1
|
Wu P, Li D, Zhang C, Dai B, Tang X, Liu J, Wu Y, Wang X, Shen A, Zhao J, Zi X, Li R, Sun N, He J. A unique circulating microRNA pairs signature serves as a superior tool for early diagnosis of pan-cancer. Cancer Lett 2024; 588:216655. [PMID: 38460724 DOI: 10.1016/j.canlet.2024.216655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/18/2023] [Accepted: 01/16/2024] [Indexed: 03/11/2024]
Abstract
Cancer remains a major burden globally and the critical role of early diagnosis is self-evident. Although various miRNA-based signatures have been developed in past decades, clinical utilization is limited due to a lack of precise cutoff value. Here, we innovatively developed a signature based on pairwise expression of miRNAs (miRPs) for pan-cancer diagnosis using machine learning approach. We analyzed miRNA spectrum of 15832 patients, who were divided into training, validation, test, and external test sets, with 13 different cancers from 10 cohorts. Five different machine-learning (ML) algorithms (XGBoost, SVM, RandomForest, LASSO, and Logistic) were adopted for signature construction. The best ML algorithm and the optimal number of miRPs included were identified using area under the curve (AUC) and youden index in validation set. The AUC of the best model was compared to previously published 25 signatures. Overall, Random Forest approach including 31 miRPs (31-miRP) was developed, proving highly efficient in cancer diagnosis across different datasets and cancer types (AUC range: 0.980-1.000). Regarding diagnosis of cancers at early stage, 31-miRP also exhibited high capacities, with AUC ranging from 0.961 to 0.998. Moreover, 31-miRP exhibited advantages in differentiating cancers from normal tissues (AUC range: 0.976-0.998) as well as differentiating cancers from corresponding benign lesions. Encouragingly, comparing to previously published 25 different signatures, 31-miRP also demonstrated clear advantages. In conclusion, 31-miRP acts as a powerful model for cancer diagnosis, characterized by high specificity and sensitivity as well as a clear cutoff value, thereby holding potential as a reliable tool for cancer diagnosis at early stage.
Collapse
Affiliation(s)
- Peng Wu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dongyu Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Bing Dai
- School of Software, Tsinghua University, Beijing, 100084, China
| | - Xiaoya Tang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jingjing Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yue Wu
- Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xingwu Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ao Shen
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jiapeng Zhao
- 4+4 Medical Doctor Program, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Xiaohui Zi
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ruirui Li
- Department of Pathology, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
2
|
Zhang Y, Zhang X, Zhang Y, Xu H, Wei Z, Wang X, Li Y, Guo J, Wu F, Fang X, Pang L, Deng B, Yu D. c-Myc inhibits LAPTM5 expression in B-cell lymphomas. Ann Hematol 2023; 102:3499-3513. [PMID: 37713124 DOI: 10.1007/s00277-023-05434-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
Myc is a pivotal protooncogenic transcription factor that contributes to the development of almost all Burkitt's lymphomas and about one-third of diffuse large B-cell lymphomas. How B-cells sustain their uncontrolled proliferation due to high Myc is not yet well defined. Here, we found that Myc trans-represses the expression of murine LAPTM5, a gene coding a lysosome-associated protein, by binding to two E-boxes in the LAPTM5 promoter. While the product of intact mRNA (CDS+3'UTR) of LAPTM5 failed to suppress the growth of B-lymphomas, either the protein coded by coding sequence (CDS) itself or the non-coding 3'-untranslated region (3'UTR) mRNA was able to inhibit the growth of B-lymphomas. Moreover, Myc trans-activated miR-17-3p, which promoted tumor growth. Strikingly, LAPTM5 3'UTR contains 11 miR-17-3p-binding sites through which the LAPTM5 protein synthesis was inhibited. The functional interplay between low LAPTM5 mRNA and high miR-17-3p due to high Myc in B-lymphomas leads to further dampening of tumor-suppressive LAPTM5 protein, which promotes tumor progression. Our results indicate that Myc inhibits LAPTM5 expression in B-lymphoma cells by transcriptional and post-transcriptional modifications.
Collapse
Affiliation(s)
- Yanqing Zhang
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University Medical College, 136 Jiangyang Road, Yangzhou, Jiangsu Province, 225009, China
| | - Xin Zhang
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University Medical College, 136 Jiangyang Road, Yangzhou, Jiangsu Province, 225009, China
- Department of Pathology, Sir Run Run Shaw Hospital, Institute of Clinical Science, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Zhang
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University Medical College, 136 Jiangyang Road, Yangzhou, Jiangsu Province, 225009, China
| | - Han Xu
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University Medical College, 136 Jiangyang Road, Yangzhou, Jiangsu Province, 225009, China
| | - Zichen Wei
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University Medical College, 136 Jiangyang Road, Yangzhou, Jiangsu Province, 225009, China
| | - Xin Wang
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University Medical College, 136 Jiangyang Road, Yangzhou, Jiangsu Province, 225009, China
| | - Yan Li
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University Medical College, 136 Jiangyang Road, Yangzhou, Jiangsu Province, 225009, China
| | - Junrong Guo
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University Medical College, 136 Jiangyang Road, Yangzhou, Jiangsu Province, 225009, China
| | - Fan Wu
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University Medical College, 136 Jiangyang Road, Yangzhou, Jiangsu Province, 225009, China
| | - Xiao Fang
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University Medical College, 136 Jiangyang Road, Yangzhou, Jiangsu Province, 225009, China
| | - Lei Pang
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Bin Deng
- Department of Gastroenterology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, China
| | - Duonan Yu
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou, China.
