1
|
Bredeson JV, Mudd AB, Medina-Ruiz S, Mitros T, Smith OK, Miller KE, Lyons JB, Batra SS, Park J, Berkoff KC, Plott C, Grimwood J, Schmutz J, Aguirre-Figueroa G, Khokha MK, Lane M, Philipp I, Laslo M, Hanken J, Kerdivel G, Buisine N, Sachs LM, Buchholz DR, Kwon T, Smith-Parker H, Gridi-Papp M, Ryan MJ, Denton RD, Malone JH, Wallingford JB, Straight AF, Heald R, Hockemeyer D, Harland RM, Rokhsar DS. Conserved chromatin and repetitive patterns reveal slow genome evolution in frogs. Nat Commun 2024; 15:579. [PMID: 38233380 PMCID: PMC10794172 DOI: 10.1038/s41467-023-43012-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 10/27/2023] [Indexed: 01/19/2024] Open
Abstract
Frogs are an ecologically diverse and phylogenetically ancient group of anuran amphibians that include important vertebrate cell and developmental model systems, notably the genus Xenopus. Here we report a high-quality reference genome sequence for the western clawed frog, Xenopus tropicalis, along with draft chromosome-scale sequences of three distantly related emerging model frog species, Eleutherodactylus coqui, Engystomops pustulosus, and Hymenochirus boettgeri. Frog chromosomes have remained remarkably stable since the Mesozoic Era, with limited Robertsonian (i.e., arm-preserving) translocations and end-to-end fusions found among the smaller chromosomes. Conservation of synteny includes conservation of centromere locations, marked by centromeric tandem repeats associated with Cenp-a binding surrounded by pericentromeric LINE/L1 elements. This work explores the structure of chromosomes across frogs, using a dense meiotic linkage map for X. tropicalis and chromatin conformation capture (Hi-C) data for all species. Abundant satellite repeats occupy the unusually long (~20 megabase) terminal regions of each chromosome that coincide with high rates of recombination. Both embryonic and differentiated cells show reproducible associations of centromeric chromatin and of telomeres, reflecting a Rabl-like configuration. Our comparative analyses reveal 13 conserved ancestral anuran chromosomes from which contemporary frog genomes were constructed.
Collapse
Affiliation(s)
- Jessen V Bredeson
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
- DOE-Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA
| | - Austin B Mudd
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Sofia Medina-Ruiz
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Therese Mitros
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Owen Kabnick Smith
- Department of Biochemistry, Stanford University School of Medicine, 279 Campus Drive, Beckman Center 409, Stanford, CA, 94305-5307, USA
| | - Kelly E Miller
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Jessica B Lyons
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Sanjit S Batra
- Computer Science Division, University of California Berkeley, 2626 Hearst Avenue, Berkeley, CA, 94720, USA
| | - Joseph Park
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Kodiak C Berkoff
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Christopher Plott
- HudsonAlpha Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Jane Grimwood
- HudsonAlpha Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Jeremy Schmutz
- HudsonAlpha Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL, 35806, USA
| | - Guadalupe Aguirre-Figueroa
- Department of Biochemistry, Stanford University School of Medicine, 279 Campus Drive, Beckman Center 409, Stanford, CA, 94305-5307, USA
| | - Mustafa K Khokha
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Maura Lane
- Pediatric Genomics Discovery Program, Departments of Pediatrics and Genetics, Yale University School of Medicine, 333 Cedar Street, New Haven, CT, 06510, USA
| | - Isabelle Philipp
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Mara Laslo
- Department of Organismic and Evolutionary Biology, and Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - James Hanken
- Department of Organismic and Evolutionary Biology, and Museum of Comparative Zoology, Harvard University, Cambridge, MA, 02138, USA
| | - Gwenneg Kerdivel
- Département Adaptation du Vivant, UMR 7221 CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Nicolas Buisine
- Département Adaptation du Vivant, UMR 7221 CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Laurent M Sachs
- Département Adaptation du Vivant, UMR 7221 CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Daniel R Buchholz
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Taejoon Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan, 44919, Republic of Korea
| | - Heidi Smith-Parker
- Department of Integrative Biology, Patterson Labs, 2401 Speedway, University of Texas, Austin, TX, 78712, USA
| | - Marcos Gridi-Papp
- Department of Biological Sciences, University of the Pacific, 3601 Pacific Avenue, Stockton, CA, 95211, USA
| | - Michael J Ryan
- Department of Integrative Biology, Patterson Labs, 2401 Speedway, University of Texas, Austin, TX, 78712, USA
| | - Robert D Denton
- Department of Molecular and Cell Biology and Institute of Systems Genomics, University of Connecticut, 181 Auditorium Road, Unit 3197, Storrs, CT, 06269, USA
| | - John H Malone
- Department of Molecular and Cell Biology and Institute of Systems Genomics, University of Connecticut, 181 Auditorium Road, Unit 3197, Storrs, CT, 06269, USA
| | - John B Wallingford
- Department of Molecular Biosciences, Patterson Labs, 2401 Speedway, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Aaron F Straight
- Department of Biochemistry, Stanford University School of Medicine, 279 Campus Drive, Beckman Center 409, Stanford, CA, 94305-5307, USA
| | - Rebecca Heald
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Dirk Hockemeyer
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA
- Chan-Zuckerberg BioHub, 499 Illinois Street, San Francisco, CA, 94158, USA
| | - Richard M Harland
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA
| | - Daniel S Rokhsar
- Department of Molecular and Cell Biology, Weill Hall, University of California, Berkeley, CA, 94720, USA.
