1
|
Maslova A, Plotnikov V, Nuriddinov M, Gridina M, Fishman V, Krasikova A. Hi-C analysis of genomic contacts revealed karyotype abnormalities in chicken HD3 cell line. BMC Genomics 2023; 24:66. [PMID: 36750787 PMCID: PMC9906895 DOI: 10.1186/s12864-023-09158-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/31/2023] [Indexed: 02/09/2023] Open
Abstract
BACKGROUND Karyotype abnormalities are frequent in immortalized continuous cell lines either transformed or derived from primary tumors. Chromosomal rearrangements can cause dramatic changes in gene expression and affect cellular phenotype and behavior during in vitro culture. Structural variations of chromosomes in many continuous mammalian cell lines are well documented, but chromosome aberrations in cell lines from other vertebrate models often remain understudied. The chicken LSCC-HD3 cell line (HD3), generated from erythroid precursors, was used as an avian model for erythroid differentiation and lineage-specific gene expression. However, karyotype abnormalities in the HD3 cell line were not assessed. In the present study, we applied high-throughput chromosome conformation capture to analyze 3D genome organization and to detect chromosome rearrangements in the HD3 cell line. RESULTS We obtained Hi-C maps of genomic interactions for the HD3 cell line and compared A/B compartments and topologically associating domains between HD3 and several other cell types. By analysis of contact patterns in the Hi-C maps of HD3 cells, we identified more than 25 interchromosomal translocations of regions ≥ 200 kb on both micro- and macrochromosomes. We classified most of the observed translocations as unbalanced, leading to the formation of heteromorphic chromosomes. In many cases of microchromosome rearrangements, an entire microchromosome together with other macro- and microchromosomes participated in the emergence of a derivative chromosome, resembling "chromosomal fusions'' between acrocentric microchromosomes. Intrachromosomal inversions, deletions and duplications were also detected in HD3 cells. Several of the identified simple and complex chromosomal rearrangements, such as between GGA2 and GGA1qter; GGA5, GGA4p and GGA7p; GGA4q, GGA6 and GGA19; and duplication of the sex chromosome GGAW, were confirmed by FISH. CONCLUSIONS In the erythroid progenitor HD3 cell line, in contrast to mature and immature erythrocytes, the genome is organized into distinct topologically associating domains. The HD3 cell line has a severely rearranged karyotype with most of the chromosomes engaged in translocations and can be used in studies of genome structure-function relationships. Hi-C proved to be a reliable tool for simultaneous assessment of the spatial genome organization and chromosomal aberrations in karyotypes of birds with a large number of microchromosomes.
Collapse
Affiliation(s)
- A. Maslova
- grid.15447.330000 0001 2289 6897Saint Petersburg State University, Saint Petersburg, Russia
| | - V. Plotnikov
- grid.15447.330000 0001 2289 6897Saint Petersburg State University, Saint Petersburg, Russia
| | - M. Nuriddinov
- grid.418953.2Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - M. Gridina
- grid.418953.2Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - V. Fishman
- grid.418953.2Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - A. Krasikova
- grid.15447.330000 0001 2289 6897Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
2
|
Kulak M, Komissarov A, Fillon V, Tsukanova K, Saifitdinova A, Galkina S. Genome organization of major tandem repeats and their specificity for heterochromatin of macro- and microchromosomes in Japanese quail. Genome 2022; 65:391-403. [PMID: 35776982 DOI: 10.1139/gen-2022-0012] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tandemly repeated DNAs form heterochromatic regions of chromosomes, including the vital centromeric chromatin. Despite the progress in new genomic technologies tandem repeats remain poorly deciphered and need targeted analysis in the species of interest. The Japanese quail is one of the highest-producing poultry species as well as a model organism. Its genome differs by a noticeable accumulation of heterochromatin, which led to an increase by 1/7 compared to the chicken genome size. Prominent heterochromatin blocks occupy the short arms of acrocentric macrochromosomes and of microchromosomes. We have applied de novo repeat finder approach to unassembled raw reads of the Japanese quail genome. We identified the 20 most common tandem repeats with the abundance >1 Mb, which represent about 4.8% of the genome. We found that tandem repeat CjapSAT primarily contribute to the centromeric regions of the macrochromosomes CJA1-8. Cjap31B together with previously characterized BglII make up centromere regions of microchromosomes and W chromosome. Other repeats populate heterochromatin of microchromosomal short arms in unequal proportions, as revealed by FISH. The Cjap84A, Cjap408A and CjapSAT repeat sequences show similarities with retrotransposon motifs. This suggests that retroelements may have played a crucial role in the distribution of repeats throughout the Japanese quail genome.