- Jiangsu Key Laboratory of Experimental & Translational Non-coding RNA Research, Yangzhou University Medical College, 136 Jiangyang Road, Yangzhou, Jiangsu Province, 225009, China.
| |
Collapse
|
3
|
Pimenta R, Camargo JA, Gonçalves GL, Ghazarian V, Candido P, Guimarães VR, Romão P, Chiovatto C, da Silva KS, Dos Santos GA, Silva IA, Nahas WC, Leite KR, Pessoa AFM, Viana NI, Reis ST. Overexpression of miR-17-5p may negatively impact p300/CBP factor-associated inflammation in a hypercholesterolemic advanced prostate cancer model. Mol Biol Rep 2023; 50:7333-7345. [PMID: 37439896 DOI: 10.1007/s11033-023-08638-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/26/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Previously, we demonstrated that cholesterol triggers the increase in p300/CBP-associated factor (PCAF), targeted by miR-17-5p. The p300, IL-6, PCAF, and miR-17-5p genes have important and contradictory roles in inflammation and prostate cancer (PCa). This study aimed to demonstrate the potential anti-inflammatory effect of miR-17-5 in an advanced PCa model with diet-induced hypercholesterolemia. METHODS AND RESULTS In vitro, using the PC-3 cell line, we show that induction of miR-17-5p reduces p300 and PCAF expression, increases apoptosis, and decreases cell migration. Furthermore, we demonstrate that supplementing this same cell with cholesterol (2 µg/mL) triggers increased p300, IL-6, and PCAF. In vivo, after establishing the hypercholesterolemic (HCOL) model, xenografts were treated with miR-17-5p. Increased expression of this miR after intratumoral injections attenuated tumor growth in the control and HCOL animals and reduced cell proliferation. CONCLUSION Our results demonstrate that inducing miR-17-5p expression suppresses tumor growth and inflammatory mediator expression. Further studies should be conducted to fully explore the role of miR-17-5p and the involvement of inflammatory mediators p300, PCAF, and IL-6.
Collapse
Affiliation(s)
- Ruan Pimenta
- Laboratorio de Investigação Médica 55 (LIM55), Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Av. Dr. Arnaldo 455, 2° floor, room 2145, Sao Paulo, Sao Paulo, SP, BR, SP, 01246- 903, Brazil.
- D'Or Institute for Research and Education (IDOR), Sao Paulo, Brazil.
| | - Juliana A Camargo
- Laboratorio de Investigação Médica 55 (LIM55), Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Av. Dr. Arnaldo 455, 2° floor, room 2145, Sao Paulo, Sao Paulo, SP, BR, SP, 01246- 903, Brazil
| | - Guilherme L Gonçalves
- Laboratory of Renal Physiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, 05508-000, Brazil
| | - Vitória Ghazarian
- Laboratorio de Investigação Médica 55 (LIM55), Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Av. Dr. Arnaldo 455, 2° floor, room 2145, Sao Paulo, Sao Paulo, SP, BR, SP, 01246- 903, Brazil
| | - Patrícia Candido
- Laboratorio de Investigação Médica 55 (LIM55), Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Av. Dr. Arnaldo 455, 2° floor, room 2145, Sao Paulo, Sao Paulo, SP, BR, SP, 01246- 903, Brazil
| | - Vanessa R Guimarães
- Laboratorio de Investigação Médica 55 (LIM55), Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Av. Dr. Arnaldo 455, 2° floor, room 2145, Sao Paulo, Sao Paulo, SP, BR, SP, 01246- 903, Brazil
| | - Poliana Romão
- Laboratorio de Investigação Médica 55 (LIM55), Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Av. Dr. Arnaldo 455, 2° floor, room 2145, Sao Paulo, Sao Paulo, SP, BR, SP, 01246- 903, Brazil
| | - Caroline Chiovatto
- Laboratorio de Investigação Médica 55 (LIM55), Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Av. Dr. Arnaldo 455, 2° floor, room 2145, Sao Paulo, Sao Paulo, SP, BR, SP, 01246- 903, Brazil
- Centro Universitário São Camilo, São Paulo, 04263-200, Brazil
| | - Karina Serafim da Silva
