1
|
Korsak S, Banecki K, Plewczynski D. Multiscale molecular modeling of chromatin with MultiMM: From nucleosomes to the whole genome. Comput Struct Biotechnol J 2024; 23:3537-3548. [PMID: 39435339 PMCID: PMC11492436 DOI: 10.1016/j.csbj.2024.09.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/23/2024] Open
Abstract
Motivation: We present a user-friendly 3D chromatin simulation model for the human genome based on OpenMM, addressing the challenges posed by existing models with use-specific implementations. Our approach employs a multi-scale energy minimization strategy, capturing chromatin's hierarchical structure. Initiating with a Hilbert curve-based structure, users can input files specifying nucleosome positioning, loops, compartments, or subcompartments. Results: The model utilizes an energy minimization approach with a large choice of numerical integrators, providing the entire genome's structure within minutes. Output files include the generated structures for each chromosome, offering a versatile and accessible tool for chromatin simulation in bioinformatics studies. Furthermore, MultiMM is capable of producing nucleosome-resolution structures by making simplistic geometric assumptions about the structure and the density of nucleosomes on the DNA. Code availability: Open-source software and the manual are freely available on https://github.com/SFGLab/MultiMM or via pip https://pypi.org/project/MultiMM/.
Collapse
Affiliation(s)
- Sevastianos Korsak
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Krzysztof Banecki
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Dariusz Plewczynski
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| |
Collapse
|
2
|
Liu T, Qiu QT, Hua KJ, Ma BG. Chromosome structure modeling tools and their evaluation in bacteria. Brief Bioinform 2024; 25:bbae044. [PMID: 38385874 PMCID: PMC10883143 DOI: 10.1093/bib/bbae044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/31/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
The three-dimensional (3D) structure of bacterial chromosomes is crucial for understanding chromosome function. With the growing availability of high-throughput chromosome conformation capture (3C/Hi-C) data, the 3D structure reconstruction algorithms have become powerful tools to study bacterial chromosome structure and function. It is highly desired to have a recommendation on the chromosome structure reconstruction tools to facilitate the prokaryotic 3D genomics. In this work, we review existing chromosome 3D structure reconstruction algorithms and classify them based on their underlying computational models into two categories: constraint-based modeling and thermodynamics-based modeling. We briefly compare these algorithms utilizing 3C/Hi-C datasets and fluorescence microscopy data obtained from Escherichia coli and Caulobacter crescentus, as well as simulated datasets. We discuss current challenges in the 3D reconstruction algorithms for bacterial chromosomes, primarily focusing on software usability. Finally, we briefly prospect future research directions for bacterial chromosome structure reconstruction algorithms.
Collapse
Affiliation(s)
- Tong Liu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin-Tian Qiu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Kang-Jian Hua
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Bin-Guang Ma
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
3
|
Senapati S, Irshad IU, Sharma AK, Kumar H. Fundamental insights into the correlation between chromosome configuration and transcription. Phys Biol 2023; 20:051002. [PMID: 37467757 DOI: 10.1088/1478-3975/ace8e5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
Eukaryotic chromosomes exhibit a hierarchical organization that spans a spectrum of length scales, ranging from sub-regions known as loops, which typically comprise hundreds of base pairs, to much larger chromosome territories that can encompass a few mega base pairs. Chromosome conformation capture experiments that involve high-throughput sequencing methods combined with microscopy techniques have enabled a new understanding of inter- and intra-chromosomal interactions with unprecedented details. This information also provides mechanistic insights on the relationship between genome architecture and gene expression. In this article, we review the recent findings on three-dimensional interactions among chromosomes at the compartment, topologically associating domain, and loop levels and the impact of these interactions on the transcription process. We also discuss current understanding of various biophysical processes involved in multi-layer structural organization of chromosomes. Then, we discuss the relationships between gene expression and genome structure from perturbative genome-wide association studies. Furthermore, for a better understanding of how chromosome architecture and function are linked, we emphasize the role of epigenetic modifications in the regulation of gene expression. Such an understanding of the relationship between genome architecture and gene expression can provide a new perspective on the range of potential future discoveries and therapeutic research.
Collapse
Affiliation(s)
- Swayamshree Senapati
- School of Basic Sciences, Indian Institute of Technology, Bhubaneswar, Argul, Odisha 752050, India
| | - Inayat Ullah Irshad
- Department of Physics, Indian Institute of Technology, Jammu, Jammu 181221, India
| | - Ajeet K Sharma
- Department of Physics, Indian Institute of Technology, Jammu, Jammu 181221, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Jammu, Jammu 181221, India
| | - Hemant Kumar
- School of Basic Sciences, Indian Institute of Technology, Bhubaneswar, Argul, Odisha 752050, India
| |
Collapse
|
4
|
Yildirim A, Boninsegna L, Zhan Y, Alber F. Uncovering the Principles of Genome Folding by 3D Chromatin Modeling. Cold Spring Harb Perspect Biol 2022; 14:a039693. [PMID: 34400556 PMCID: PMC9248826 DOI: 10.1101/cshperspect.a039693] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Our understanding of how genomic DNA is tightly packed inside the nucleus, yet is still accessible for vital cellular processes, has grown dramatically over recent years with advances in microscopy and genomics technologies. Computational methods have played a pivotal role in the structural interpretation of experimental data, which helped unravel some organizational principles of genome folding. Here, we give an overview of current computational efforts in mechanistic and data-driven 3D chromatin structure modeling. We discuss strengths and limitations of different methods and evaluate the added value and benefits of computational approaches to infer the 3D structural and dynamic properties of the genome and its underlying mechanisms at different scales and resolution, ranging from the dynamic formation of chromatin loops and topological associated domains to nuclear compartmentalization of chromatin and nuclear bodies.