Collapse
Affiliation(s)
- Maria Kulak
- Saint Petersburg State University, Saint Petersburg, Russian Federation;
| | | | - Valerie Fillon
- INRA Toulouse-Occitanie, Castanet Tolosan, Occitanie, France;
| | - Kseniya Tsukanova
- Saint Petersburg State University, Saint Petersburg, Russian Federation;
| | - Alsu Saifitdinova
- Herzen State Pedagogical University of Russia, 104720, Saint Petersburg, Russian Federation;
| | - Svetlana Galkina
- Saint Petersburg State University, Saint Petersburg, Russian Federation;
| |
Collapse
|
3
|
Ng CS, Lai CK, Ke HM, Lee HH, Chen CF, Tang PC, Cheng HC, Lu MJ, Li WH, Tsai IJ. Genome Assembly and Evolutionary Analysis of the Mandarin Duck Aix galericulata Reveal Strong Genome Conservation among Ducks. Genome Biol Evol 2022; 14:evac083. [PMID: 35640266 PMCID: PMC9189614 DOI: 10.1093/gbe/evac083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
The mandarin duck, Aix galericulata, is popular in East Asian cultures and displays exaggerated sexual dimorphism, especially in feather traits during breeding seasons. We generated and annotated the first mandarin duck de novo assembly, which was 1.08 Gb in size and encoded 16,615 proteins. Using a phylogenomic approach calibrated with fossils and molecular divergences, we inferred that the last common ancestor of ducks occurred 13.3-26.7 Ma. The majority of the mandarin duck genome repetitive sequences belonged to the chicken repeat 1 (CR1) retroposon CR1-J2_Pass, which underwent a duck lineage-specific burst. Synteny analyses among ducks revealed infrequent chromosomal rearrangements in which breaks were enriched in LINE retrotransposons and DNA transposons. The calculation of the dN/dS ratio revealed that the majority of duck genes were under strong purifying selection. The expanded gene families in the mandarin duck are primarily involved in olfactory perception as well as the development and morphogenesis of feather and branching structures. This new reference genome will improve our understanding of the morphological and physiological characteristics of ducks and provide a valuable resource for functional genomics studies to investigate the feather traits of the mandarin duck.
Collapse
Affiliation(s)
- Chen Siang Ng
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
- Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
- Bioresource Conservation Research Center, National Tsing Hua University, Hsinchu, Taiwan
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Cheng-Kuo Lai
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Huei-Mien Ke
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Hsin-Han Lee
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Chih-Feng Chen
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Pin-Chi Tang
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Department of Animal Science, National Chung Hsing University, Taichung, Taiwan
| | - Hsu-Chen Cheng
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Department of Life Science, National Chung Hsing University, Taichung, Taiwan
| | - Meiyeh J. Lu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Wen-Hsiung Li
- The iEGG and Animal Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Ecology and Evolution, University of Chicago, Illinois, USA
| | | |
Collapse
|
4
|
Li J, Zhang J, Liu J, Zhou Y, Cai C, Xu L, Dai X, Feng S, Guo C, Rao J, Wei K, Jarvis ED, Jiang Y, Zhou Z, Zhang G, Zhou Q. A new duck genome reveals conserved and convergently evolved chromosome architectures of birds and mammals. Gigascience 2021; 10:giaa142. [PMID: 33406261 PMCID: PMC7787181 DOI: 10.1093/gigascience/giaa142] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/31/2020] [Accepted: 11/16/2020] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Ducks have a typical avian karyotype that consists of macro- and microchromosomes, but a pair of much less differentiated ZW sex chromosomes compared to chickens. To elucidate the evolution of chromosome architectures between ducks and chickens, and between birds and mammals, we produced a nearly complete chromosomal assembly of a female Pekin duck by combining long-read sequencing and multiplatform scaffolding techniques. RESULTS A major improvement of genome assembly and annotation quality resulted from the successful resolution of lineage-specific propagated repeats that fragmented the previous Illumina-based assembly. We found that the duck topologically associated domains (TAD) are demarcated by putative binding sites of the insulator protein CTCF, housekeeping genes, or transitions of active/inactive chromatin compartments, indicating conserved mechanisms of spatial chromosome folding with mammals. There are extensive overlaps of TAD boundaries between duck and chicken, and also between the TAD boundaries and chromosome inversion breakpoints. This suggests strong natural selection pressure on maintaining regulatory domain integrity, or vulnerability of TAD boundaries to DNA double-strand breaks. The duck W chromosome retains 2.5-fold more genes relative to chicken. Similar to the independently evolved human Y chromosome, the duck W evolved massive dispersed palindromic structures, and a pattern of sequence divergence with the Z chromosome that reflects stepwise suppression of homologous recombination. CONCLUSIONS Our results provide novel insights into the conserved and convergently evolved chromosome features of birds and mammals, and also importantly add to the genomic resources for poultry studies.
