1
|
Liu Y, Shen B, Huang T, Wang J, Jiang J. Construction and validation of 3-genes hypoxia-related prognostic signature to predict the prognosis and therapeutic response of hepatocellular carcinoma patients. PLoS One 2023; 18:e0288013. [PMID: 37406019 DOI: 10.1371/journal.pone.0288013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 06/19/2023] [Indexed: 07/07/2023] Open
Abstract
BACKGROUND Previous studies have shown that the hypoxia microenvironment significantly impacted tumor progression. However, the clinical prognostic value of hypoxia-related risk signatures and their effects on the tumor microenvironment (TME) in hepatocellular carcinoma (HCC) remains hazy. This study aimed to conduct novel hypoxia-related prognostic signatures and improve HCC prognosis and treatment. METHODS Differentially expressed hypoxia-related genes (HGs) were identified with the gene set enrichment analysis (GSEA). Univariate Cox regression was utilized to generate the tumor hypoxia-related prognostic signature, which consists of 3 HGs, based on the least absolute shrinkage and selection operator (LASSO) algorithm. Then the risk score for each patient was performed. The prognostic signature's independent prognostic usefulness was confirmed, and systematic analyses were done on the relationships between the prognostic signature and immune cell infiltration, somatic cell mutation, medication sensitivity, and putative immunological checkpoints. RESULTS A prognostic risk model of four HGs (FDPS, SRM, and NDRG1) was constructed and validated in the training, testing, and validation datasets. To determine the model's performance in patients with HCC, Kaplan-Meier curves and time-dependent receiver operating characteristic (ROC) curves analysis was implemented. According to immune infiltration analysis, the high-risk group had a significant infiltration of CD4+ T cells, M0 macrophages, and dendritic cells (DCs) than those of the low-risk subtype. In addition, the presence of TP53 mutations in the high-risk group was higher, in which LY317615, PF-562271, Pyrimethamine, and Sunitinib were more sensitive. The CD86, LAIR1, and LGALS9 expression were upregulated in the high-risk subtype. CONCLUSIONS The hypoxia-related risk signature is a reliable predictive model for better clinical management of HCC patients and offers clinicians a holistic viewpoint when determining the diagnosis and course of HCC treatment.
Collapse
Affiliation(s)
- Yunxun Liu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
- Institute of Urologic Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Bingbing Shen
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Ting Huang
- Department of Anaesthesiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Jianguo Wang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| | - Jianxin Jiang
- Department of Hepatobiliary Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, PR China
| |
Collapse
|
2
|
Yavuz M, Sabour Takanlou L, Biray Avcı Ç, Demircan T. A Selective Androgen Receptor Modulator, S4, Displays Robust Anti-cancer Activity on Hepatocellular Cancer Cells by Negatively Regulating PI3K/AKT/mTOR Signaling Pathway. Gene 2023; 869:147390. [PMID: 36990257 DOI: 10.1016/j.gene.2023.147390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023]
Abstract
Hepatocellular carcinoma (HCC) is a major global health problem that often correlates with poor prognosis. Due to the insufficient therapy options with limited benefits, it is crucial to identify new therapeutic approaches to overcome HCC. One of the vital signaling pathways in organ homeostasis and male sexual development is Androgen Receptor (AR) signaling. Its activity affects several genes that contribute to cancer characteristics and have essential roles in cell cycle progression, proliferation, angiogenesis, and metastasis. AR signaling has been shown to be misregulated in many cancers, including HCC, suggesting that it might contribute to hepatocarcinogenesis. Targeting AR signaling using anti-androgens, AR inhibitors, or AR-degrading molecules is a powerful and promising strategy to defeat HCC. In this study, AR signaling was targeted by a novel Selective Androgen Receptor Modulator (SARM), S4, in HCC cells to evaluate its potential anti-cancer effect. To date, S4 activity in cancer has not been demonstrated, and our data unrevealed that S4 significantly impaired HCC growth, migration, proliferation, and induced apoptosis through inhibiting PI3K/AKT/mTOR signaling. Since PI3K/AKT/mTOR signaling is frequently activated in HCC and contributes to its aggressiveness and poor prognosis, its negative regulation by the downregulation of critical components via S4 was a prominent finding. Further studies are necessary to investigate the S4 action mechanism and anti-tumorigenic capacity in in-vivo.