Collapse
Affiliation(s)
- Asli Yildirim
- Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Lorenzo Boninsegna
- Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Yuxiang Zhan
- Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California 90095, USA
- Quantitative and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| | - Frank Alber
- Institute for Quantitative and Computational Biosciences, Department of Microbiology, Immunology and Molecular Genetics, University of California Los Angeles, Los Angeles, California 90095, USA
- Quantitative and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
5
|
Conte M, Fiorillo L, Bianco S, Chiariello AM, Esposito A, Musella F, Flora F, Abraham A, Nicodemi M. A Polymer Physics Model to Dissect Genome Organization in Healthy and Pathological Phenotypes. Methods Mol Biol 2022; 2301:307-316. [PMID: 34415543 DOI: 10.1007/978-1-0716-1390-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Novel technologies revealed a nontrivial spatial organization of the chromosomes within the cell nucleus, which includes different levels of compartmentalization and architectural patterns. Notably, such complex three-dimensional structure plays a crucial role in vital biological functions and its alterations can produce extensive rewiring of genomic regulatory regions, thus leading to gene misexpression and disease. Here, we show that theoretical and computational approaches, based on polymer physics, can be employed to dissect chromatin contacts in three-dimensional space and to predict the effects of pathogenic structural variants on the genome architecture. In particular, we discuss the folding of the human EPHA4 and the murine Pitx1 loci as case studies.
Collapse
Affiliation(s)
- Mattia Conte
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso di Monte Sant'Angelo, Naples, Italy
| | - Luca Fiorillo
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso di Monte Sant'Angelo, Naples, Italy
| | - Simona Bianco
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso di Monte Sant'Angelo, Naples, Italy
| | - Andrea M Chiariello
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso di Monte Sant'Angelo, Naples, Italy
| | - Andrea Esposito
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso di Monte Sant'Angelo, Naples, Italy
| | - Francesco Musella
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso di Monte Sant'Angelo, Naples, Italy
| | - Francesco Flora
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso di Monte Sant'Angelo, Naples, Italy
| | - Alex Abraham
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso di Monte Sant'Angelo, Naples, Italy
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso di Monte Sant'Angelo, Naples, Italy.
- Berlin Institute of Health (BIH), MDC-Berlin, Berlin, Germany.
| |
Collapse
|
6
|
The Physical Behavior of Interphase Chromosomes: Polymer Theory and Coarse-Grain Computer Simulations. Methods Mol Biol 2022; 2301:235-258. [PMID: 34415539 DOI: 10.1007/978-1-0716-1390-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Fluorescence in situ hybridization and chromosome conformation capture methods point to the same conclusion: that chromosomes appear to the external observer as compact structures with a highly nonrandom three-dimensional organization. In this work, we recapitulate the efforts made by us and other groups to rationalize this behavior in terms of the mathematical language and tools of polymer physics. After a brief introduction dedicated to some crucial experiments dissecting the structure of interphase chromosomes, we discuss at a nonspecialistic level some fundamental aspects of theoretical and numerical polymer physics. Then, we inglobe biological and polymer aspects into a polymer model for interphase chromosomes which moves from the observation that mutual topological constraints, such as those typically present between polymer chains in ordinary melts, induce slow chain dynamics and "constraint" chromosomes to resemble double-folded randomly branched polymer conformations. By explicitly turning these ideas into a multi-scale numerical algorithm which is described here in full details, we can design accurate model polymer conformations for interphase chromosomes and offer them for systematic comparison to experiments. The review is concluded by discussing the limitations of our approach and pointing to promising perspectives for future work.
Collapse
|
7
|
Jerkovic I, Cavalli G. Understanding 3D genome organization by multidisciplinary methods. Nat Rev Mol Cell Biol 2021; 22:511-528. [PMID: 33953379 DOI: 10.1038/s41580-021-00362-w] [Citation(s) in RCA: 160] [Impact Index Per Article: 53.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2021] [Indexed: 02/03/2023]
Abstract
Understanding how chromatin is folded in the nucleus is fundamental to understanding its function. Although 3D genome organization has been historically difficult to study owing to a lack of relevant methodologies, major technological breakthroughs in genome-wide mapping of chromatin contacts and advances in imaging technologies in the twenty-first century considerably improved our understanding of chromosome conformation and nuclear architecture. In this Review, we discuss methods of 3D genome organization analysis, including sequencing-based techniques, such as Hi-C and its derivatives, Micro-C, DamID and others; microscopy-based techniques, such as super-resolution imaging coupled with fluorescence in situ hybridization (FISH), multiplex FISH, in situ genome sequencing and live microscopy methods; and computational and modelling approaches. We describe the most commonly used techniques and their contribution to our current knowledge of nuclear architecture and, finally, we provide a perspective on up-and-coming methods that open possibilities for future major discoveries.