- Laboratorio de Investigação Médica 55 (LIM55), Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Av. Dr. Arnaldo 455, 2° floor, room 2145, Sao Paulo, Sao Paulo, SP, BR, SP, 01246- 903, Brazil
- Centro Universitário São Camilo, São Paulo, 04263-200, Brazil
| | - Gabriel A Dos Santos
- Laboratorio de Investigação Médica 55 (LIM55), Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Av. Dr. Arnaldo 455, 2° floor, room 2145, Sao Paulo, Sao Paulo, SP, BR, SP, 01246- 903, Brazil
- D'Or Institute for Research and Education (IDOR), Sao Paulo, Brazil
| | - Iran A Silva
- Laboratorio de Investigação Médica 55 (LIM55), Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Av. Dr. Arnaldo 455, 2° floor, room 2145, Sao Paulo, Sao Paulo, SP, BR, SP, 01246- 903, Brazil
| | - William C Nahas
- Uro-Oncology Group, Urology Department, University of Sao Paulo Medical School and Institute of Cancer Estate of Sao Paulo (ICESP), Sao Paulo, SP, 01246-000, Brazil
| | - Kátia R Leite
- Laboratorio de Investigação Médica 55 (LIM55), Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Av. Dr. Arnaldo 455, 2° floor, room 2145, Sao Paulo, Sao Paulo, SP, BR, SP, 01246- 903, Brazil
| | - Ana Flávia Marçal Pessoa
- Natural Products and Derivatives Laboratory, Department of Surgery, University of São Paulo Medical School, São Paulo, SP, 01246-903, Brazil
| | - Nayara I Viana
- Laboratorio de Investigação Médica 55 (LIM55), Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Av. Dr. Arnaldo 455, 2° floor, room 2145, Sao Paulo, Sao Paulo, SP, BR, SP, 01246- 903, Brazil
- Universidade do Estado de Minas Gerais - UEMG, Avenida Juca Stockler, Passos, MG, 1130, Brasil
| | - Sabrina T Reis
- Laboratorio de Investigação Médica 55 (LIM55), Faculdade de Medicina, Hospital das Clinicas HCFMUSP, Universidade de Sao Paulo, Av. Dr. Arnaldo 455, 2° floor, room 2145, Sao Paulo, Sao Paulo, SP, BR, SP, 01246- 903, Brazil
| |
Collapse
|
4
|
Yao Y, Shi L, Zhu X. Four differentially expressed exosomal miRNAs as prognostic biomarkers and therapy targets in endometrial cancer: Bioinformatic analysis. Medicine (Baltimore) 2023; 102:e34998. [PMID: 37653757 PMCID: PMC10470766 DOI: 10.1097/md.0000000000034998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/02/2023] Open
Abstract
Endometrial cancer (EC) is one of the most common gynecological malignancies worldwide. Accumulated evidence has demonstrated exosomes of cancer cells carry microRNAs (miRNAs) to nonmalignant cells to induce metastasis. Our study aimed to find possible biomarkers of EC. Data for miRNA expression related with exosome from EC patients were downloaded from The Cancer Genome Atlas database, and the miRNA expression profiles associated with exosomes of EC were downloaded from the National Center for Biotechnology Information. We used different algorithms to analyze the differential miRNA expression, infer the relative proportion of immune infiltrating cells, predict chemotherapy sensitivity, and comprehensively score each gene set to evaluate the potential biological function changes of different samples. The gene ontology analysis and Kyoto encyclopedia of genome genomics pathway analysis were performed for specific genes. A total of 13 differential miRNAs were identified, of which 4 were up-regulated. The 4 miRNAs, that is hsa-miR-17-3p, hsa-miR-99b-3p, hsa-miR-193a-5p, and hsa-miR-320d, were the hub exosomal miRNAs that were all closely related to the clinic phenotypes and prognosis of patients. This study preliminarily indicates that the 4 hub exosomal miRNAs (hsa-miR-17-3p, hsa-miR-99b-3p, hsa-miR-193a-5p, and hsa-miR-320d) could be used as prognostic biomarkers or therapy targets in EC. Further studies are required to make sure of their real feasibility and values in the EC clinic and the relative research.