Collapse
|
3
|
Kawano T, Inokuchi J, Eto M, Murata M, Kang JH. Protein Kinase C (PKC) Isozymes as Diagnostic and Prognostic Biomarkers and Therapeutic Targets for Cancer. Cancers (Basel) 2022; 14:5425. [PMID: 36358843 PMCID: PMC9658272 DOI: 10.3390/cancers14215425] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 08/05/2023] Open
Abstract
Protein kinase C (PKC) is a large family of calcium- and phospholipid-dependent serine/threonine kinases that consists of at least 11 isozymes. Based on their structural characteristics and mode of activation, the PKC family is classified into three subfamilies: conventional or classic (cPKCs; α, βI, βII, and γ), novel or non-classic (nPKCs; δ, ε, η, and θ), and atypical (aPKCs; ζ, ι, and λ) (PKCλ is the mouse homolog of PKCι) PKC isozymes. PKC isozymes play important roles in proliferation, differentiation, survival, migration, invasion, apoptosis, and anticancer drug resistance in cancer cells. Several studies have shown a positive relationship between PKC isozymes and poor disease-free survival, poor survival following anticancer drug treatment, and increased recurrence. Furthermore, a higher level of PKC activation has been reported in cancer tissues compared to that in normal tissues. These data suggest that PKC isozymes represent potential diagnostic and prognostic biomarkers and therapeutic targets for cancer. This review summarizes the current knowledge and discusses the potential of PKC isozymes as biomarkers in the diagnosis, prognosis, and treatment of cancers.
Collapse
Affiliation(s)
- Takahito Kawano
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Junichi Inokuchi
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masatoshi Eto
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Masaharu Murata
- Center for Advanced Medical Innovation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Jeong-Hun Kang
- Division of Biopharmaceutics and Pharmacokinetics, National Cerebral and Cardiovascular Center Research Institute, 6-1 Shinmachi, Kishibe, Suita, Osaka 564-8565, Japan
| |
Collapse
|
4
|
Amanso AM, Turner TC, Kamalakar A, Ballestas SA, Hymel LA, Randall J, Johnston R, Arthur RA, Willett NJ, Botchwey EA, Goudy SL. Local delivery of FTY720 induces neutrophil activation through chemokine signaling in an oronasal fistula model. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2021; 7:160-174. [PMID: 34722855 PMCID: PMC8549964 DOI: 10.1007/s40883-021-00208-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 03/07/2021] [Accepted: 03/15/2021] [Indexed: 11/07/2022]
Abstract
PURPOSE Cleft palate repair surgeries lack a regenerative reconstructive option and, in many cases, develop complications including oronasal fistula (ONF). Our group has developed a novel murine phenocopy of ONF to study the oral cavity wound healing program. Using this model, our team previously identified that delivery of FTY720 on a nanofiber scaffold had a unique immunomodulatory effect directing macrophages and monocytes into a pro-regenerative state during ONF healing. Here, the objective of this study was to determine the effects of local biomaterial-based FTY720 delivery in the ONF model on the early bulk gene expression and neutrophil phenotypic response within the regenerating tissue. METHODS Using a mouse model of ONF formation, a palate defect was created and was treated with FTY720 nanofiber scaffolds or (blank) vehicle control nanofibers. At 1 and 3 days post-implantation, ONF oral mucosal tissue from the defect region was collected for RNA sequencing analysis or flow cytometry. For the RNA-seq expression profiling, intracellular pathways were assessed using the KEGG Pathway database and Gene Ontology (GO) Terms enrichment interactive graph. To assess the effects of FTY720 on different neutrophil subpopulations, flow cytometry data was analyzed using pseudotime analysis based on Spanning-tree Progression Analysis of Density-normalized Events (SPADE). RESULTS RNA sequencing analysis of palate mucosa injured tissue identified 669 genes that were differentially expressed (DE) during the first 3 days of ONF wound healing after local delivery of FTY720, including multiple genes in the sphingolipid signaling pathway. Evaluation of the DE