1
|
Shang Y, Tan T, Fan C, Nie H, Wang Y, Yang X, Zhai B, Wang S, Zhang L. Meiotic chromosome organization and crossover patterns. Biol Reprod 2022; 107:275-288. [PMID: 35191959 DOI: 10.1093/biolre/ioac040] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Meiosis is the foundation of sexual reproduction, and crossover recombination is one hallmark of meiosis. Crossovers establish the physical connections between homolog chromosomes (homologs) for their proper segregation and exchange DNA between homologs to promote genetic diversity in gametes and thus progenies. Aberrant crossover patterns, e.g. absence of the obligatory crossover, are the leading cause of infertility, miscarriage, and congenital disease. Therefore, crossover patterns have to be tightly controlled. During meiosis, loop/axis organized chromosomes provide the structural basis and regulatory machinery for crossover patterning. Accumulating evidence shows that chromosome axis length regulates not only the numbers but also the positions of crossovers. In addition, recent studies suggest that alterations in axis length and the resultant alterations in crossover frequency may contribute to evolutionary adaptation. Here, current advances regarding these issues are reviewed, the possible mechanisms for axis length regulating crossover frequency are discussed, and important issues that need further investigations are suggested.
Collapse
Affiliation(s)
- Yongliang Shang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China
| | - Taicong Tan
- State Key Laboratory of Microbial Technology, Shandong University, China
| | - Cunxian Fan
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Hui Nie
- Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Ying Wang
- State Key Laboratory of Microbial Technology, Shandong University, China
| | - Xiao Yang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China.,Center for Reproductive Medicine, Shandong University
| | - Binyuan Zhai
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China
| | - Shunxin Wang
- Center for Reproductive Medicine, Shandong University.,National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China.,Key Laboratory of Reproductive Endocrinology of Ministry of Education, Jinan, Shandong 250001, China.,Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
| | - Liangran Zhang
- Advanced Medical Research Institute, Shandong University, Jinan, Shandong 250012, China.,Institute of Biomedical Sciences, College of Life Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, Shandong Normal University, Jinan, Shandong, 250014, China
| |
Collapse
|
2
|
Torgasheva A, Malinovskaya L, Zadesenets KS, Slobodchikova A, Shnaider E, Rubtsov N, Borodin P. Highly Conservative Pattern of Sex Chromosome Synapsis and Recombination in Neognathae Birds. Genes (Basel) 2021; 12:1358. [PMID: 34573341 PMCID: PMC8465153 DOI: 10.3390/genes12091358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/16/2021] [Accepted: 08/27/2021] [Indexed: 01/22/2023] Open
Abstract
We analyzed the synapsis and recombination between Z and W chromosomes in the oocytes of nine neognath species: domestic chicken Gallus gallus domesticus, grey goose Anser anser, black tern Chlidonias niger, common tern Sterna hirundo, pale martin Riparia diluta, barn swallow Hirundo rustica, European pied flycatcher Ficedula hypoleuca, great tit Parus major and white wagtail Motacilla alba using immunolocalization of SYCP3, the main protein of the lateral elements of the synaptonemal complex, and MLH1, the mismatch repair protein marking mature recombination nodules. In all species examined, homologous synapsis occurs in a short region of variable size at the ends of Z and W chromosomes, where a single recombination nodule is located. The remaining parts of the sex chromosomes undergo synaptic adjustment and synapse non-homologously. In 25% of ZW bivalents of white wagtail, synapsis and recombination also occur at the secondary pairing region, which probably resulted from autosome-sex chromosome translocation. Using FISH with a paint probe specific to the germline-restricted chromosome (GRC) of the pale martin on the oocytes of the pale martin, barn swallow and great tit, we showed that both maternally inherited songbird chromosomes (GRC and W) share common sequences.
Collapse
Affiliation(s)
- Anna Torgasheva
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia; (A.T.); (L.M.); (K.S.Z.); (A.S.); (N.R.)
- Department of Cytology and Genetics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Lyubov Malinovskaya
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia; (A.T.); (L.M.); (K.S.Z.); (A.S.); (N.R.)
- Department of Cytology and Genetics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Kira S. Zadesenets
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia; (A.T.); (L.M.); (K.S.Z.); (A.S.); (N.R.)
| | - Anastasia Slobodchikova
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia; (A.T.); (L.M.); (K.S.Z.); (A.S.); (N.R.)