Collapse
Affiliation(s)
- Yingsha Yao
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Liujing Shi
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| | - Xiaoming Zhu
- Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
- Key Laboratory of Women’s Reproductive Health of Zhejiang Province, Women’s Hospital, School of Medicine, Zhejiang University, Hangzhou, P.R. China
| |
Collapse
|
5
|
Brown JS. Comparison of Oncogenes, Tumor Suppressors, and MicroRNAs Between Schizophrenia and Glioma: The Balance of Power. Neurosci Biobehav Rev 2023; 151:105206. [PMID: 37178944 DOI: 10.1016/j.neubiorev.2023.105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The risk of cancer in schizophrenia has been controversial. Confounders of the issue are cigarette smoking in schizophrenia, and antiproliferative effects of antipsychotic medications. The author has previously suggested comparison of a specific cancer like glioma to schizophrenia might help determine a more accurate relationship between cancer and schizophrenia. To accomplish this goal, the author performed three comparisons of data; the first a comparison of conventional tumor suppressors and oncogenes between schizophrenia and cancer including glioma. This comparison determined schizophrenia has both tumor-suppressive and tumor-promoting characteristics. A second, larger comparison between brain-expressed microRNAs in schizophrenia with their expression in glioma was then performed. This identified a core carcinogenic group of miRNAs in schizophrenia offset by a larger group of tumor-suppressive miRNAs. This proposed "balance of power" between oncogenes and tumor suppressors could cause neuroinflammation. This was assessed by a third comparison between schizophrenia, glioma and inflammation in asbestos-related lung cancer and mesothelioma (ALRCM). This revealed that schizophrenia shares more oncogenic similarity to ALRCM than glioma.
Collapse
|
6
|
Geng Q, Zhao H, Zhou Z, Chen X, Zhao H, Chen N, Li Y, Guo C, Yang A, Beer DG, Chen G. CircSMARCA5 silencing impairs cell proliferation and invasion via the miR-17-3p-EGFR signaling in lung adenocarcinoma. Life Sci 2023; 320:121560. [PMID: 36893940 DOI: 10.1016/j.lfs.2023.121560] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/15/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
AIMS Circular RNAs are widely expressed in various cancers and play important roles in tumorigenesis and tumor progression. The function and mechanism of circSMARCA5 in lung adenocarcinoma however remains unclear. MAIN METHODS QRT-PCR analysis was applied for determining circSMARCA5 expression in lung adenocarcinoma patient tumor tissues and cells. Molecular biological assays were used for investigating the role of circSMARCA5 in lung adenocarcinoma progression. Luciferase reporter and bioinformatics assays were used for identifying the underlying mechanism. KEY FINDINGS In this study, we observed that circSMARCA5 expression was decreased in lung adenocarcinoma tissues but silencing of circSMARCA5 in lung adenocarcinoma cells inhibited cell proliferation, colony formation, migration and invasion. Mechanistically, we found EGFR, c-MYC and p21 were down-regulated upon circSMARCA5 knockdown. MiR-17-3p efficiently down- regulated EGFR expression via directly binding to EGFR mRNA. SIGNIFICANCE These studies suggest that circSMARCA5 functions as an oncogene via targeting miR-17-3p-EGFR axis and may represent a promising therapeutic target for lung adenocarcinoma.
Collapse
Affiliation(s)
- Qianqian Geng
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China; Department of Surgery, University of Michigan, Ann Arbor, USA
| | - Huijie Zhao
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Zhiqing Zhou
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xiuyuan Chen
- Department of Thoracic Surgery, Peking University People's Hospital, Beijing, China
| | - Honglin Zhao
- Department of Thoracic Surgery, Tianjin Medical University, Tianjin, China
| | - Nanzheng Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yu Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chunfang Guo
- Department of Surgery, University of Michigan, Ann Arbor, USA
| | - Aimin Yang
- Department of Nuclear Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - David G Beer
- Department of Surgery, University of Michigan, Ann Arbor, USA
| | - Guoan Chen
- School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
7
|
Xiong J, Tian Y, Ma G, Ling A, Shan S, Cheng G. Comparative RNA-seq analysis and ceRNA network of genistein-treated GT1-7 neurons. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00279-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Overexpression of miR-17 predicts adverse prognosis and disease recurrence for acute myeloid leukemia. Int J Clin Oncol 2022; 27:1222-1232. [PMID: 35536524 PMCID: PMC9209371 DOI: 10.1007/s10147-022-02161-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/24/2022] [Indexed: 11/24/2022]
Abstract
Background The clinical significance of miR-17 in patients with acute myeloid leukemia (AML) remains unknown. Methods Real-time quantitative reverse transcription-polymerase chain reaction (qPCR) was performed to detect the miR-17 expression in 115 de novo AML patients, 31 patients at complete remission (CR) time, 8 patients at relapse time and 30 normal controls. Results MiR-17 was upregulated in de novo AML compared with normal controls. Patients with high expression of miR-17 had less CEBPA double mutation, less favorable ELN-risk and lower CR rate. The level of miR-17 was significantly decreased at CR phase and was returned to primary level even higher when in relapse phase. In addition, Cox regression analysis revealed that miR-17 expression retained independent prognostic significance for overall survival (OS). Moreover, the gene-expression profile analysis of miR-17 in AML obtained from TCGA database was involved in multiple biological functions and signal pathways. Among the differential expressed genes (DEGs), we identified FGL2, PLAUR, SLC2A3, GPR65, CTSS, TLR7, S1PR3, OGFRL1, LILRB1, IL17RA, SIGLEC10, SLAMF7, PLXDC2, HPSE, TCF7 and MYCL as potential direct targets of miR-17 according to in silico analysis. Conclusions High expression of miR-17 in de novo AML patients pointed to dismal clinical outcome and disease recurrence, which could serve as novel prognostic biomarker for AML patients.