genes at the KEGG Pathway database also identified the inflammatory immune response pathways (chemokine signaling, cytokine-cytokine receptor interaction, and leukocyte transendothelial migration), and the Gene Ontology enrichment analysis identified neutrophil chemotaxis and migration terms. SPADE dendrograms of CD11b+Ly6G+ neutrophils at both day 1 and day 3 post-injury showed significantly distinct subpopulations of neutrophils in oral mucosal defect tissue from the FTY720 scaffold treatment group compared to the vehicle control group (blank). Increased expression of CD88 and Vav1, among other genes, were found and staining of the ONF area demonstrated increased VAV1 staining in FTY720-treated healing oral mucosa. CONCLUSION Treatment of oral mucosal defects using FTY720 scaffolds is a promising new immunotherapy to improve healing outcomes and reducing ONF formation during cleft palate surgical repair. Local delivery of FTY720 nanofiber scaffolds during ONF healing significantly shifted early gene transcription associated with immune cell recruitment and modulation of the immune microenvironment results in distinct neutrophil subpopulations in the oral mucosal defect tissue that provides a critical shift toward pro-regenerative immune signaling. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40883-021-00208-z.
Collapse
Affiliation(s)
- AM Amanso
- Department of Otolaryngology, Emory University School of Medicine, 2015 Uppergate Drive, Atlanta, GA 30322 USA
| | - TC Turner
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA USA
| | - A Kamalakar
- Department of Otolaryngology, Emory University School of Medicine, 2015 Uppergate Drive, Atlanta, GA 30322 USA
| | - SA Ballestas
- Department of Otolaryngology, Emory University School of Medicine, 2015 Uppergate Drive, Atlanta, GA 30322 USA
| | - LA Hymel
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA USA
| | - J Randall
- The Emory Integrated Computational Core, Emory University School of Medicine, Atlanta, GA USA
| | - R Johnston
- The Emory Integrated Computational Core, Emory University School of Medicine, Atlanta, GA USA
| | - RA Arthur
- The Emory Integrated Computational Core, Emory University School of Medicine, Atlanta, GA USA
| | - NJ Willett
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA USA
- Department of Orthopedics, Emory University School of Medicine, Atlanta, GA USA
| | - EA Botchwey
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA USA
- Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA USA
| | - SL Goudy
- Department of Otolaryngology, Emory University School of Medicine, 2015 Uppergate Drive, Atlanta, GA 30322 USA
| |
Collapse
|
5
|
Vilgrain V, Van Beers BE, Pastor CM. Insights into the diagnosis of hepatocellular carcinomas with hepatobiliary MRI. J Hepatol 2016; 64:708-16. [PMID: 26632635 DOI: 10.1016/j.jhep.2015.11.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/12/2015] [Accepted: 11/16/2015] [Indexed: 12/12/2022]
Abstract
The incidence of hepatocellular carcinomas (HCCs) has increased worldwide in line with an improved screening by high-resolution imaging of cirrhotic livers. Besides abdominal ultrasonography and computerised tomography, magnetic resonance imaging (MRI) is an important tool to detect HCCs. With commercialisation of MR hepatobiliary contrast agents that cross membrane transporters in hepatocytes or tumour cells, MRI adds new information to detect and characterise HCCs. When tumour cells lose organic anion transporting polypeptides (OATP1B1/B3) in cell membranes facing sinusoidal blood, tumours appear hypointense (decreased contrast agent concentrations) in comparison to surrounding normal or cirrhotic liver that retains OATP1B1/B3 expression. However, expression, regulation, and prognostic significance of transporter evolution along carcinogenesis are not completely known. Moreover, understanding signal intensities in focal lesions also relies on transport functions of cellular efflux transporters. This manuscript reviews all the publications that associate liver imaging with hepatobiliary contrast agents and expression of transporters. The regulation of transporters along carcinogenesis to anticipate the prognosis of focal lesions is also included.