- Department of Cytology and Genetics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Elena Shnaider
- Bird of Prey Rehabilitation Centre, 630090 Novosibirsk, Russia;
| | - Nikolai Rubtsov
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia; (A.T.); (L.M.); (K.S.Z.); (A.S.); (N.R.)
- Department of Cytology and Genetics, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Pavel Borodin
- Institute of Cytology and Genetics, Russian Academy of Sciences, Siberian Branch, 630090 Novosibirsk, Russia; (A.T.); (L.M.); (K.S.Z.); (A.S.); (N.R.)
- Department of Cytology and Genetics, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
3
|
del Priore L, Pigozzi MI. DNA Organization along Pachytene Chromosome Axes and Its Relationship with Crossover Frequencies. Int J Mol Sci 2021; 22:ijms22052414. [PMID: 33673731 PMCID: PMC7957551 DOI: 10.3390/ijms22052414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 12/29/2022] Open
Abstract
During meiosis, the number of crossovers vary in correlation to the length of prophase chromosome axes at the synaptonemal complex stage. It has been proposed that the regular spacing of the DNA loops, along with the close relationship of the recombination complexes and the meiotic axes are at the basis of this covariation. Here, we use a cytogenomic approach to investigate the relationship between the synaptonemal complex length and the DNA content in chicken oocytes during the pachytene stage of the first meiotic prophase. The synaptonemal complex to DNA ratios of specific chromosomes and chromosome segments were compared against the recombination rates obtained by MLH1 focus mapping. The present results show variations in the DNA packing ratios of macro- and microbivalents and also between regions within the same bivalent. Chromosome or chromosome regions with higher crossover rates form comparatively longer synaptonemal complexes than expected based on their DNA content. These observations are compatible with the formation of higher number of shorter DNA loops along meiotic axes in regions with higher recombination levels.
Collapse
|
4
|
del Priore L, Pigozzi MI. MLH1 focus mapping in the guinea fowl (Numida meleagris) give insights into the crossover landscapes in birds. PLoS One 2020; 15:e0240245. [PMID: 33017431 PMCID: PMC7535058 DOI: 10.1371/journal.pone.0240245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 09/22/2020] [Indexed: 11/21/2022] Open
Abstract
Crossover rates and localization are not homogeneous throughout the genomes. Along the chromosomes of almost all species, domains with high crossover rates alternate with domains where crossover rates are significantly lower than the genome-wide average. The distribution of crossovers along chromosomes constitutes the recombination landscape of a given species and can be analyzed at broadscale using immunostaining of the MLH1 protein, a component of mature recombination nodules found on synaptonemal complexes during pachytene. We scored the MLH1 foci in oocytes of the chicken and the guinea fowl and compared their frequencies in the largest bivalents. The average autosomal number of foci is 62 in the chicken and 44 in the guinea fowl. The lower number in the guinea fowl responds to the occurrence of fewer crossovers in the six largest bivalents, where most MLH1 foci occur within one-fifth of the chromosome length with high polarization towards opposite ends. The skewed distribution of foci in the guinea fowl contrast with the more uniform distribution of numerous foci in the chicken, especially in the four largest bivalents. The crossover distribution observed in the guinea fowl is unusual among Galloanserae and also differs from other, more distantly related birds. We discussed the current evidence showing that the shift towards crossover localization, as observed in the guinea fowl, was not a unique event but also occurred at different moments of bird evolution. A comparative analysis of genome-wide average recombination rates in birds shows variations within narrower limits compared to mammals and the absence of a phylogenetic trend.