Collapse
|
9
|
Teoh SL, Das S. MicroRNAs in Various Body Fluids and its importance in Forensic Medicine. Mini Rev Med Chem 2022; 22:2332-2343. [PMID: 35240957 DOI: 10.2174/1389557522666220303141558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/17/2021] [Accepted: 01/21/2022] [Indexed: 11/22/2022]
Abstract
MicroRNAs (miRNAs) are a class of noncoding RNAs which regulate gene expression. miRNAs have tissue-specific expression and are also present in various extracellular body fluids, including blood, tears, semen, vaginal fluid and urine. Additionally, expression of miRNAs in body fluids is linked to various pathological diseases, including cancer and neurodegenerative diseases. Examination of body fluids is important in forensic medicine as they serve as a valuable form of evidence. Due to its stability, miRNA offers an advantage for body fluid identification, which can be detected even after several months or from compromised samples. Identification of unique miRNA profiles for different body fluids enable the identification of these body fluid. Furthermore, miRNAs profiling can be used to estimate post-mortem interval. Various biochemical and molecular methods have been used for identification of miRNAs have shown promising results. We discuss different miRNAs as specific biomarkers and their clinical importance regarding different pathological conditions, as well as their medico-legal importance.
Collapse
Affiliation(s)
- Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000, Kuala Lumpur, Malaysia
| | - Srijit Das
- Department of Human & Clinical Anatomy, College of Medicine & Health Sciences, Sultan Qaboos University, Muscat 123, Sultanate of Oman
| |
Collapse
|
10
|
Slabáková E, Kahounová Z, Procházková J, Souček K. Regulation of Neuroendocrine-like Differentiation in Prostate Cancer by Non-Coding RNAs. Noncoding RNA 2021; 7:ncrna7040075. [PMID: 34940756 PMCID: PMC8704250 DOI: 10.3390/ncrna7040075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/21/2022] Open
Abstract
Neuroendocrine prostate cancer (NEPC) represents a variant of prostate cancer that occurs in response to treatment resistance or, to a much lesser extent, de novo. Unravelling the molecular mechanisms behind transdifferentiation of cancer cells to neuroendocrine-like cancer cells is essential for development of new treatment opportunities. This review focuses on summarizing the role of small molecules, predominantly microRNAs, in this phenomenon. A published literature search was performed to identify microRNAs, which are reported and experimentally validated to modulate neuroendocrine markers and/or regulators and to affect the complex neuroendocrine phenotype. Next, available patients’ expression datasets were surveyed to identify deregulated microRNAs, and their effect on NEPC and prostate cancer progression is summarized. Finally, possibilities of miRNA detection and quantification in body fluids of prostate cancer patients and their possible use as liquid biopsy in prostate cancer monitoring are discussed. All the addressed clinical and experimental contexts point to an association of NEPC with upregulation of miR-375 and downregulation of miR-34a and miR-19b-3p. Together, this review provides an overview of different roles of non-coding RNAs in the emergence of neuroendocrine prostate cancer.
Collapse
|
11
|
Zhang C. The Roles of Different Stem Cells in Premature Ovarian Failure. Curr Stem Cell Res Ther 2021; 15:473-481. [PMID: 30868961 DOI: 10.2174/1574888x14666190314123006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/06/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023]
Abstract
Premature ovarian failure (POF) is characterized by amenorrhea, hypergonadotropism and hypoestrogenism before the age of 40, which affects 1% of women in the general population. POF is complex and heterogeneous due to its pathogenetic mechanisms. It is one of the significant causes of female infertility. Although many treatments are available for POF, these therapies are less efficient and trigger many side effects. Therefore, to find effective therapeutics for POF is urgently required. Due to stem cells having self-renewal and regeneration potential, they may be effective for the treatment of ovarian failure and consequently infertility. Recent studies have found that stem cells therapy may be able to restore the ovarian structure and function in animal models of POF and provide an effective treatment method. The present review summarizes the biological roles and the possible signaling mechanisms of the different stem cells in POF ovary. Further study on the precise mechanisms of stem cells on POF may provide novel insights into the female reproduction, which not only enhances the understanding of the physiological roles but also supports effective therapy for recovering ovarian functions against infertility.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Life Science, Capital Normal University, Beijing 100048, China
| |
Collapse
|
12
|
Konoshenko MY, Bryzgunova OE, Laktionov PP. miRNAs and radiotherapy response in prostate cancer. Andrology 2020; 9:529-545. [PMID: 33053272 DOI: 10.1111/andr.12921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Gaining insight into microRNAs (miRNAs) and genes that regulate the therapeutic response of cancer diseases in general and prostate cancer (PCa) in particular is an important issue in current molecular biomedicine and allows the discovery of predictive miRNA targets. OBJECTIVES The aim of this study was to analyze the available data on the influence of radiotherapy (RT) on miRNA expression and on miRNA involved in radiotherapy response in PCa. MATERIALS AND METHODS The data used in this review were extracted from research papers and the DIANA, STRING, and other databases with a special focus on the mechanisms of radiotherapy PCa response and the miRNA involved and associated genes. RESULTS AND DISCUSSION A search for miRNA prognostic and therapeutic effectiveness markers should rely on both the data of recent experimental studies on the influence of RT on miRNA expression and miRNAs involved in regulation of radiosensitivity in PCa and on bioinformatics resources. miRNA panels and genes targeted by them and involved in radioresponse regulation highlighted by meta-analysis and cross-analysis of the data in the present review have. CONCLUSION Selected miRNA and gene panel has good potential as prognostic and radiotherapy effectiveness markers for PCa and, moreover, as radiotherapy effectiveness markers in other types of cancer, as the proposed model is not specific to PCa, which opens up opportunities for the development of a universal diagnostic system (or several intersecting systems) for oncology radiotherapy in general.
