1
|
Félix AP, Amorim ICD, Milani D, Cabral-de-Mello DC, Moura RC. Differential amplification and contraction of satellite DNAs in the distinct lineages of the beetle Euchroma gigantea. Gene 2024; 927:148723. [PMID: 38914242 DOI: 10.1016/j.gene.2024.148723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
Satellite DNA (satDNA) consists of tandem repeat sequences that typically evolve rapidly through evolutionary mechanisms, including unequal crossover, transposition events, and others. The evolutionary history of Euchroma gigantea is marked by complex chromosomal evolution between lineages, making this species an interesting model for understanding satDNA evolution at intraspecies level. Therefore, our aim was to comprehend the potential contribution of satDNAs to the greater chromosomal differentiation of evolutionary lineages in E. gigantea by investigating the differential patterns of amplification and contraction of the repeats. To achieve this, we employed de novo identification of satDNA using RepeatExplorer and TAREAN, allowing the satellitome characterization between lineages. A total of 26 satDNA families were identified, ranging from 18 to 1101 nucleotides in length, with most families being shared between individuals/lineages, as predicted by the library hypothesis, except for the satDNA EgiSat21-168 that was absent for Northeast Lineage. The total satDNA content of the individuals was less than 11.2%, and it appeared to increase in two directions following the chromosomal evolution model. Thirteen satDNAs exhibited different patterns of amplification, and nine ones were contracted among individuals. Additionally, most repeats showed a divergence of about 10% for these satDNAs, indicating satellitome differentiation for each lineage/individual. This scenario suggests that the expansion of the satellitome occurred differentially among individuals/lineages of E. gigantea, with the contribution of various DNA turnover mechanisms after geographical isolation, and that they could be involved with karyotype evolution.
Collapse
Affiliation(s)
- Aline Priscila Félix
- Laboratório de Biodiversidade e Genética de Insetos, Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife, Pernambuco, Brazil; Pós-Graduação em Genética e Biologia Molecular, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil
| | - Igor Costa de Amorim
- Laboratório de Biodiversidade e Genética de Insetos, Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife, Pernambuco, Brazil; Departamento de Tecnologia e Ciências Sociais, Universidade do Estado da Bahia, Juazeiro, Bahia, Brazil
| | - Diogo Milani
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
| | - Diogo Cavalcanti Cabral-de-Mello
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, São Paulo, Brazil
| | - Rita Cássia Moura
- Laboratório de Biodiversidade e Genética de Insetos, Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
2
|
Amorim IC, Mello CAA, Félix AP, Xavier C, Wallau GL, Moura RC. Mobilome characterization of the beetle Euchroma gigantea (Buprestidae) uncovers multiple long range Tc1-Mariner horizontal transfer events. Gene 2023; 888:147785. [PMID: 37689222 DOI: 10.1016/j.gene.2023.147785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/05/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Transposable elements (TEs) are mobile repetitive DNA sequences that can transfer horizontally between species. Due to their mutagenic characteristics, TEs are associated with different evolutionary events, including chromosomal rearrangements that are abundant in the beetle Euchroma gigantea. In order to understand more in depth the impact of TEs on the genomic evolution of E. gigantea, we characterized the E. gigantea mobilome and evaluated the horizontal transfer of Tc1-Mariner elements. Genomic sequencing data was generated on the Illumina Hiseq plataform, from a specimen (Northeast lineage) collected in Recife, Pernambuco - Brazil. The TEs were characterized by two independent approaches based on the clustering and assembly of highly repetitive sequences, the RepeatExplorer and dnaPipeTE. The sequences obtained were further characterized using ORFfinder and CD-Search, to obtain the TEs' potential coding proteins and verify the presence and integrity of known TE domains. Evidence for horizontal transfer was evaluated by nucleotide and protein genetic distance between TEs from E. gigantea and other species and phylogenetic incongruences detected between TEs and hosts phylogenetic trees. The mobilome of E. gigantea represents about 21 to 26% of its genome. This mobilome is composed of TEs from 31 superfamilies, belonging to different classes and most known orders of TEs. Several types of TEs with intact domains were observed with emphasis on Tc1-Mariner suggesting the presence of potentially autonomous elements. This superfamily also stands out for having the greatest abundance and diversity, with TEs being classified into four families. When compared to TEs deposited in databases, Mariner TEs stood out as having the highest nucleotide identity (above 90%) with TEs from phylogenetically distant species, such as ants and bees. Altogether these results suggest that E. gigantea Mariner TEs underwent multiple horizontal transfer events to other insect species.