Collapse
Affiliation(s)
- Lucía del Priore
- INBIOMED (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Inés Pigozzi
- INBIOMED (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
5
|
Semenov GA, Basheva EA, Borodin PM, Torgasheva AA. High rate of meiotic recombination and its implications for intricate speciation patterns in the white wagtail (Motacilla alba). Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Georgy A Semenov
- Ecology and Evolutionary Biology, University of Colorado, Ramaley Hall, Boulder, CO, USA
- Institute of Systematics and Ecology of Animals, Frunze, Novosibirsk, Russian Federation
- Ecology and Evolutionary Biology, University of Colorado, Ramaley Hall, Boulder, CO, USA
| | - Ekaterina A Basheva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentiev Ave., Novosibirsk, Russian Federation
| | - Pavel M Borodin
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentiev Ave., Novosibirsk, Russian Federation
- Novosibirsk State Research University, Department of Cytology and Genetics, Pirogova st., Novosibirsk, Russian Federation
| | - Anna A Torgasheva
- Institute of Systematics and Ecology of Animals, Frunze, Novosibirsk, Russian Federation
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Lavrentiev Ave., Novosibirsk, Russian Federation
- Novosibirsk State Research University, Department of Cytology and Genetics, Pirogova st., Novosibirsk, Russian Federation
| |
Collapse
|
6
|
del Priore L, Pigozzi MI. Broad-scale recombination pattern in the primitive bird Rhea americana (Ratites, Palaeognathae). PLoS One 2017; 12:e0187549. [PMID: 29095930 PMCID: PMC5667853 DOI: 10.1371/journal.pone.0187549] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/20/2017] [Indexed: 12/02/2022] Open
Abstract
Birds have genomic and chromosomal features that make them an attractive group to analyze the evolution of recombination rate and the distribution of crossing over. Yet, analyses are biased towards certain species, especially domestic poultry and passerines. Here we analyze for the first time the recombination rate and crossover distribution in the primitive ratite bird, Rhea americana (Rheiformes, Palaeognathae). Using a cytogenetic approach for in situ mapping of crossovers we found that the total genetic map is 3050 cM with a global recombination rate of 2.1 cM/Mb for female rheas. In the five largest macrobivalents there were 3 or more crossovers in most bivalents. Recombination rates for macrobivalents ranges between 1.8-2.1 cM/Mb and the physical length of their synaptonemal complexes is highly predictive of their genetic lengths. The crossover rate at the pseudoautosomal region is 2.1 cM/Mb, similar to those of autosomal pairs 5 and 6 and only slightly higher compared to other macroautosomes. It is suggested that the presence of multiple crossovers on the largest macrobivalents is a feature common to many avian groups, irrespective of their position throughout phylogeny. These data provide new insights to analyze the heterogeneous recombination landscape of birds.
Collapse
Affiliation(s)
- Lucía del Priore
- INBIOMED Instituto de Investigaciones Biomédicas UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Inés Pigozzi
- INBIOMED Instituto de Investigaciones Biomédicas UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
7
|
Pigozzi MI, Del Priore L. Meiotic recombination analysis in female ducks (Anas platyrhynchos). Genetica 2016; 144:307-12. [PMID: 27115519 DOI: 10.1007/s10709-016-9899-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/20/2016] [Indexed: 11/28/2022]
Abstract
Meiotic recombination in female ducks was directly studied by immunolocalization of MLH1 protein, a mismatch repair protein of mature recombination nodules. In total, 6820 crossovers were scored along the autosomal synaptonemal complexes in 122 meiotic nuclei. From this analysis we predict that the female map length of the duck is 2845 cM, with a genome wide recombination rate of 2 cM/Mb. MLH1-focus mapping along the six largest bivalents shows regional variations of recombination frequencies that can be linked to differences in chromosome morphology. From this MLH1 mapping it can be inferred that distally located markers will appear more separated in genetic maps than physically equidistant markers located near the centromeres on bivalents 1 and 2. Instead, markers at interstitial positions on the acrocentric bivalents 3-6 will appear more tightly linked than expected on the basis of their physical distance because recombination is comparatively lower at the mid region of these chromosomes. The present results provide useful information to complement linkage mapping in ducks and extend previous knowledge about the variation of recombination rates among domestic Galloanserae.
Collapse
Affiliation(s)
- M I Pigozzi
- INBIOMED-Instituto de Investigaciones Biomédicas, UBA, CONICET, Facultad de Medicina (UBA), Paraguay 2155, Piso 10, C1121ABG, Buenos Aires, Argentina.
| | - L Del Priore
- INBIOMED-Instituto de Investigaciones Biomédicas, UBA, CONICET, Facultad de Medicina (UBA), Paraguay 2155, Piso 10, C1121ABG, Buenos Aires, Argentina
| |
Collapse
|