- DOE-Joint Genome Institute, 1 Cyclotron Road, Berkeley, CA, 94720, USA.
- Innovative Genomics Institute, University of California, Berkeley, CA, 94720, USA.
- Chan-Zuckerberg BioHub, 499 Illinois Street, San Francisco, CA, 94158, USA.
- Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, 9040495, Japan.
| |
Collapse
|
2
|
Enukashvily NI, Ponomartsev NV, Ketkar A, Suezov R, Chubar AV, Prjibelski AD, Shafranskaya DD, Elmshäuser S, Keber CU, Stefanova VN, Akopov AL, Klingmüller U, Pfefferle PI, Stiewe T, Lauth M, Brichkina AI. Pericentromeric satellite lncRNAs are induced in cancer-associated fibroblasts and regulate their functions in lung tumorigenesis. Cell Death Dis 2023; 14:19. [PMID: 36635266 PMCID: PMC9837065 DOI: 10.1038/s41419-023-05553-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023]
Abstract
The abnormal tumor microenvironment (TME) often dictates the therapeutic response of cancer to chemo- and immuno-therapy. Aberrant expression of pericentromeric satellite repeats has been reported for epithelial cancers, including lung cancer. However, the transcription of tandemly repetitive elements in stromal cells of the TME has been unappreciated, limiting the optimal use of satellite transcripts as biomarkers or anti-cancer targets. We found that transcription of pericentromeric satellite DNA (satDNA) in mouse and human lung adenocarcinoma was observed in cancer-associated fibroblasts (CAFs). In vivo, lung fibroblasts expressed pericentromeric satellite repeats HS2/HS3 specifically in tumors. In vitro, transcription of satDNA was induced in lung fibroblasts in response to TGFβ, IL1α, matrix stiffness, direct contact with tumor cells and treatment with chemotherapeutic drugs. Single-cell transcriptome analysis of human lung adenocarcinoma confirmed that CAFs were the cell type with the highest number of satellite transcripts. Human HS2/HS3 pericentromeric transcripts were detected in the nucleus, cytoplasm, extracellularly and co-localized with extracellular vesicles in situ in human biopsies and activated fibroblasts in vitro. The transcripts were transmitted into recipient cells and entered their nuclei. Knock-down of satellite transcripts in human lung fibroblasts attenuated cellular senescence and blocked the formation of an inflammatory CAFs phenotype which resulted in the inhibition of their pro-tumorigenic functions. In sum, our data suggest that satellite long non-coding (lnc) RNAs are induced in CAFs, regulate expression of inflammatory genes and can be secreted from the cells, which potentially might present a new element of cell-cell communication in the TME.