Collapse
Affiliation(s)
- Maria Yu Konoshenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia.,Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - Olga E Bryzgunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia.,Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - Pavel P Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia.,Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| |
Collapse
|
13
|
MicroRNAs as Guardians of the Prostate: Those Who Stand before Cancer. What Do We Really Know about the Role of microRNAs in Prostate Biology? Int J Mol Sci 2020; 21:ijms21134796. [PMID: 32645914 PMCID: PMC7370012 DOI: 10.3390/ijms21134796] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer is the second leading cause of cancer-related deaths of men in the Western world. Despite recent advancement in genomics, transcriptomics and proteomics to understand prostate cancer biology and disease progression, castration resistant metastatic prostate cancer remains a major clinical challenge and often becomes incurable. MicroRNAs (miRNAs), about 22-nucleotide-long non-coding RNAs, are a group of regulatory molecules that mainly work through post-transcriptional gene silencing via translational repression. Expression analysis studies have revealed that miRNAs are aberrantly expressed in cancers and have been recognized as regulators of prostate cancer progression. In this critical review, we provide an analysis of reported miRNA functions and conflicting studies as they relate to expression levels of specific miRNAs and prostate cancer progression; oncogenic and/or tumor suppressor roles; androgen receptor signaling; epithelial plasticity; and the current status of diagnostic and therapeutic applications. This review focuses on select miRNAs, highly expressed in normal and cancer tissue, to emphasize the current obstacles faced in utilizing miRNA data for significant impacts on prostate cancer therapeutics.
Collapse
|
14
|
Layne TR, Green RA, Lewis CA, Nogales F, Dawson Cruz TC, Zehner ZE, Seashols-Williams SJ. microRNA Detection in Blood, Urine, Semen, and Saliva Stains After Compromising Treatments. J Forensic Sci 2019; 64:1831-1837. [PMID: 31184791 DOI: 10.1111/1556-4029.14113] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023]
Abstract
Evaluation of microRNA (miRNA) expression as a potential method for forensic body fluid identification has been the subject of investigation over the past several years. Because of their size and encapsulation within proteins and lipids, miRNAs are inherently less susceptible to degradation than other RNAs. In this work, blood, urine, semen, and saliva were exposed to environmental and chemical conditions mimicking sample compromise at the crime scene. For many treated samples, including 100% of blood samples, miRNAs remained detectable, comparable to the untreated control. Sample degradation varied by body fluid and treatment, with blood remarkably resistant, while semen and saliva are more susceptible to environmental insult. Body fluid identification using relative miRNA expression of blood and semen of the exposed samples was 100% and 94%, respectively. Given the overall robust results herein, the case is strengthened for the use of miRNAs as a molecular method for body fluid identification.