Collapse
Affiliation(s)
- Valérie Vilgrain
- Department of Radiology, University Hospitals Paris Nord Val-de-Seine, Beaujon, 100 Boulevard du Général Leclerc, 92118 Clichy, France; University Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Bernard E Van Beers
- Department of Radiology, University Hospitals Paris Nord Val-de-Seine, Beaujon, 100 Boulevard du Général Leclerc, 92118 Clichy, France; University Paris Diderot, Sorbonne Paris Cité, Paris, France; Inserm U1149, Centre de Recherche sur l'Inflammation, Paris, France
| | - Catherine M Pastor
- University Paris Diderot, Sorbonne Paris Cité, Paris, France; Département d'imagerie et des sciences de l'information médicale, Hôpitaux Universitaires de Genève, Geneva, Switzerland.
| |
Collapse
|
6
|
Yen HR, Liu CJ, Yeh CC. Naringenin suppresses TPA-induced tumor invasion by suppressing multiple signal transduction pathways in human hepatocellular carcinoma cells. Chem Biol Interact 2015; 235:1-9. [PMID: 25866363 DOI: 10.1016/j.cbi.2015.04.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/21/2015] [Accepted: 04/04/2015] [Indexed: 12/11/2022]
Abstract
Naringenin, a common dietary flavonoid abundantly present in fruits and vegetables, is believed to possess strong anti-proliferative properties and the ability to induce apoptosis in hepatoma cell lines. However, there are no reports describing its effects on the invasion and metastasis of hepatoma cell lines, and the detailed molecular mechanisms of its effects are still unclear. In this study, we investigated the mechanisms underlying naringenin-mediated inhibition of 12-O-Tetradecanoylphorbol-13-acetate (TPA)-induced cell invasion and inhibition of secreted and cytosolic MMP-9 production in human hepatoma cells (HepG2, Huh-7, and HA22T) and murine embryonic liver cells (BNL CL2). Naringenin suppressed MMP-9 transcription by inhibiting activator protein (AP)-1 and nuclear factor-κB (NF-κB) activity. It suppressed TPA-induced AP-1 activity through inhibiting the phosphorylation of the extracellular signal-related kinase (ERK) and c-Jun N-terminal kinase (JNK) signaling pathways, and it suppressed TPA-induced inhibition of NF-κB nuclear translocation through IκB. Additionally, it suppressed TPA-induced activation of ERK/phosphatidylinositol 3-kinase/Akt upstream of NF-κB and AP-1. These data suggest that naringenin suppresses the invasiveness and metastatic potential of hepatocellular carcinoma (HCC) by inhibiting multiple signal transduction pathways.
Collapse
Affiliation(s)
- Hung-Rong Yen
- Research Center for Traditional Chinese Medicine, Department of Medical Research, Taiwan; Department of Chinese Medicine, China Medical University Hospital, Taichung, Taiwan; Research Center for Chinese Medicine & Acupuncture, Taiwan; School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ching-Ju Liu
- Department of Chinese Medicine, Buddhist Dalin Tzu Chi General Hospital, Chia-Yi, Taiwan
| | - Chia-Chou Yeh
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan; Department of Chinese Medicine, Buddhist Dalin Tzu Chi General Hospital, Chia-Yi, Taiwan.
| |
Collapse
|
7
|
Abstract
Protein kinase C (PKC) is a family of phospholipid-dependent serine/threonine kinases, which can be further classified into three PKC isozymes subfamilies: conventional or classic, novel or nonclassic, and atypical. PKC isozymes are known to be involved in cell proliferation, survival, invasion, migration, apoptosis, angiogenesis, and drug resistance. Because of their key roles in cell signaling, PKC isozymes also have the potential to be promising therapeutic targets for several diseases, such as cardiovascular diseases, immune and inflammatory diseases, neurological diseases, metabolic disorders, and multiple types of cancer. This review primarily focuses on the activation, mechanism, and function of PKC isozymes during cancer development and progression.