Collapse
Affiliation(s)
- Ivana Jerkovic
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, CNRS, University of Montpellier, Montpellier, France.
| |
Collapse
|
8
|
Razin SV, Ulianov SV. Divide and Rule: Phase Separation in Eukaryotic Genome Functioning. Cells 2020; 9:cells9112480. [PMID: 33203115 PMCID: PMC7696541 DOI: 10.3390/cells9112480] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/13/2022] Open
Abstract
The functioning of a cell at various organizational levels is determined by the interactions between macromolecules that promote cellular organelle formation and orchestrate metabolic pathways via the control of enzymatic activities. Although highly specific and relatively stable protein-protein, protein-DNA, and protein-RNA interactions are traditionally suggested as the drivers for cellular function realization, recent advances in the discovery of weak multivalent interactions have uncovered the role of so-called macromolecule condensates. These structures, which are highly divergent in size, composition, function, and cellular localization are predominantly formed by liquid-liquid phase separation (LLPS): a physical-chemical process where an initially homogenous solution turns into two distinct phases, one of which contains the major portion of the dissolved macromolecules and the other one containing the solvent. In a living cell, LLPS drives the formation of membrane-less organelles such as the nucleolus, nuclear bodies, and viral replication factories and facilitates the assembly of complex macromolecule aggregates possessing regulatory, structural, and enzymatic functions. Here, we discuss the role of LLPS in the spatial organization of eukaryotic chromatin and regulation of gene expression in normal and pathological conditions.
Collapse
Affiliation(s)
- Sergey V. Razin
- Institute of Gene Biology, Russian Academy of Sciences, 119017 Moscow, Russia;
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119017 Moscow, Russia
| | - Sergey V. Ulianov
- Institute of Gene Biology, Russian Academy of Sciences, 119017 Moscow, Russia;
- Faculty of Biology, M.V. Lomonosov Moscow State University, 119017 Moscow, Russia
- Correspondence: ; Tel.: +7-499-135-9787
| |
Collapse
|
9
|
Meluzzi D, Arya G. Computational approaches for inferring 3D conformations of chromatin from chromosome conformation capture data. Methods 2020; 181-182:24-34. [PMID: 31470090 PMCID: PMC7044057 DOI: 10.1016/j.ymeth.2019.08.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 06/24/2019] [Accepted: 08/23/2019] [Indexed: 02/08/2023] Open
Abstract
Chromosome conformation capture (3C) and its variants are powerful experimental techniques for probing intra- and inter-chromosomal interactions within cell nuclei at high resolution and in a high-throughput, quantitative manner. The contact maps derived from such experiments provide an avenue for inferring the 3D spatial organization of the genome. This review provides an overview of the various computational methods developed in the past decade for addressing the very important but challenging problem of deducing the detailed 3D structure or structure population of chromosomal domains, chromosomes, and even entire genomes from 3C contact maps.
Collapse
Affiliation(s)
- Dario Meluzzi
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, United States
| | - Gaurav Arya
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, United States.
| |
Collapse
|
10
|
Bendandi A, Dante S, Zia SR, Diaspro A, Rocchia W. Chromatin Compaction Multiscale Modeling: A Complex Synergy Between Theory, Simulation, and Experiment. Front Mol Biosci 2020; 7:15. [PMID: 32158765 PMCID: PMC7051991 DOI: 10.3389/fmolb.2020.00015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/27/2020] [Indexed: 12/24/2022] Open
Abstract
Understanding the mechanisms that trigger chromatin compaction, its patterns, and the factors they depend on, is a fundamental and still open question in Biology. Chromatin compacts and reinforces DNA and is a stable but dynamic structure, to make DNA accessible to proteins. In recent years, computational advances have provided larger amounts of data and have made large-scale simulations more viable. Experimental techniques for the extraction and reconstitution of chromatin fibers have improved, reinvigorating theoretical and experimental interest in the topic and stimulating debate on points previously considered as certainties regarding chromatin. A great assortment of approaches has emerged, from all-atom single-nucleosome or oligonucleosome simulations to various degrees of coarse graining, to polymer models, to fractal-like structures and purely topological models. Different fiber-start patterns have been studied in theory and experiment, as well as different linker DNA lengths. DNA is a highly charged macromolecule, making ionic and electrostatic interactions extremely important for chromatin topology and dynamics. Indeed, the repercussions of varying ionic concentration have been extensively examined at the computational level, using all-atom, coarse-grained, and continuum techniques. The presence of high-curvature AT-rich segments in DNA can cause conformational variations, attesting to the fact that the role of DNA is both structural and electrostatic. There have been some tentative attempts to describe the force fields governing chromatin conformational changes and the energy landscapes of these transitions, but the intricacy of the system has hampered reaching a consensus. The study of chromatin conformations is an intrinsically multiscale topic, influenced by a wide range of biological and physical interactions, spanning from the atomic to the chromosome level. Therefore, powerful modeling techniques and carefully planned experiments are required for an overview of the most relevant phenomena and interactions. The topic provides fertile ground for interdisciplinary studies featuring a synergy between theoretical and experimental scientists from different fields and the cross-validation of respective results, with a multi-scale perspective. Here, we summarize some of the most representative approaches, and focus on the importance of electrostatics and solvation, often overlooked aspects of chromatin modeling.