Collapse
Affiliation(s)
- Tiffany R Layne
- Department of Forensic Science, Virginia Commonwealth University, Box 843079, Richmond, Virginia, 23284-3079
| | - Raquel A Green
- Department of Forensic Science, Virginia Commonwealth University, Box 843079, Richmond, Virginia, 23284-3079
| | - Carolyn A Lewis
- Department of Forensic Science, Virginia Commonwealth University, Box 843079, Richmond, Virginia, 23284-3079
| | - Francy Nogales
- Department of Forensic Science, Virginia Commonwealth University, Box 843079, Richmond, Virginia, 23284-3079
| | - Tracey C Dawson Cruz
- Department of Forensic Science, Virginia Commonwealth University, Box 843079, Richmond, Virginia, 23284-3079
| | - Zendra E Zehner
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University, Box 980614, Richmond, Virginia, 23298-0614
| | - Sarah J Seashols-Williams
- Department of Forensic Science, Virginia Commonwealth University, Box 843079, Richmond, Virginia, 23284-3079
| |
Collapse
|
15
|
Bryzgunova OE, Konoshenko MY, Laktionov PP. MicroRNA-guided gene expression in prostate cancer: Literature and database overview. J Gene Med 2018; 20:e3016. [DOI: 10.1002/jgm.3016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/15/2018] [Accepted: 03/17/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Olga E. Bryzgunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia and ‘E. Meshalkin National Medical Research Center’ of the Ministry of Health of the Russian Federation; Novosibirsk Russia
| | - Maria Yu Konoshenko
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia and ‘E. Meshalkin National Medical Research Center’ of the Ministry of Health of the Russian Federation; Novosibirsk Russia
| | - Pavel P. Laktionov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia and ‘E. Meshalkin National Medical Research Center’ of the Ministry of Health of the Russian Federation; Novosibirsk Russia
| |
Collapse
|
16
|
Dai H, Wang C, Yu Z, He D, Yu K, Liu Y, Wang S. Retracted: MiR-17 Regulates Prostate Cancer Cell Proliferation and Apoptosis Through Inhibiting JAK-STAT3 Signaling Pathway. Cancer Biother Radiopharm 2018; 33:103-109. [DOI: 10.1089/cbr.2017.2386] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Hong Dai
- Department of Urology Surgery, Three Gorges Central Hospital, Chongqing, China
| | - Chunmei Wang
- Department of Traumatology, Three Gorges Central Hospital, Chongqing, China
| | - Zhihai Yu
- Department of Urology Surgery, Three Gorges Central Hospital, Chongqing, China
| | - Donglin He
- Department of Urology Surgery, Three Gorges Central Hospital, Chongqing, China
| | - Kun Yu
- Department of Urology Surgery, Three Gorges Central Hospital, Chongqing, China
| | - Yin Liu
- Department of Urology Surgery, Three Gorges Central Hospital, Chongqing, China
| | - Sheng Wang
- Department of Urology Surgery, Three Gorges Central Hospital, Chongqing, China
| |
Collapse
|
17
|
Ottman R, Levy J, Grizzle WE, Chakrabarti R. The other face of miR-17-92a cluster, exhibiting tumor suppressor effects in prostate cancer. Oncotarget 2018; 7:73739-73753. [PMID: 27650539 PMCID: PMC5340125 DOI: 10.18632/oncotarget.12061] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 09/02/2016] [Indexed: 12/28/2022] Open
Abstract
miR-17-92a cluster miRNAs are transcribed from a polycistronic transcription unit C13orf25 that generates six mature miRNAs, miR-17, miR-18a, miR-19a, miR-19b, miR-20a and miR-92a that are overexpressed in lung and colon cancers. Here we show that the expression of miR-17-92a miRNAs are reduced in cancerous prostate tissues compared to uninvolved areas and also in aggressive prostate cancer cells. Restoration of expression of all members of miR-17-92a cluster showed, decreased expression of cell cycle regulatory proteins cyclin D1 and SSH1; and LIMK1 and FGD4 of RhoGTPase signaling pathway. Expression of miR-17-92a miRNAs caused decreased cell proliferation, reduced activation of AKT and MAP kinases, delayed tumorigenicity and reduced tumor growth in animals. Expression of miR-17-92a miRNAs inhibited EMT via reduced cell migration and expression of mesenchymal markers while elevating expression and surface localization of the epithelial marker E-Cadherin. Expression of miR-17-92a miRNAs improved sensitivity of androgen dependent LNCaP 104-S prostate cancer cells to anti-androgen drug Casodex, AKT inhibitor MK-2206 2HCl, and docetaxel. The androgen refractory PC-3 cells also showed increased sensitivity to docetaxel, MK-2206 2HCl and Aurora kinase inhibitor VX680 upon ectopic expression of miR-17-92a cluster miRNAs. Our data demonstrate a tumor suppressor effect of miR-17-92a cluster miRNAs in prostate cancer cells and restoration of expression of these miRNAs has a therapeutic benefit for both androgen-dependent and -independent prostate cancer cells.