Collapse
|
8
|
Pez F, Lopez A, Kim M, Wands JR, Caron de Fromentel C, Merle P. Wnt signaling and hepatocarcinogenesis: molecular targets for the development of innovative anticancer drugs. J Hepatol 2013; 59:1107-17. [PMID: 23835194 DOI: 10.1016/j.jhep.2013.07.001] [Citation(s) in RCA: 208] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 06/26/2013] [Accepted: 07/02/2013] [Indexed: 12/25/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer death worldwide. HCC can be cured by radical therapies if early diagnosis is done while the tumor has remained of small size. Unfortunately, diagnosis is commonly late when the tumor has grown and spread. Thus, palliative approaches are usually applied such as transarterial intrahepatic chemoembolization and sorafenib, an anti-angiogenic agent and MAP kinase inhibitor. This latter is the only targeted therapy that has shown significant, although moderate, efficiency in some individuals with advanced HCC. This highlights the need to develop other targeted therapies, and to this goal, to identify more and more pathways as potential targets. The Wnt pathway is a key component of a physiological process involved in embryonic development and tissue homeostasis. Activation of this pathway occurs when a Wnt ligand binds to a Frizzled (FZD) receptor at the cell membrane. Two different Wnt signaling cascades have been identified, called non-canonical and canonical pathways, the latter involving the β-catenin protein. Deregulation of the Wnt pathway is an early event in hepatocarcinogenesis and has been associated with an aggressive HCC phenotype, since it is implicated both in cell survival, proliferation, migration and invasion. Thus, component proteins identified in this pathway are potential candidates of pharmacological intervention. This review focuses on the characteristics and functions of the molecular targets of the Wnt signaling cascade and how they may be manipulated to achieve anti-tumor effects.
Collapse
Affiliation(s)
- Floriane Pez
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69008 Lyon, France; Université Lyon-1, F-69622 Villeurbanne, France; Centre Léon Bérard, F-69008 Lyon, France
| | | | | | | | | | | |
Collapse
|
9
|
Körner A, Mudduluru G, Manegold C, Allgayer H. Enzastaurin inhibits invasion and metastasis in lung cancer by diverse molecules. Br J Cancer 2010; 103:802-11. [PMID: 20736951 PMCID: PMC2966618 DOI: 10.1038/sj.bjc.6605818] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/22/2010] [Accepted: 06/28/2010] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Enzastaurin (Enz) is a serine/threonine kinase inhibitor blocking protein kinase C (PKC)beta/AKT pathway. However, an ability of this compound to inhibit cancer invasion and metastasis is not yet clearly elucidated. METHODS The ability of Enz to inhibit invasion and metastasis, and to target molecules was investigated in non-small cell lung cancer (NSCLC) by RT-PCR validated microarray, Matrigel, and in vivo chorionallantoic membrane (CAM) assays. RESULTS Enzastaurin significantly reduced migration, invasion, and in vivo metastasis to lungs and liver (CAM assay) of diverse NSCLC cell lines. Genes promoting cancer progression (u-PAR, VEGFC, and HIF1alpha) and tumour suppression (VHL, RASSF1, and FHIT) of NSCLC were significantly (P<0.05) down- or upregulated after Enz treatment in H460, A549, and H1299 cells, respectively. Luciferase/chromatin immunoprecipitation analysis showed that Enz transcriptionally controls urokinase-type plasminogen activator receptor (u-PAR) expression by promoter inhibition through Sp1, Sp3, and c-Jun(AP-1). Moreover, siRNA knockdown of u-PAR re-sensitised Enz-resistant cells and induced apoptosis, suggesting u-PAR as a marker of Enz resistance. CONCLUSION This study shows that Enz inhibits migration, invasion, and in vivo metastasis by targeting u-PAR, besides further targeting progression-related and tumour-suppressor genes in NSCLC. Together with u-PAR being a novel putative marker of Enz response, these data encourage molecularly tailored clinical studies on Enz in NSCLC therapy.