Collapse
Affiliation(s)
- Artemi Bendandi
- Physics Department, University of Genoa, Genoa, Italy
- Nanophysics & NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Silvia Dante
- Nanophysics & NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Syeda Rehana Zia
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Alberto Diaspro
- Physics Department, University of Genoa, Genoa, Italy
- Nanophysics & NIC@IIT, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Walter Rocchia
- Concept Lab, Istituto Italiano di Tecnologia, Genoa, Italy
| |
Collapse
|
11
|
Vermeulen C, Allahyar A, Bouwman BAM, Krijger PHL, Verstegen MJAM, Geeven G, Valdes-Quezada C, Renkens I, Straver R, Kloosterman WP, de Ridder J, de Laat W. Multi-contact 4C: long-molecule sequencing of complex proximity ligation products to uncover local cooperative and competitive chromatin topologies. Nat Protoc 2020; 15:364-397. [DOI: 10.1038/s41596-019-0242-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/02/2019] [Indexed: 12/24/2022]
|
12
|
Huang K, Li Y, Shim AR, Virk RKA, Agrawal V, Eshein A, Nap RJ, Almassalha LM, Backman V, Szleifer I. Physical and data structure of 3D genome. SCIENCE ADVANCES 2020; 6:eaay4055. [PMID: 31950084 PMCID: PMC6954067 DOI: 10.1126/sciadv.aay4055] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 11/20/2019] [Indexed: 05/05/2023]
Abstract
With the textbook view of chromatin folding based on the 30-nm fiber being challenged, it has been proposed that interphase DNA has an irregular 10-nm nucleosome polymer structure whose folding philosophy is unknown. Nevertheless, experimental advances suggest that this irregular packing is associated with many nontrivial physical properties that are puzzling from a polymer physics point of view. Here, we show that the reconciliation of these exotic properties necessitates modularizing three-dimensional genome into tree data structures on top of, and in striking contrast to, the linear topology of DNA double helix. These functional modules need to be connected and isolated by an open backbone that results in porous and heterogeneous packing in a quasi-self-similar manner, as revealed by our electron and optical imaging. Our multiscale theoretical and experimental results suggest the existence of higher-order universal folding principles for a disordered chromatin fiber to avoid entanglement and fulfill its biological functions.
Collapse
Affiliation(s)
- Kai Huang
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Corresponding author. (K.H.); (V.B.); (I.S.)
| | - Yue Li
- Applied Physics Program, Northwestern University, Evanston, IL 60208, USA
| | - Anne R. Shim
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Ranya K. A. Virk
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Vasundhara Agrawal
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Adam Eshein
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Rikkert J. Nap
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
| | - Luay M. Almassalha
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Vadim Backman
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Corresponding author. (K.H.); (V.B.); (I.S.)
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Corresponding author. (K.H.); (V.B.); (I.S.)
| |
Collapse
|
13
|
Esposito A, Chiariello AM, Conte M, Fiorillo L, Musella F, Sciarretta R, Bianco S. Higher-order Chromosome Structures Investigated by Polymer Physics in Cellular Morphogenesis and Differentiation. J Mol Biol 2019; 432:701-711. [PMID: 31863751 DOI: 10.1016/j.jmb.2019.12.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 10/25/2019] [Accepted: 12/11/2019] [Indexed: 01/06/2023]
Abstract
Experimental advances in Molecular Biology demonstrated that chromatin architecture and gene regulation are deeply related. Hi-C data, for instance, returned a scenario where chromosomes form a complex pattern of interactions, including TADs, metaTADs, and compartments, correlated with genomic and epigenomic features. Here, we discuss the emerging hierarchical organization of chromatin and show how it remains partially conserved during mouse neuronal differentiation with changes highly related to modifications in gene expression. In this scenario, models of polymer physics, such as the Strings & Binders (SBS) model, can be a crucial instrument to understand the molecular mechanisms underlying the formation of such a higher order 3D structure. In particular, we focus on the case study of the murine Pitx1 genomic region. At this locus, two alternative spatial conformations take place in the hindlimb and forelimb tissues, corresponding to two different transcriptional states of Pitx1. We finally show how the structural variants can affect the locus 3D organization leading to ectopic gene expression and limb malformations.