Collapse
Affiliation(s)
- Igor C Amorim
- Laboratório de Biodiversidade e Genética de Insetos, Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife, Pernambuco, Brazil; Departamento de Tecnologia e Ciências Sociais, Universidade do Estado da Bahia, Juazeiro, BA, Brasil
| | - Catarine A A Mello
- Laboratório de Biodiversidade e Genética de Insetos, Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife, Pernambuco, Brazil
| | - Aline P Félix
- Laboratório de Biodiversidade e Genética de Insetos, Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife, Pernambuco, Brazil; Pós-Graduação em Genética e Biologia Molecular, Centro de Ciências Biológicas (CB), Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil; Departamento de Entomologia e Núcleo de Bioinformática, Instituto Aggeu Magalhães - Fundação Oswaldo Cruz, Recife, Pernambuco, Brazil
| | - Crislaine Xavier
- Laboratório de Biodiversidade e Genética de Insetos, Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife, Pernambuco, Brazil
| | - Gabriel L Wallau
- Departamento de Entomologia e Núcleo de Bioinformática, Instituto Aggeu Magalhães - Fundação Oswaldo Cruz, Recife, Pernambuco, Brazil; Department of Arbovirology and Entomology, Bernhard Nocht Institute for Tropical Medicine, WHO Collaborating Center for Arbovirus and Hemorrhagic Fever Reference and Research, National Reference Center for Tropical Infectious Diseases, Bernhard-Nocht-Straße 74, 20359 Hamburg, Germany.
| | - Rita C Moura
- Laboratório de Biodiversidade e Genética de Insetos, Instituto de Ciências Biológicas, Universidade de Pernambuco, Recife, Pernambuco, Brazil; Pós-Graduação em Genética e Biologia Molecular, Centro de Ciências Biológicas (CB), Universidade Federal de Pernambuco, Recife, Pernambuco, Brazil.
| |
Collapse
|
3
|
Ivković S, Dey LS, Maria Buzzetti F, Puskás G, Warchałowska‑Śliwa E, Horvat L, Chobanov D, Hochkirch A. Strong intraspecific phylogenetic and karyotypic diversification in Isophya modestior (Orthoptera: Tettigoniidae: Phaneropterinae). Biol J Linn Soc Lond 2023. [DOI: 10.1093/biolinnean/blac142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Abstract
Isophya modestior (Orthoptera: Tettigoniidae) is a species distributed in central and south-eastern Europe, where its distribution is largely separated by two large rivers (Sava and Danube). Since previous studies on the song and morphology of the stridulatory file across its complete geographic range showed that the species is separated into two main groups, we decided to use phylogenetic and karyological analyses in order to evaluate the status of the previously analysed populations.
Phylogenetic analyses showed the existence of two major clades within I. modestior with very high bootstrap values and posterior probabilities—Clade A: present on the Balkan Peninsula, Slovenia (Inner Carniola), Italy, Pannonian Serbia (Vršac Mts and Deronje) and Austria (Burgenland and Lower Austria); Clade B: present in Slovenia (Upper Carniola), Croatia and Austria (Carinthia), Pannonian Serbia (Fruška Gora Mt.) and Hungary.