Collapse
Affiliation(s)
- A Körner
- Department of Experimental Surgery Mannheim/Molecular Oncology of Solid Tumors (German Cancer Research Center-DKFZ-Heidelberg), Mannheim Medical Faculty, Ruprecht-Karls-University Heidelberg, Mannheim 68167, Germany
| | - G Mudduluru
- Department of Experimental Surgery Mannheim/Molecular Oncology of Solid Tumors (German Cancer Research Center-DKFZ-Heidelberg), Mannheim Medical Faculty, Ruprecht-Karls-University Heidelberg, Mannheim 68167, Germany
| | - C Manegold
- Interdisciplinary Thoracic Oncology, Department of Surgery, Medical Faculty Mannheim, University Heidelberg, Mannheim 68167, Germany
| | - H Allgayer
- Department of Experimental Surgery Mannheim/Molecular Oncology of Solid Tumors (German Cancer Research Center-DKFZ-Heidelberg), Mannheim Medical Faculty, Ruprecht-Karls-University Heidelberg, Mannheim 68167, Germany
| |
Collapse
|
10
|
Contribution of reactive oxygen species to migration/invasion of human glioblastoma cells U87 via ERK-dependent COX-2/PGE2 activation. Neurobiol Dis 2010; 37:118-29. [DOI: 10.1016/j.nbd.2009.09.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 08/26/2009] [Accepted: 09/27/2009] [Indexed: 11/23/2022] Open
|
11
|
Current World Literature. Curr Opin Allergy Clin Immunol 2009; 9:574-8. [DOI: 10.1097/aci.0b013e328333c13c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Pan MH, Chiou YS, Chen WJ, Wang JM, Badmaev V, Ho CT. Pterostilbene inhibited tumor invasion via suppressing multiple signal transduction pathways in human hepatocellular carcinoma cells. Carcinogenesis 2009; 30:1234-42. [PMID: 19447859 DOI: 10.1093/carcin/bgp121] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Pterostilbene, a natural dimethylated analog of resveratrol, is known to have diverse pharmacologic activities including anticancer, anti-inflammation, antioxidant, apoptosis, anti-proliferation and analgesic potential. However, the effects of pterostilbene in preventing invasion of cancer cells have not been studied. Here, we report our finding that pterostilbene significantly suppressed 12-O-tetradecanoylphorbol 13-acetate (TPA)-induced invasion, migration and metastasis of human hepatoma cells (HepG(2) cells). Increase in the enzyme activity, protein and messenger RNA levels of matrix metalloproteinase (MMP)-9 were observed in TPA-treated HepG(2) cells, and these were blocked by pterostilbene. In addition, pterostilbene can inhibit TPA-induced expression of vascular endothelial growth factor, epidermal growth factor and epidermal growth factor receptor. Transient transfection experiments also showed that pterostilbene strongly inhibited TPA-stimulated nuclear factor kappa B (NF-kappaB) and activator protein-1 (AP-1)-dependent transcriptional activity in HepG(2) cells. Moreover, pterostilbene can suppress TPA-induced activation of extracellular signal-regulated kinase 1/2, p38 mitogen-activated protein kinase, c-Jun N-terminal kinases 1/2 and phosphatidylinositol 3-kinase/Akt and protein kinase C that are upstream of NF-kappaB and AP-1. Significant therapeutic effects were further demonstrated in vivo by treating nude mice with pterostilbene (50 and 250 mg/kg intraperitoneally) after inoculation with HepG(2) cells into the tail vein. Presented data reveal that pterostilbene is a novel, effective, anti-metastatic agent that functions by downregulating MMP-9 gene expression.
Collapse
Affiliation(s)
- Min-Hsiung Pan
- Department of Seafood Science, National Kaohsiung Marine University, No. 142 Hai-Chuan Road, Nan-Tzu, Kaohsiung 811, Taiwan.
| | | | | | | | | | | |
Collapse
|