Collapse
Affiliation(s)
- Andrea Esposito
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy.
| | - Andrea M Chiariello
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy
| | - Mattia Conte
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy
| | - Luca Fiorillo
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy
| | - Francesco Musella
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy
| | - Renato Sciarretta
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy
| | - Simona Bianco
- Dipartimento di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, 80126, Naples, Italy.
| |
Collapse
|
14
|
Rosa A, Di Stefano M, Micheletti C. Topological Constraints in Eukaryotic Genomes and How They Can Be Exploited to Improve Spatial Models of Chromosomes. Front Mol Biosci 2019; 6:127. [PMID: 31803755 PMCID: PMC6873889 DOI: 10.3389/fmolb.2019.00127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 10/28/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Angelo Rosa
- Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Marco Di Stefano
- Centre Nacional d'Anàlisi Genòmica-Centre de Regulació Genòmica, Barcelona, Spain
| | | |
Collapse
|
15
|
Merlotti A, Rosa A, Remondini D. Merging 1D and 3D genomic information: Challenges in modelling and validation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1863:194415. [PMID: 31672524 DOI: 10.1016/j.bbagrm.2019.194415] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 12/23/2022]
Abstract
Genome organization in eukaryotes during interphase stems from the delicate balance between non-random correlations present in the DNA polynucleotide linear sequence and the physico/chemical reactions which shape continuously the form and structure of DNA and chromatin inside the nucleus of the cell. It is now clear that these mechanisms have a key role in important processes like gene regulation, yet the detailed ways they act simultaneously and, eventually, come to influence each other even across very different length-scales remain largely unexplored. In this paper, we recapitulate some of the main results concerning gene regulatory and physical mechanisms, in relation to the information encoded in the 1D sequence and the 3D folding structure of DNA. In particular, we stress how reciprocal crossfeeding between 1D and 3D models may provide original insight into how these complex processes work and influence each other. This article is part of a Special Issue entitled: Transcriptional Profiles and Regulatory Gene Networks edited by Dr. Dr. Federico Manuel Giorgi and Dr. Shaun Mahony.
Collapse
Affiliation(s)
- Alessandra Merlotti
- Department of Physics and Astronomy (DIFA), University of Bologna, Viale Berti Pichat 6/2, Bologna 40127, Italy; INFN Sez., Bologna, Italy.
| | - Angelo Rosa
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, (Italy).
| | - Daniel Remondini
- Department of Physics and Astronomy (DIFA), University of Bologna, Viale Berti Pichat 6/2, Bologna 40127, Italy; INFN Sez., Bologna, Italy.
| |
Collapse
|
16
|
Abstract
Comprehensive data about the composition and structure of cellular components have enabled the construction of quantitative whole-cell models. While kinetic network-type models have been established, it is also becoming possible to build physical, molecular-level models of cellular environments. This review outlines challenges in constructing and simulating such models and discusses near- and long-term opportunities for developing physical whole-cell models that can connect molecular structure with biological function.
Collapse
Affiliation(s)
- Michael Feig
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824, USA;
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Yuji Sugita
- Laboratory for Biomolecular Function Simulation, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
- Theoretical Molecular Science Laboratory, RIKEN Cluster for Pioneering Research, Wako, Saitama 351-0198, Japan
| |
Collapse
|
17
|
Papale A, Rosa A. Microrheology of interphase chromosomes with spatial constraints: a computational study. Phys Biol 2019; 16:066002. [PMID: 31394517 DOI: 10.1088/1478-3975/ab39c1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Chromatin fibers within the interior of the nucleus of the cell make stable interactions with the nucleoskeleton, an ensemble of 'extra-chromatin' structures which help ensuring genome stability. Although the role of these interactions appears crucial to the correct behavior of the cell, their impact on chromatin structure and dynamics remains to be elucidated. In order to tackle this important issue, in this work we introduce a simple polymer model for chromatin fibers in interphase which takes into account the two generic properties of chain-versus-chain mutual uncrossability and the presence of stable binding interactions to an extra-chromatin nuclear matrix. To study how these constraints affect chromatin structure from small to large scales, we employ extensive molecular dynamics computer simulations and we monitor the motion of nanoprobes of different sizes embedded within the polymer medium. Our results demonstrate that nanoprobes show hampered motion whenever their linear size becomes larger than chromatin stiffness. This transition is also displaying features which usually belong to the realm of glassy systems, namely long-tail correlations in the distribution functions of nanoprobe spatial displacements and heterogeneous behavior accompanied by ergodicity breaking.