A comparison of chromosomes of 51 specimens revealed discrete differences between their karyotypes. The physical characteristics of the karyotypes included chromosome number (2n), sex chromosome (X) morphology and C-banding patterns. The standard chromosome complement of 50 specimens from different localities is characterized by 2n = 30 + X0 in males. In one male collected in Fruška Gora Mt. (Andrevlje), the chromosome number was reduced to 2n = 28 + neo-XY. Therefore, further cytogenetic studies involving larger samples, especially from Fruška Gora Mt., are needed in order to gain a more comprehensive view of the chromosome evolution in this group of Isophya species.
Collapse
Affiliation(s)
- Slobodan Ivković
- Department of Biogeography, Trier University, Universitätsring 15 , 54296 Trier , Germany
| | - Lara-Sophie Dey
- Leibniz Institute for the Analysis of Biodiversity (LIB), University of Hamburg, Martin-Luther-King Platz 3 , 20146 Hamburg , Germany
| | | | | | - Elżbieta Warchałowska‑Śliwa
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences , Sławkowska 17, 31-016 Kraków , Poland
| | | | - Dragan Chobanov
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences , 1 Tsar Osvoboditel Boulevard, 1000 Sofia , Bulgaria
| | - Axel Hochkirch
- Department of Biogeography, Trier University, Universitätsring 15 , 54296 Trier , Germany
| |
Collapse
|
4
|
Highly divergent karyotypes and barcoding of the East African genus Gonatoxia Karsch (Orthoptera: Phaneropterinae). Sci Rep 2021; 11:22781. [PMID: 34815452 PMCID: PMC8610994 DOI: 10.1038/s41598-021-02110-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 10/20/2021] [Indexed: 11/09/2022] Open
Abstract
East Africa is a hotspot of biodiversity of many orthopteran taxa, including bushcrickets. Gonatoxia Karsch, 1889 species are fully alate Phaneropterinae, which are perfectly adapted to the foliage of forests. We examined five species using combined cytogenetic and molecular data to determine the inter- and intraspecific genetic diversity. The variation in the diploid number of chromosomes in males ranged from 2n = 28 + X0 and 26 + X0 to 2n = 6 + X0. Fluorescence in situ hybridization showed from one to many 18S rDNA loci as well as interstitial sequences, especially in G. helleri. 18S rDNA loci coincided with active NOR and C-banding patterns. The isolation of populations of the species explains differences in the number of chromosomes (G. maculata), chromosomal polymorphism and chromosomal heterozygosity (G. helleri). Our molecular phylogeny based on the COI locus supported the monophyly of the genus Gonatoxia and separateness of the five examined species in accordance with their morphological features and chromosome numbers as well as the species' distribution.
Collapse
|
5
|
Grzywacz B, Warchałowska-Śliwa E, Kociński M, Heller KG, Hemp C. Diversification of the Balloon bushcrickets (Orthoptera, Hexacentrinae, Aerotegmina) in the East African mountains. Sci Rep 2021; 11:9878. [PMID: 33972656 PMCID: PMC8110521 DOI: 10.1038/s41598-021-89364-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 04/26/2021] [Indexed: 02/03/2023] Open
Abstract
East African mountains constitute a network of isolated habitat islands among dry savannah and are thus ideal for studying species diversification processes. This study elucidated the phylogenetic and phylogeographic relationships of all bushcricket species comprising the genus Aerotegmina. Our analysis indicated that large-scale climatic and topographic processes in Africa are likely to have driven speciation in this group, and revealed the cytogenetic traits of the species. Molecular phylogeny supported the monophyly of Aerotegmina and showed that the genus probably originated in the old Eastern Arc Mountains of Tanzania and Kenya. Two lineages were distinguished: small- and large-sized species with geographically distinct habitats. The underlying processes are thought to be eight dispersals, ten vicariance events, and one extinction event linked to repeated fragmentation of the African rainforest. Those processes, in conjunction with habitat change, probably also led to the spatial separation of the species into a northern clade with a diploid number of chromosomes 2n = 32 + X0 or 2n = 30 + neo-XY and a southern clade with a reduced number of chromosomes (2n = 28 + X0 or 24 + neo-X1X2Y). Karyotype analysis suggests that Aerotegmina is currently in the process of speciation.