Collapse
Affiliation(s)
- Jing Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Jilin Zhang
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 5 Nobels väg, Stockholm 17177, Sweden
| | - Jing Liu
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Department of Neuroscience and Developmental Biology, University of Vienna, 1 Universitätsring, Vienna 1090, Austria
| | - Yang Zhou
- BGI-Shenzhen, 146 Beishan Industrial Zone, Shenzhen 518083, China
| | - Cheng Cai
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Luohao Xu
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Department of Neuroscience and Developmental Biology, University of Vienna, 1 Universitätsring, Vienna 1090, Austria
| | - Xuelei Dai
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Shaohong Feng
- BGI-Shenzhen, 146 Beishan Industrial Zone, Shenzhen 518083, China
| | - Chunxue Guo
- BGI-Shenzhen, 146 Beishan Industrial Zone, Shenzhen 518083, China
| | - Jinpeng Rao
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310052, China
| | - Kai Wei
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310052, China
| | - Erich D Jarvis
- Laboratory of Neurogenetics of Language, The Rockefeller University, 1230 York Ave, NY 10065, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Road, Chevy Chase, MD 20815, USA
| | - Yu Jiang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, 3 Taicheng Road, Yangling 712100, China
| | - Zhengkui Zhou
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, 12 Zhong Guan Cun Da Jie, Beijing, China
| | - Guojie Zhang
- China National GeneBank, BGI-Shenzhen, Jinsha Road, Shenzhen 518120, China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming 650223, China
- Section for Ecology and Evolution, Department of Biology, University of Copenhagen, 10 Nørregade, DK-2100 Copenhagen, Denmark
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming 650223, China
| | - Qi Zhou
- MOE Laboratory of Biosystems Homeostasis & Protection and Zhejiang Provincial Key Laboratory for Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Department of Neuroscience and Developmental Biology, University of Vienna, 1 Universitätsring, Vienna 1090, Austria
- Center for Reproductive Medicine, The 2nd Affiliated Hospital, School of Medicine, Zhejiang University, 88 Jiefang Road, Hangzhou 310052, China
| |
Collapse
|
5
|
Vollmar S, Haas V, Schmid M, Preuß S, Joshi R, Rodehutscord M, Bennewitz J. Mapping genes for phosphorus utilization and correlated traits using a 4k SNP linkage map in Japanese quail (Coturnix japonica). Anim Genet 2020; 52:90-98. [PMID: 33140443 DOI: 10.1111/age.13018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2020] [Indexed: 12/17/2022]
Abstract
A large F2 cross with 920 Japanese quail was used to map QTL for phosphorus utilization, calcium utilization, feed per gain and body weight gain. In addition, four bone ash traits were included, because it is known that they are genetically correlated with the focal trait of phosphorus utilization. Trait recording was done at the juvenile stage of the birds. The individuals were genotyped genome-wide for about 4k SNPs and a linkage map constructed, which agreed well with the reference genome. QTL linkage mapping was performed using multimarker regression analysis in a line cross model. Single marker association mapping was done within the mapped QTL regions. The results revealed several genome-wide significant QTL. For the focal trait phosphorus utilization, a QTL on chromosome CJA3 could be detected by linkage mapping, which was substantiated by the results of the SNP association mapping. Four candidate genes were identified for this QTL, which should be investigated in future functional studies. Some overlap of QTL regions for different traits was detected, which is in agreement with the corresponding genetic correlations. It seems that all traits investigated are polygenic in nature with some significant QTL and probably many other small-effect QTL that were not detectable in this study.