Collapse
Affiliation(s)
- Andrea Papale
- SISSA-Scuola Internazionale Superiore di Studi Avanzati, Via Bonomea 265, 34136 Trieste, Italy
| | | |
Collapse
|
18
|
Bianco S, Annunziatella C, Andrey G, Chiariello AM, Esposito A, Fiorillo L, Prisco A, Conte M, Campanile R, Nicodemi M. Modeling Single-Molecule Conformations of the HoxD Region in Mouse Embryonic Stem and Cortical Neuronal Cells. Cell Rep 2019; 28:1574-1583.e4. [PMID: 31390570 DOI: 10.1016/j.celrep.2019.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 05/24/2019] [Accepted: 07/02/2019] [Indexed: 10/26/2022] Open
|
19
|
Cook PR, Marenduzzo D. Transcription-driven genome organization: a model for chromosome structure and the regulation of gene expression tested through simulations. Nucleic Acids Res 2019; 46:9895-9906. [PMID: 30239812 PMCID: PMC6212781 DOI: 10.1093/nar/gky763] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 09/14/2018] [Indexed: 12/29/2022] Open
Abstract
Current models for the folding of the human genome see a hierarchy stretching down from chromosome territories, through A/B compartments and topologically-associating domains (TADs), to contact domains stabilized by cohesin and CTCF. However, molecular mechanisms underlying this folding, and the way folding affects transcriptional activity, remain obscure. Here we review physical principles driving proteins bound to long polymers into clusters surrounded by loops, and present a parsimonious yet comprehensive model for the way the organization determines function. We argue that clusters of active RNA polymerases and their transcription factors are major architectural features; then, contact domains, TADs and compartments just reflect one or more loops and clusters. We suggest tethering a gene close to a cluster containing appropriate factors—a transcription factory—increases the firing frequency, and offer solutions to many current puzzles concerning the actions of enhancers, super-enhancers, boundaries and eQTLs (expression quantitative trait loci). As a result, the activity of any gene is directly influenced by the activity of other transcription units around it in 3D space, and this is supported by Brownian-dynamics simulations of transcription factors binding to cognate sites on long polymers.
Collapse
Affiliation(s)
- Peter R Cook
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Davide Marenduzzo
- SUPA, School of Physics, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK
| |
Collapse
|
20
|
Parmar JJ, Woringer M, Zimmer C. How the Genome Folds: The Biophysics of Four-Dimensional Chromatin Organization. Annu Rev Biophys 2019; 48:231-253. [DOI: 10.1146/annurev-biophys-052118-115638] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The genetic information that instructs transcription and other cellular functions is carried by the chromosomes, polymers of DNA in complex with histones and other proteins. These polymers are folded inside nuclei five orders of magnitude smaller than their linear length, and many facets of this folding correlate with or are causally related to transcription and other cellular functions. Recent advances in sequencing and imaging-based techniques have enabled new views into several layers of chromatin organization. These experimental findings are accompanied by computational modeling efforts based on polymer physics that can provide mechanistic insights and quantitative predictions. Here, we review current knowledge of the main levels of chromatin organization, from the scale of nucleosomes to the entire nucleus, our current understanding of their underlying biophysical and molecular mechanisms, and some of their functional implications.
Collapse
Affiliation(s)
- Jyotsana J. Parmar
- Unité Imagerie et Modélisation, CNRS UMR 3691, and C3BI (Center of Bioinformatics, Biostatistics and Integrative Biology), CNRS USR 3756, Institut Pasteur, 75015 Paris, France;, ,
| | - Maxime Woringer
- Unité Imagerie et Modélisation, CNRS UMR 3691, and C3BI (Center of Bioinformatics, Biostatistics and Integrative Biology), CNRS USR 3756, Institut Pasteur, 75015 Paris, France;, ,
- Sorbonne Universités, CNRS, 75005 Paris, France
- Department of Molecular and Cell Biology, Li Ka Shing Center for Biomedical and Health Sciences, and CIRM Center of Excellence in Stem Cell Genomics, University of California, Berkeley, California 94720, USA
| | - Christophe Zimmer
- Unité Imagerie et Modélisation, CNRS UMR 3691, and C3BI (Center of Bioinformatics, Biostatistics and Integrative Biology), CNRS USR 3756, Institut Pasteur, 75015 Paris, France;, ,
| |
Collapse
|
21
|
Lee SH, Kim Y, Lee S, Durang X, Stenberg P, Jeon JH, Lizana L. Mapping the spectrum of 3D communities in human chromosome conformation capture data. Sci Rep 2019; 9:6859. [PMID: 31048738 PMCID: PMC6497878 DOI: 10.1038/s41598-019-42212-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 03/22/2019] [Indexed: 11/09/2022] Open
Abstract
Several experiments show that the three dimensional (3D) organization of chromosomes affects genetic processes such as transcription and gene regulation. To better understand this connection, researchers developed the Hi-C method that is able to detect the pairwise physical contacts of all chromosomal loci. The Hi-C data show that chromosomes are composed of 3D compartments that range over a variety of scales. However, it is challenging to systematically detect these cross-scale structures. Most studies have therefore designed methods for specific scales to study foremost topologically associated domains (TADs) and A/B compartments. To go beyond this limitation, we tailor a network community detection method that finds communities in compact fractal globule polymer systems. Our method allows us to continuously scan through all scales with a single resolution parameter. We found: (i) polymer segments belonging to the same 3D community do not have to be in consecutive order along the polymer chain. In other words, several TADs may belong to the same 3D community. (ii) CTCF proteins-a loop-stabilizing protein that is ascribed a big role in TAD formation-are well correlated with community borders only at one level of organization. (iii) TADs and A/B compartments are traditionally treated as two weakly related 3D structures and detected with different algorithms. With our method, we detect both by simply adjusting the resolution parameter. We therefore argue that they represent two specific levels of a continuous spectrum 3D communities, rather than seeing them as different structural entities.
