev 2015; 31:28-35. [PMID: 25956076 DOI: 10.1016/j.gde.2015.03.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 03/26/2015] [Accepted: 03/28/2015] [Indexed: 01/15/2023]
Abstract
Centromeric chromatin is distinguished primarily by nucleosomes containing the histone variant cenH3, which organizes the kinetochore that links the chromosome to the spindle apparatus. Whereas budding yeast have simple 'point' centromeres with single cenH3 nucleosomes, and fission yeast have 'regional' centromeres without obvious sequence specificity, the centromeres of most organisms are embedded in highly repetitive 'satellite' DNA. Recent studies have revealed a remarkable diversity in centromere chromatin organization among different lineages, including some that have lost cenH3 altogether. We review recent progress in understanding point, regional and satellite centromeres, as well as less well-studied centromere types, such as holocentromeres. We also discuss the formation of neocentromeres, the role of pericentric heterochromatin, and the structure and composition of the cenH3 nucleosome.
Collapse
Affiliation(s)
- Florian A Steiner
- Basic Sciences Division and Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Steven Henikoff
- Basic Sciences Division and Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
| |
Collapse
|
6
|
|
7
|
Hori T, Shang WH, Toyoda A, Misu S, Monma N, Ikeo K, Molina O, Vargiu G, Fujiyama A, Kimura H, Earnshaw WC, Fukagawa T. Histone H4 Lys 20 monomethylation of the CENP-A nucleosome is essential for kinetochore assembly. Dev Cell 2014; 29:740-9. [PMID: 24960696 PMCID: PMC4081567 DOI: 10.1016/j.devcel.2014.05.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/31/2014] [Accepted: 04/30/2014] [Indexed: 12/21/2022]
Abstract
In vertebrate cells, centromeres are specified epigenetically through the deposition of the centromere-specific histone CENP-A. Following CENP-A deposition, additional proteins are assembled on centromeric chromatin. However, it remains unknown whether additional epigenetic features of centromeric chromatin are required for kinetochore assembly. Here, we used ChIP-seq analysis to examine centromere-specific histone modifications at chicken centromeres, which lack highly repetitive sequences. We found that H4K20 monomethylation (H4K20me1) is enriched at centromeres. Immunofluorescence and biochemical analyses revealed that H4K20me1 is present at all centromeres in chicken and human cells. Based on immunoprecipitation data, H4K20me1 occurs primarily on the histone H4 that is assembled as part of the CENP-A nucleosome following deposition of CENP-A into centromeres. Targeting the H4K20me1-specific demethylase PHF8 to centromeres reduces the level of H4K20me1 at centromeres and results in kinetochore assembly defects. We conclude that H4K20me1 modification of CENP-A nucleosomes contributes to functional kinetochore assembly. H4K20 monomethylation is enriched at both chicken and human centromeres H4K20 monomethylation occurs primarily at the CENP-A-containing nucleosomes H4K20 monomethylation is essential for kinetochore assembly in chicken cells
Collapse
Affiliation(s)
- Tetsuya Hori
- Department of Molecular Genetics, National Institute of Genetics and The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| | - Wei-Hao Shang
- Department of Molecular Genetics, National Institute of Genetics and The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan
| | - Atsushi Toyoda
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Sadahiko Misu
- Cell Innovation Project, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Norikazu Monma
- Cell Innovation Project, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Kazuho Ikeo
- Cell Innovation Project, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Oscar Molina
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Giulia Vargiu
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Asao Fujiyama
- Comparative Genomics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan; National Institute of Informatics, Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
| | - Hiroshi Kimura
- Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Tatsuo Fukagawa
- Department of Molecular Genetics, National Institute of Genetics and The Graduate University for Advanced Studies (SOKENDAI), Mishima, Shizuoka 411-8540, Japan.
| |
Collapse
|