Collapse
Affiliation(s)
- Beata Grzywacz
- grid.413454.30000 0001 1958 0162Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Kraków, Poland
| | - Elżbieta Warchałowska-Śliwa
- grid.413454.30000 0001 1958 0162Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Kraków, Poland
| | - Maciej Kociński
- grid.413454.30000 0001 1958 0162Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Kraków, Poland
| | | | - Claudia Hemp
- grid.7384.80000 0004 0467 6972Department Plant Systematics, University of Bayreuth, Bayreuth, Germany
| |
Collapse
|
6
|
Meiotic analyses show adaptations to maintenance of fertility in X1Y1X2Y2X3Y3X4Y4X5Y5 system of amazon frog Leptodactylus pentadactylus (Laurenti, 1768). Sci Rep 2020; 10:16327. [PMID: 33004883 PMCID: PMC7529792 DOI: 10.1038/s41598-020-72867-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
Abstract
Heterozygous chromosomal rearrangements can result in failures during the meiotic cycle and the apoptosis of germline, making carrier individuals infertile. The Amazon frog Leptodactylus pentadactylus has a meiotic multivalent, composed of 12 sex chromosomes. The mechanisms by which this multi-chromosome system maintains fertility in males of this species remain undetermined. In this study we investigated the meiotic behavior of this multivalent to understand how synapse, recombination and epigenetic modifications contribute to maintaining fertility and chromosomal sexual determination in this species. Our sample had 2n = 22, with a ring formed by ten chromosomes in meiosis, indicating a new system of sex determination for this species (X1Y1X2Y2X3Y3X4Y4X5Y5). Synapsis occurs in the homologous terminal portion of the chromosomes, while part of the heterologous interstitial regions performed synaptic adjustment. The multivalent center remains asynaptic until the end of pachytene, with interlocks, gaps and rich-chromatin in histone H2A phosphorylation at serine 139 (γH2AX), suggesting transcriptional silence. In late pachytene, paired regions show repair of double strand-breaks (DSBs) with RAD51 homolog 1 (Rad51). These findings suggest that Rad51 persistence creates positive feedback at the pachytene checkpoint, allowing meiosis I to progress normally. Additionally, histone H3 trimethylation at lysine 27 in the pericentromeric heterochromatin of this anuran can suppress recombination in this region, preventing failed chromosomal segregation. Taken together, these results indicate that these meiotic adaptations are required for maintenance of fertility in L. pentadactylus.
Collapse
|
7
|
Warchałowska-Śliwa E, Grzywacz B, Maryańska-Nadachowska A, Heller KG, Hemp C. Rapid chromosomal evolution in the bush-cricket Gonatoxia helleri Hemp, 2016 (Orthoptera, Phaneropterinae). COMPARATIVE CYTOGENETICS 2020; 14:417-435. [PMID: 32952902 PMCID: PMC7473956 DOI: 10.3897/compcytogen.v14i3.54422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/27/2020] [Indexed: 05/03/2023]
Abstract
Gonatoxia helleri Hemp, 2016 is one of the most widespread bush-crickets of the genus Gonatoxia Karsch, 1889 in East Africa. This species with seven large chromosomes (2n♂ = 7) differs from other representatives of the genus Gonatoxia drastically by its reduced chromosome number, the asymmetrical karyotype including karyomorphs rarely found in tettigoniids, as well as in irregularities in the course of meiosis. To better understand the origin of such an exceptional karyotype, chromosomes of 29 specimens from four populations/localities were studied using classical techniques, such as C-banding, silver impregnation, fluorochrome double staining and fluorescence in situ hybridization (FISH) technique with 18S rDNA and (TTAGG) n telomeric probes. FISH showed many 18S rDNA loci as well as interstitial telomeric sequences, where chromosome morphology varied in these components in terms of quantity and distribution. The 18S rDNA loci coincided with active NORs and C-banding patterns. We suggest that a combination of Robertsonian rearrangements and/or multiple common tandem fusions involving the same chromosomes contributed to the formation of this karyotype/karyomorphs. The results are the first step towards a better understanding of chromosomal reorganization and evolution within the genus Gonatoxia. Low chromosome number, together with the incidence of chromosomal polymorphism that is higher in G. helleri than previously reported in bush-crickets, implies that this species can be a valuable new model for cytogenetic and speciation studies. Our findings suggest that chromosomal translocations lead to diversification and speciation in this species and could be the driving force of adaptive radiation.