Collapse
Affiliation(s)
- Sang Hoon Lee
- Department of Liberal Arts, Gyeongnam National University of Science and Technology, Jinju, 52725, Korea.
| | - Yeonghoon Kim
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Sungmin Lee
- Department of Physics, Korea University, Seoul, 02841, Korea
| | - Xavier Durang
- Department of Physics, University of Seoul, Seoul, 02504, Korea
| | - Per Stenberg
- Department of Ecology and Environmental Science (EMG), Umeå University, Umeå, 90187, Sweden
| | - Jae-Hyung Jeon
- Department of Physics, Pohang University of Science and Technology, Pohang, 37673, Korea.
| | - Ludvig Lizana
- Integrated Science Lab, Department of Physics, Umeå University, Umeå, 90187, Sweden.
| |
Collapse
|
22
|
Gilbert N. Biophysical regulation of local chromatin structure. Curr Opin Genet Dev 2019; 55:66-75. [DOI: 10.1016/j.gde.2019.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/31/2019] [Accepted: 06/02/2019] [Indexed: 10/26/2022]
|
23
|
Understanding Chromatin Structure: Efficient Computational Implementation of Polymer Physics Models. LECTURE NOTES IN COMPUTER SCIENCE 2019. [DOI: 10.1007/978-3-030-10549-5_53] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
24
|
Negri M, Gherardi M, Tiana G, Cosentino Lagomarsino M. Spontaneous domain formation in disordered copolymers as a mechanism for chromosome structuring. SOFT MATTER 2018; 14:6128-6136. [PMID: 29998272 DOI: 10.1039/c8sm00468d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Motivated by the problem of domain formation in chromosomes, we studied a co-polymer model where only a subset of the monomers feel attractive interactions. These monomers are displaced randomly from a regularly-spaced pattern, thus introducing some quenched disorder in the system. Previous work has shown that in the case of regularly-spaced interacting monomers this chain can fold into structures characterized by multiple distinct domains of consecutive segments. In each domain, attractive interactions are balanced by the entropy cost of forming loops. We show by advanced replica-exchange simulations that adding disorder in the position of the interacting monomers further stabilizes these domains. The model suggests that the partitioning of the chain into well-defined domains of consecutive monomers is a spontaneous property of heteropolymers. In the case of chromosomes, evolution could have acted on the spacing of interacting monomers to modulate in a simple way the underlying domains for functional reasons.
Collapse
Affiliation(s)
- Matteo Negri
- Department of Physics, Universitá degli Studi di Milano, via Celoria 16, 20133 Milano, Italy.
| | | | | | | |
Collapse
|
25
|
Abstract
Transcriptional enhancers constitute a subclass of regulatory elements that facilitate transcription. Such regions are generally organized by short stretches of DNA enriched in transcription factor-binding sites but also can include very large regions containing clusters of enhancers, termed super-enhancers. These regions increase the probability or the rate (or both) of transcription generally in
cis and sometimes over very long distances by altering chromatin states and the activity of Pol II machinery at promoters. Although enhancers were discovered almost four decades ago, their inner workings remain enigmatic. One important opening into the underlying principle has been provided by observations that enhancers make physical contacts with their target promoters to facilitate the loading of the RNA polymerase complex. However, very little is known about how such chromatin loops are regulated and how they govern transcription in the three-dimensional context of the nuclear architecture. Here, we present current themes of how enhancers may boost gene expression in three dimensions and we identify currently unresolved key questions.
Collapse
Affiliation(s)
- Anita Göndör
- Department of Oncology and Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Rolf Ohlsson
- Department of Oncology and Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
26
|
Abstract
In recent years interest has grown on the applications of polymer physics to model chromatin folding in order to try to make sense of the complexity of experimental data emerging from new technologies such as Hi-C or GAM, in a principled way. Here we review the methods employed to efficiently implement Molecular Dynamics computer simulations of polymer models, focusing in particular on the String&Binders Switch (SBS) model. The constant improvement of such methods and computer power is returning increasingly more accurate insights on the structure and molecular mechanisms underlying the spatial organization of chromosomes in the cell nucleus. We aim to provide an account of the state of the art of computational techniques employed in this type of investigations and to review recent applications of such methods to the description of real genomic loci, such as the Sox9 locus in mESC.