Collapse
Affiliation(s)
| | - Nikita V Ponomartsev
- Institute of Cytology, Russian Academy of Sciences, 194064, St.-Petersburg, Russia
- Institute of Molecular and Cell Biology, A*STAR, 138673, Singapore, Singapore
| | - Avanee Ketkar
- Philipps University of Marburg, Department of Gastroenterology, Center for Tumor- and Immune Biology, 35043, Marburg, Germany
- Philipps University of Marburg, Institute of Molecular Oncology, 35043, Marburg, Germany
- Member of the German Center for Lung Research (DZL), Philipps University of Marburg, Marburg, Germany
| | - Roman Suezov
- Philipps University of Marburg, Department of Gastroenterology, Center for Tumor- and Immune Biology, 35043, Marburg, Germany
- Member of the German Center for Lung Research (DZL), Philipps University of Marburg, Marburg, Germany
| | - Anna V Chubar
- Institute of Cytology, Russian Academy of Sciences, 194064, St.-Petersburg, Russia
| | - Andrey D Prjibelski
- Center for Algorithmic Biotechnology, St.-Petersburg State University, 199034, St.-Petersburg, Russia
| | - Daria D Shafranskaya
- Center for Algorithmic Biotechnology, St.-Petersburg State University, 199034, St.-Petersburg, Russia
| | - Sabrina Elmshäuser
- Philipps University of Marburg, Institute of Molecular Oncology, 35043, Marburg, Germany
- Member of the German Center for Lung Research (DZL), Philipps University of Marburg, Marburg, Germany
| | - Corinna U Keber
- Member of the German Center for Lung Research (DZL), Philipps University of Marburg, Marburg, Germany
- Philipps University of Marburg, Institute of Pathology, 35043, Marburg, Germany
| | - Vera N Stefanova
- Institute of Cytology, Russian Academy of Sciences, 194064, St.-Petersburg, Russia
| | - Andrey L Akopov
- Pavlov First State Medical University, 197022, St.-Petersburg, Russia
| | - Ursula Klingmüller
- Member of the German Center for Lung Research (DZL), Philipps University of Marburg, Marburg, Germany
- German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Petra I Pfefferle
- Member of the German Center for Lung Research (DZL), Philipps University of Marburg, Marburg, Germany
- Philipps University of Marburg, Comprehensive Biobank Marburg CBBMR, 35043, Marburg, Germany
| | - Thorsten Stiewe
- Philipps University of Marburg, Institute of Molecular Oncology, 35043, Marburg, Germany
- Member of the German Center for Lung Research (DZL), Philipps University of Marburg, Marburg, Germany
| | - Matthias Lauth
- Philipps University of Marburg, Department of Gastroenterology, Center for Tumor- and Immune Biology, 35043, Marburg, Germany
| | - Anna I Brichkina
- Philipps University of Marburg, Department of Gastroenterology, Center for Tumor- and Immune Biology, 35043, Marburg, Germany.
- Philipps University of Marburg, Institute of Molecular Oncology, 35043, Marburg, Germany.
- Member of the German Center for Lung Research (DZL), Philipps University of Marburg, Marburg, Germany.
| |
Collapse
|
3
|
Ivanova NG, Kartavtseva IV, Stefanova VN, Ostromyshenskii DI, Podgornaya OI. Tandem Repeat Diversity in Two Closely Related Hamster Species—The Chinese Hamster (Cricetulus griseus) and Striped Hamster (Cricetulus barabensis). Biomedicines 2022; 10:biomedicines10040925. [PMID: 35453675 PMCID: PMC9025346 DOI: 10.3390/biomedicines10040925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022] Open
Abstract
The Chinese hamster (Cricetulus griseus) and striped hamster (Cricetulus barabensis) are very closely related species with similar karyotypes. The karyotypes differ from each other by one Robertsonian rearrangement and X-chromosome morphology. The level of the tandem repeat (TR) sequences’ evolutional variability is high. The aim of the current work was to trace the TR distribution on the chromosomes of two very closely related species. The striped hamster genome has not yet been sequenced. We classified the Chinese hamster TR in the assemblies available and then compared the mode of the TR distribution in closely related species. Chinese and striped hamsters are separate species due to the relative species specificity of Chinese hamster TR and prominent differences in the TR distribution in both species. The TR variation observed within homologous striped hamster chromosomes is caused by a lack of inbreeding in natural populations. The set of TR tested could be used to examine the CHO lines’ instability that has been observed in heterochromatic regions.
Collapse
Affiliation(s)
- Nadezhda G. Ivanova
- Laboratory of Noncoding DNA, Institute of Cytology RAS, Saint Petersburg 194064, Russia; (V.N.S.); (D.I.O.); (O.I.P.)