Collapse
Affiliation(s)
- Elżbieta Warchałowska-Śliwa
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Kraków, PolandPolish Academy of SciencesKrakówPoland
| | - Beata Grzywacz
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Kraków, PolandPolish Academy of SciencesKrakówPoland
| | - Anna Maryańska-Nadachowska
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Sławkowska 17, 31-016 Kraków, PolandPolish Academy of SciencesKrakówPoland
| | | | - Claudia Hemp
- University of Bayreuth, Dept. Plant Systematics, Bayreuth, GermanyUniversity of BayreuthBayreuthGermany
| |
Collapse
|
8
|
Micolino R, Cristiano MP, Travenzoli NM, Lopes DM, Cardoso DC. Chromosomal dynamics in space and time: evolutionary history of Mycetophylax ants across past climatic changes in the Brazilian Atlantic coast. Sci Rep 2019; 9:18800. [PMID: 31827151 PMCID: PMC6906305 DOI: 10.1038/s41598-019-55135-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/01/2019] [Indexed: 12/14/2022] Open
Abstract
Fungus-farming ants of the genus Mycetophylax exhibit intra and interspecific chromosome variability, which makes them suitable for testing hypotheses about possible chromosomal rearrangements that endure lineage diversification. We combined cytogenetic and molecular data from Mycetophylax populations from coastal environments to trace the evolutionary history of the clade in light of chromosomal changes under a historical and geographic context. Our cytogenetic analyses revealed chromosomal differences within and among species. M. morschi exhibited three distinct karyotypes and considerable variability in the localization of 45S rDNA clusters. The molecular phylogeny was congruent with our cytogenetic findings. Biogeographical and divergence time dating analyses estimated that the most recent common ancestor of Mycetophylax would have originated at about 30 Ma in an area including the Amazon and Southern Grasslands, and several dispersion and vicariance events may have occurred before the colonization of the Brazilian Atlantic coast. Diversification of the psammophilous Mycetophylax first took place in the Middle Miocene (ca. 18-10 Ma) in the South Atlantic coast, while "M. morschi" lineages diversified during the Pliocene-Pleistocene transition (ca. 3-2 Ma) through founder-event dispersal for the Northern coastal regions. Psammophilous Mycetophylax diversification fits into the major global climatic events that have had a direct impact on the changes in sea level as well as deep ecological impact throughout South America. We assume therefore that putative chromosomal rearrangements correlated with increased ecological stress during the past climatic transitions could have intensified and/or accompanied the divergence of the psammophilous Mycetophylax. We further reiterate that "M. morschi" comprises a complex of at least three well-defined lineages, and we emphasize the role of this integrative approach for the identification and delimitation of evolutionary lineages.
Collapse
Affiliation(s)
- Ricardo Micolino
- Departamento de Genética, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil
- Departamento de Biodiversidade, Evolução e Meio Ambiente, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | - Maykon Passos Cristiano
- Departamento de Biodiversidade, Evolução e Meio Ambiente, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil
| | | | - Denilce Meneses Lopes
- Departamento de Biologial Geral, Universidade Federal de Viçosa (UFV), Viçosa, MG, Brazil
| | - Danon Clemes Cardoso
- Departamento de Genética, Universidade Federal do Paraná (UFPR), Curitiba, PR, Brazil.
- Departamento de Biodiversidade, Evolução e Meio Ambiente, Universidade Federal de Ouro Preto (UFOP), Ouro Preto, MG, Brazil.
| |
Collapse
|