Collapse
|
27
|
Sarnataro S, Chiariello AM, Esposito A, Prisco A, Nicodemi M. Structure of the human chromosome interaction network. PLoS One 2017; 12:e0188201. [PMID: 29141034 PMCID: PMC5687706 DOI: 10.1371/journal.pone.0188201] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Accepted: 11/02/2017] [Indexed: 11/25/2022] Open
Abstract
New Hi-C technologies have revealed that chromosomes have a complex network of spatial contacts in the cell nucleus of higher organisms, whose organisation is only partially understood. Here, we investigate the structure of such a network in human GM12878 cells, to derive a large scale picture of nuclear architecture. We find that the intensity of intra-chromosomal interactions is power-law distributed. Inter-chromosomal interactions are two orders of magnitude weaker and exponentially distributed, yet they are not randomly arranged along the genomic sequence. Intra-chromosomal contacts broadly occur between epigenomically homologous regions, whereas inter-chromosomal contacts are especially associated with regions rich in highly expressed genes. Overall, genomic contacts in the nucleus appear to be structured as a network of networks where a set of strongly individual chromosomal units, as envisaged in the ‘chromosomal territory’ scenario derived from microscopy, interact with each other via on average weaker, yet far from random and functionally important interactions.
Collapse
Affiliation(s)
- Sergio Sarnataro
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, 67404 Illkirch, France
- * E-mail: (SS); (AMC)
| | - Andrea M. Chiariello
- Dipartimento di Fisica, Universitá di Napoli Federico II, and INFN Napoli, CNR-SPIN, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
- * E-mail: (SS); (AMC)
| | - Andrea Esposito
- Dipartimento di Fisica, Universitá di Napoli Federico II, and INFN Napoli, CNR-SPIN, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | | | - Mario Nicodemi
- Dipartimento di Fisica, Universitá di Napoli Federico II, and INFN Napoli, CNR-SPIN, Complesso Universitario di Monte Sant’Angelo, 80126 Naples, Italy
| |
Collapse
|
28
|
Chiariello AM, Esposito A, Annunziatella C, Bianco S, Fiorillo L, Prisco A, Nicodemi M. A Polymer Physics Investigation of the Architecture of the Murine Orthologue of the 7q11.23 Human Locus. Front Neurosci 2017; 11:559. [PMID: 29066944 PMCID: PMC5641313 DOI: 10.3389/fnins.2017.00559] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 09/25/2017] [Indexed: 12/29/2022] Open
Abstract
In the last decade, the developments of novel technologies, such as Hi-C or GAM methods, allowed to discover that chromosomes in the nucleus of mammalian cells have a complex spatial organization, encompassing the functional contacts between genes and regulators. In this work, we review recent progresses in chromosome modeling based on polymer physics to understand chromatin structure and folding mechanisms. As an example, we derive in mouse embryonic stem cells the full 3D structure of the Bmp7 locus, a genomic region that plays a key role in osteoblastic differentiation. Next, as an application to Neuroscience, we present the first 3D model for the mouse orthologoue of the Williams-Beuren syndrome 7q11.23 human locus. Deletions and duplications of the 7q11.23 region generate neurodevelopmental disorders with multi-system involvement and variable expressivity, and with autism. Understanding the impact of such mutations on the rewiring of the interactions of genes and regulators could be a new key to make sense of their related diseases, with potential applications in biomedicine.
Collapse
Affiliation(s)
- Andrea M. Chiariello
- Dipartimento di Fisica, Università di Napoli Federico II, Naples, Italy
- Istituto Nazionale Di Fisica Nucleare Napoli (INFN), Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Andrea Esposito
- Dipartimento di Fisica, Università di Napoli Federico II, Naples, Italy
- Istituto Nazionale Di Fisica Nucleare Napoli (INFN), Complesso Universitario di Monte Sant'Angelo, Naples, Italy
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Carlo Annunziatella
- Dipartimento di Fisica, Università di Napoli Federico II, Naples, Italy
- Istituto Nazionale Di Fisica Nucleare Napoli (INFN), Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Simona Bianco
- Dipartimento di Fisica, Università di Napoli Federico II, Naples, Italy
- Istituto Nazionale Di Fisica Nucleare Napoli (INFN), Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Luca Fiorillo
- Dipartimento di Fisica, Università di Napoli Federico II, Naples, Italy
- Istituto Nazionale Di Fisica Nucleare Napoli (INFN), Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Antonella Prisco
- Institute of Genetics and Biophysics, Consiglio Nazionale Delle Ricerche (CNR), Naples, Italy
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II, Naples, Italy
- Istituto Nazionale Di Fisica Nucleare Napoli (INFN), Complesso Universitario di Monte Sant'Angelo, Naples, Italy
- Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
29
|
Promoter interactions direct chromatin folding in embryonic stem cells. Nat Struct Mol Biol 2017; 24:494-495. [PMID: 28586328 DOI: 10.1038/nsmb.3421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Gilbert N, Marenduzzo D. Genome organization: experiments and modeling. Chromosome Res 2017; 25:1-4. [PMID: 28155082 PMCID: PMC5346143 DOI: 10.1007/s10577-017-9551-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Nick Gilbert
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Rd, Edinburgh, EH4 2XR, UK.
| | - Davide Marenduzzo
- SUPA, School of Physics & Astronomy, University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, UK.
| |
Collapse
|