- Correspondence:
| | - Irina V. Kartavtseva
- Laboratory of Evolutionary Zoology, Federal Scientific Center of the East Asia Terrestrial Biodiversity, Vladivostok 690022, Russia;
| | - Vera N. Stefanova
- Laboratory of Noncoding DNA, Institute of Cytology RAS, Saint Petersburg 194064, Russia; (V.N.S.); (D.I.O.); (O.I.P.)
| | - Dmitrii I. Ostromyshenskii
- Laboratory of Noncoding DNA, Institute of Cytology RAS, Saint Petersburg 194064, Russia; (V.N.S.); (D.I.O.); (O.I.P.)
| | - Olga I. Podgornaya
- Laboratory of Noncoding DNA, Institute of Cytology RAS, Saint Petersburg 194064, Russia; (V.N.S.); (D.I.O.); (O.I.P.)
- Department of Cytology and Histology, Faculty of Biology, St. Petersburg State University, Saint Petersburg 199034, Russia
| |
Collapse
|
4
|
Solovyeva A, Levakin I, Zorin E, Adonin L, Khotimchenko Y, Podgornaya O. Transposons-Based Clonal Diversity in Trematode Involves Parts of CR1 (LINE) in Eu- and Heterochromatin. Genes (Basel) 2021; 12:1129. [PMID: 34440303 PMCID: PMC8392823 DOI: 10.3390/genes12081129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 01/21/2023] Open
Abstract
Trematode parthenitae have long been believed to form clonal populations, but clonal diversity has been discovered in this asexual stage of the lifecycle. Clonal polymorphism in the model species Himasthla elongata has been previously described, but the source of this phenomenon remains unknown. In this work, we traced cercarial clonal diversity using a simplified amplified fragment length polymorphism (SAFLP) method and characterised the nature of fragments in diverse electrophoretic bands. The repetitive elements were identified in both the primary sequence of the H. elongata genome and in the transcriptome data. Long-interspersed nuclear elements (LINEs) and long terminal repeat retrotransposons (LTRs) were found to represent an overwhelming majority of the genome and the transposon transcripts. Most sequenced fragments from SAFLP pattern contained the reverse transcriptase (RT, ORF2) domains of LINEs, and only a few sequences belonged to ORFs of LTRs and ORF1 of LINEs. A fragment corresponding to a CR1-like (LINE) spacer region was discovered and named CR1-renegade (CR1-rng). In addition to RT-containing CR1 transcripts, we found short CR1-rng transcripts in the redia transcriptome and short contigs in the mobilome. Probes against CR1-RT and CR1-rng presented strikingly different pictures in FISH mapping, despite both being fragments of CR1. In silico data and Southern blotting indicated that CR1-rng is not tandemly organised. CR1 involvement in clonal diversity is discussed.
Collapse
Affiliation(s)
- Anna Solovyeva
- Institute of Cytology of the Russian Academy of Science, Tikhoretsky Ave 4, 194064 Saint Petersburg, Russia;
- Zoological Institute of the Russian Academy of Sciences, Universitetskaya Nab 1, 199034 Saint Petersburg, Russia;
| | - Ivan Levakin
- Zoological Institute of the Russian Academy of Sciences, Universitetskaya Nab 1, 199034 Saint Petersburg, Russia;
| | - Evgeny Zorin
- All-Russia Research Institute for Agricultural Microbiology, Pushkin 8, 196608 Saint Petersburg, Russia;
| | - Leonid Adonin
- Moscow Institute of Physics and Technology, Institutskiy per 9, 141701 Dolgoprudny, Russia;
| | - Yuri Khotimchenko
- School of Biomedicine, Far Eastern Federal University, Sukhanova St 8, 690091 Vladivostok, Russia;
| | - Olga Podgornaya
- Institute of Cytology of the Russian Academy of Science, Tikhoretsky Ave 4, 194064 Saint Petersburg, Russia;
- Department of Cytology and Histology, Saint Petersburg State University, Universitetskaya Nab 7/9, 199034 Saint Petersburg, Russia
| |
Collapse
|
5
|
Enukashvily NI, Dobrynin MA, Chubar AV. RNA-seeded membraneless bodies: Role of tandemly repeated RNA. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 126:151-193. [PMID: 34090614 DOI: 10.1016/bs.apcsb.2020.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
Abstract
Membraneless organelles (bodies, granules, etc.) are spatially distinct sub-nuclear and cytoplasmic foci involved in all the processes in a living cell, such as development, cell death, carcinogenesis, proliferation, and differentiation. Today the list of the membraneless organelles includes a wide spectrum of intranuclear and cytoplasmic bodies. Proteins with intrinsically disordered regions are the key players in the membraneless body assembly. However, recent data assume an important role of RNA molecules in the process of the liquid-liquid phase separation. High-level expression of RNA above a critical concentration threshold is mandatory to nucleate interactions with specific proteins and for seeding membraneless organelles. RNA components are considered by many authors as the principal determinants of organelle identity. Tandemly repeated (TR) DNA of big satellites (a TR family that includes centromeric and pericentromeric DNA sequences) was believed to be transcriptionally silent for a long period. Now we know about the TR transcription upregulation during gameto- and embryogenesis, carcinogenesis, stress response. In the review, we summarize the recent data about the involvement of TR RNA in the formation of nuclear membraneless granules, bodies, etc., with different functions being in some cases an initiator of the structures assembly. These RNP structures sequestrate and inactivate different proteins and transcripts. The TR induced sequestration is one of the key principles of nuclear architecture and genome functioning. Studying the role of the TR-based membraneless organelles in stress and disease will bring some new ideas for translational medicine.