Collapse
Affiliation(s)
- S Vollmar
- Institute of Animal Science, University of Hohenheim, Stuttgart, 70599, Germany
| | - V Haas
- Institute of Animal Science, University of Hohenheim, Stuttgart, 70599, Germany
| | - M Schmid
- Institute of Animal Science, University of Hohenheim, Stuttgart, 70599, Germany
| | - S Preuß
- Institute of Animal Science, University of Hohenheim, Stuttgart, 70599, Germany
| | - R Joshi
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, N-1432, Norway
| | - M Rodehutscord
- Institute of Animal Science, University of Hohenheim, Stuttgart, 70599, Germany
| | - J Bennewitz
- Institute of Animal Science, University of Hohenheim, Stuttgart, 70599, Germany
| |
Collapse
|
6
|
Zlotina A, Maslova A, Pavlova O, Kosyakova N, Al-Rikabi A, Liehr T, Krasikova A. New Insights Into Chromomere Organization Provided by Lampbrush Chromosome Microdissection and High-Throughput Sequencing. Front Genet 2020; 11:57. [PMID: 32127797 PMCID: PMC7038795 DOI: 10.3389/fgene.2020.00057] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/17/2020] [Indexed: 11/13/2022] Open
Abstract
Giant lampbrush chromosomes (LBCs) typical for growing oocytes of various animal species are characterized by a specific chromomere-loop appearance and massive transcription. Chromomeres represent universal units of chromatin packaging at LBC stage. While quite good progress has been made in investigation of LBCs structure and function, chromomere organization still remains poorly understood. To extend our knowledge on chromomere organization, we applied microdissection to chicken LBCs. In particular, 31 and 5 individual chromomeres were dissected one by one along the macrochromosome 4 and one microchromosome, respectively. The data on genomic context of individual chromomeres was obtained by high-throughput sequencing of the corresponding chromomere DNA. Alignment of adjacent chromomeres to chicken genome assembly provided information on chromomeres size and genomic boarders, indicating that prominent marker chromomeres are about 4–5 Mb in size, while common chromomeres of 1.5–3.5 Mb. Analysis of genomic features showed that the majority of chromomere-loop complexes combine gene-dense and gene-poor regions, while massive loopless DAPI-positive chromomeres lack genes and are remarkably enriched with different repetitive elements. Finally, dissected LBC chromomeres were compared with chromatin domains (topologically associated domains [TADs] and A/B-compartments), earlier identified by Hi-C technique in interphase nucleus of chicken embryonic fibroblasts. Generally, the results obtained suggest that chromomeres of LBCs do not correspond unambiguously to any type of well-established spatial domains of interphase nucleus in chicken somatic cells.
Collapse
Affiliation(s)
- Anna Zlotina
- Saint Petersburg State University, Saint Petersburg, Russia
| | | | - Olga Pavlova
- Saint Petersburg State University, Saint Petersburg, Russia
| | - Nadezda Kosyakova
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Ahmed Al-Rikabi
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Alla Krasikova
- Saint Petersburg State University, Saint Petersburg, Russia
| |
Collapse
|
7
|
Molecular cytogenetic characterization of repetitive sequences comprising centromeric heterochromatin in three Anseriformes species. PLoS One 2019; 14:e0214028. [PMID: 30913221 PMCID: PMC6435179 DOI: 10.1371/journal.pone.0214028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/05/2019] [Indexed: 01/22/2023] Open
Abstract
The highly repetitive DNA sequence of centromeric heterochromatin is an effective molecular cytogenetic marker for investigating genomic compartmentalization between macrochromosomes and microchromosomes in birds. We isolated four repetitive sequence families of centromeric heterochromatin from three Anseriformes species, viz., domestic duck (Anas platyrhynchos, APL), bean goose (Anser fabalis, AFA), and whooper swan (Cygnus cygnus, CCY), and characterized the sequences by molecular cytogenetic approach. The 190-bp APL-HaeIII and 101-bp AFA-HinfI-S sequences were localized in almost all chromosomes of A. platyrhynchos and A. fabalis, respectively. However, the 192-bp AFA-HinfI-L and 290-bp CCY-ApaI sequences were distributed in almost all microchromosomes of A. fabalis and in approximately 10 microchromosomes of C. cygnus, respectively. APL-HaeIII, AFA-HinfI-L, and CCY-ApaI showed partial sequence homology with the chicken nuclear-membrane-associated (CNM) repeat families, which were localized primarily to the centromeric regions of microchromosomes in Galliformes, suggesting that ancestral sequences of the CNM repeat families are observed in the common ancestors of Anseriformes and Galliformes. These results collectively provide the possibility that homogenization of centromeric heterochromatin occurred between microchromosomes in Anseriformes and Galliformes; however, homogenization between macrochromosomes and microchromosomes also occurred in some centromeric repetitive sequences.
Collapse
|