Collapse
Affiliation(s)
- Natella I Enukashvily
- Institute of Cytology RAS, St. Petersburg, Russia; North-Western Medical State University named after I.I. Mechnikov, St. Petersburg, Russia.
| | | | | |
Collapse
|
6
|
Ivanova NG, Stefanova VN, Ostromyshenskii DI, Podgornaya OI. Tandem Repeats in the Genome of Sus scrofa, Their Localization on Chromosomes and in the Spermatogenic Cell Nuclei. RUSS J GENET+ 2019. [DOI: 10.1134/s102279541907007x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Podgornaya OI, Ostromyshenskii DI, Enukashvily NI. Who Needs This Junk, or Genomic Dark Matter. BIOCHEMISTRY (MOSCOW) 2018; 83:450-466. [PMID: 29626931 DOI: 10.1134/s0006297918040156] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Centromeres (CEN), pericentromeric regions (periCEN), and subtelomeric regions (subTel) comprise the areas of constitutive heterochromatin (HChr). Tandem repeats (TRs or satellite DNA) are the main components of HChr forming no less than 10% of the mouse and human genome. HChr is assembled within distinct structures in the interphase nuclei of many species - chromocenters. In this review, the main classes of HChr repeat sequences are considered in the order of their number increase in the sequencing reads of the mouse chromocenters (ChrmC). TRs comprise ~70% of ChrmC occupying the first place. Non-LTR (-long terminal repeat) retroposons (mainly LINE, long interspersed nuclear element) are the next (~11%), and endogenous retroviruses (ERV; LTR-containing) are in the third position (~9%). HChr is not enriched with ERV in comparison with the whole genome, but there are differences in distribution of certain elements: while MaLR-like elements (ERV3) are dominant in the whole genome, intracisternal A-particles and corresponding LTR (ERV2) are prevalent in HChr. Most of LINE in ChrmC is represented by the 2-kb fragment at the end of the 2nd open reading frame and its flanking regions. Almost all tandem repeats classified as CEN or periCEN are contained in ChrmC. Our previous classification revealed 60 new mouse TR families with 29 of them being absent in ChrmC, which indicates their location on chromosome arms. TR transcription is necessary for maintenance of heterochromatic status of the HChr genome part. A burst of TR transcription is especially important in embryogenesis and other cases of radical changes in the cell program, including carcinogenesis. The recently discovered mechanism of epigenetic regulation with noncoding sequences transcripts, long noncoding RNA, and its role in embryogenesis and pluripotency maintenance is discussed.
Collapse
Affiliation(s)
- O I Podgornaya
- Institute of Cytology, Russian Academy of Sciences, St. Petersburg, 194064, Russia.
| | | | | |
Collapse
|
8
|
Jagannathan M, Yamashita YM. Function of Junk: Pericentromeric Satellite DNA in Chromosome Maintenance. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2018; 82:319-327. [PMID: 29610245 DOI: 10.1101/sqb.2017.82.034504] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Satellite DNAs are simple tandem repeats that exist at centromeric and pericentromeric regions on eukaryotic chromosomes. Unlike the centromeric satellite DNA that comprises the vast majority of natural centromeres, function(s) for the much more abundant pericentromeric satellite repeats are poorly understood. In fact, the lack of coding potential allied with rapid divergence of repeat sequences across eukaryotes has led to their dismissal as "junk DNA" or "selfish parasites." Although implicated in various biological processes, a conserved function for pericentromeric satellite DNA remains unidentified. We have addressed the role of satellite DNA through studying chromocenters, a cytological aggregation of pericentromeric satellite DNA from multiple chromosomes into DNA-dense nuclear foci. We have shown that multivalent satellite DNA-binding proteins cross-link pericentromeric satellite DNA on chromosomes into chromocenters. Disruption of chromocenters results in the formation of micronuclei, which arise by budding off the nucleus during interphase. We propose a model that satellite DNAs are critical chromosome elements that are recognized by satellite DNA-binding proteins and incorporated into chromocenters. We suggest that chromocenters function to preserve the entire chromosomal complement in a single nucleus, a fundamental and unquestioned feature of eukaryotic genomes. We speculate that the rapid divergence of satellite DNA sequences between closely related species results in discordant chromocenter function and may underlie speciation and hybrid incompatibility.
Collapse
Affiliation(s)
- Madhav Jagannathan
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109
| | - Yukiko M Yamashita
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109.,Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109.,Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
9
|
Ostromyshenskii DI, Chernyaeva EN, Kuznetsova IS, Podgornaya OI. Mouse chromocenters DNA content: sequencing and in silico analysis. BMC Genomics 2018; 19:151. [PMID: 29458329 PMCID: PMC5819297 DOI: 10.1186/s12864-018-4534-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 02/06/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chromocenters are defined as a punctate condensed blocks of chromatin in the interphase cell nuclei of certain cell types with unknown biological significance. In recent years a progress in revealing of chromocenters protein content has been made although the details of DNA content within constitutive heterochromatin still remain unclear. It is known that these regions are enriched in tandem repeats (TR) and transposable elements. Quick improvement of genome sequencing does not help to assemble the heterochromatic regions due to lack of appropriate bioinformatics techniques. RESULTS Chromocenters DNA have been isolated by a biochemical approach from mouse liver cells nuclei and sequenced on the Illumina MiSeq resulting in ChrmC dataset. Analysis of ChrmC dataset by the bioinformatics tools available revealed that the major component of chromocenter DNA are TRs: ~ 66% MaSat and ~ 4% MiSat. Other previously classified TR families constitute ~ 1% of ChrmC dataset. About 6% of chromocenters DNA are mostly unannotated sequences. In the contigs assembled with IDBA_UD there are many fragments of heterochromatic Y-chromosome, rDNA and other pseudo-genes and non-coding DNA. A protein coding sfi1 homolog gene fragment was also found in contigs. The Sfi1 homolog gene is located on the chromosome 11 in the reference genome very close to the Golden Pass Gap (a ~ 3 Mb empty region reserved to the pericentromeric region) and proves the purity of chromocenters isolation. The second major fraction are non-LTR retroposons (SINE and LINE) with overwhelming majority of LINE - ~ 11% of ChrmC. Most of the LINE fragments are from the ~ 2 kb region at the end of the 2nd ORF and its' flanking region. The precise LINEs' segment of ~ 2 kb is the necessary mouse constitutive heterohromatin component together with TR. The third most abundant fraction are ERVs. The ERV distribution in chromocenters differs from the whole genome: IAP (ERV2 class) is the most numerous in ChrmC while MaLR (ERV3 class) prevails in the reference genome. IAP and its LTR also prevail in TR containing contigs extracted from the WGS dataset. In silico prediction of IAP and LINE fragments in chromocenters was confirmed by direct fluorescent in situ hybridization (FISH). CONCLUSION Our data of chromocenters' DNA (ChrmC) sequencing demonstrate that IAP with LTR and a precise ~ 2 kb fragment of LINE represent a substantial fraction of mouse chromocenters (constitutive heteroсhromatin) along with TRs.
Collapse
Affiliation(s)
- Dmitrii I Ostromyshenskii
- Institute of Cytology RAS, St.-Petersburg, 194064, Russia.
- Far Eastern Federal University, Vladivostok, 690922, Russia.
| | | | - Inna S Kuznetsova
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Olga I Podgornaya
- Institute of Cytology RAS, St.-Petersburg, 194064, Russia
- Far Eastern Federal University, Vladivostok, 690922, Russia
- St Petersburg State University, St Petersburg, 199034, Russia
| |
Collapse
|