Collapse
Affiliation(s)
- Richard Ottman
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - Jenna Levy
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| | - William E Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Ratna Chakrabarti
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida, USA
| |
Collapse
|
18
|
Epithelial Mesenchymal Transition in Embryonic Development, Tissue Repair and Cancer: A Comprehensive Overview. J Clin Med 2017; 7:jcm7010001. [PMID: 29271928 PMCID: PMC5791009 DOI: 10.3390/jcm7010001] [Citation(s) in RCA: 184] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/30/2017] [Accepted: 12/11/2017] [Indexed: 12/12/2022] Open
Abstract
The epithelial mesenchymal transition (EMT) plays a central role in both normal physiological events (e.g., embryonic development) and abnormal pathological events (e.g., tumor formation and metastasis). The processes that occur in embryonic development are often reactivated under pathological conditions such as oncogenesis. Therefore, defining the regulatory networks (both gene and protein levels) involved in the EMT during embryonic development will be fundamental in understanding the regulatory networks involved in tumor development, as well as metastasis. There are many molecules, factors, mediators and signaling pathways that are involved in the EMT process. Although the EMT is a very old topic with numerous publications, recent new technologies and discoveries give this research area some new perspective and direction. It is now clear that these important processes are controlled by a network of transcriptional and translational regulators in addition to post-transcriptional and post-translational modifications that amplify the initial signals. In this review article, we will discuss some key concepts, historical findings, as well as some recent progresses in the EMT research field.
Collapse
|
19
|
Kumar A, Rimando AM, Levenson AS. Resveratrol and pterostilbene as a microRNA-mediated chemopreventive and therapeutic strategy in prostate cancer. Ann N Y Acad Sci 2017; 1403:15-26. [PMID: 28662290 DOI: 10.1111/nyas.13372] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 12/23/2022]
Abstract
Growing evidence indicates that deregulation of the epigenetic machinery comprising the microRNA (miRNA) network is a critical factor in the progression of various diseases, including cancer. Concurrently, dietary phytochemicals are being intensively studied for their miRNA-mediated health-beneficial properties, such as anti-inflammatory, cardioprotective, antioxidative, and anticancer properties. Available experimental data have suggested that dietary polyphenols may be effective miRNA-modulating chemopreventive and therapeutic agents. Moreover, noninvasive detection of changes in miRNA expression in liquid biopsies opens enormous possibilities for their clinical utilization as novel prognostic and predictive biomarkers. In our published studies, we identified resveratrol-regulated miRNA profiles in prostate cancer. Resveratrol downregulated the phosphatase and tensin homolog (PTEN)-targeting members of the oncogenic miR-17 family of miRNAs, which are overexpressed in prostate cancer. We have functionally validated the miRNA-mediated ability of resveratrol and its potent analog pterostilbene to rescue the tumor suppressor activity of PTEN in vitro and in vivo. Taken together, our findings implicate the use of resveratrol and its analogs as an attractive miRNA-mediated chemopreventive and therapeutic strategy in prostate cancer and the use of circulating miRNAs as potential predictive biomarkers for clinical development.
Collapse
Affiliation(s)
- Avinash Kumar
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York
| | - Agnes M Rimando
- United States Department of Agriculture, Agricultural Research Service, Natural Products Utilization Research Unit, Oxford, Mississippi
| | - Anait S Levenson
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Long Island University, Brooklyn, New York
| |
Collapse
|
20
|
miR-9 Acts as an OncomiR in Prostate Cancer through Multiple Pathways That Drive Tumour Progression and Metastasis. PLoS One 2016; 11:e0159601. [PMID: 27447934 PMCID: PMC4957825 DOI: 10.1371/journal.pone.0159601] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 07/05/2016] [Indexed: 12/18/2022] Open
Abstract
Identification of dysregulated microRNAs (miRNAs) in prostate cancer is critical not only for diagnosis, but also differentiation between the aggressive and indolent forms of the disease. miR-9 was identified as an oncomiR through both miRNA panel RT-qPCR as well as high-throughput sequencing analysis of the human P69 prostate cell line as compared to its highly tumorigenic and metastatic subline M12, and found to be consistently upregulated in other prostate cell lines including DU-145 and PC3. While miR-9 has been characterized as dysregulated either as an oncomiR or tumour suppressor in a variety of other cancers including breast, ovarian, and nasopharyngeal carcinomas, it has not been previously evaluated and proven as an oncomiR in prostate cancer. miR-9 was confirmed an oncomiR when found to be overexpressed in tumour tissue as compared to adjacent benign glandular epithelium through laser-capture microdissection of radical prostatectomy biopsies. Inhibition of miR-9 resulted in reduced migratory and invasive potential of the M12 cell line, and reduced tumour growth and metastases in male athymic nude mice. Analysis showed that miR-9 targets e-cadherin and suppressor of cytokine signalling 5 (SOCS5), but not NF-ĸB mRNA. Expression of these proteins was shown to be affected by modulation in expression of miR-9.
Collapse
|
21
|
Budd WT, Seashols-Williams SJ, Clark GC, Weaver D, Calvert V, Petricoin E, Dragoescu EA, O’Hanlon K, Zehner ZE. Dual Action of miR-125b As a Tumor Suppressor and OncomiR-22 Promotes Prostate Cancer Tumorigenesis. PLoS One 2015; 10:e0142373. [PMID: 26544868 PMCID: PMC4636224 DOI: 10.1371/journal.pone.0142373] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/21/2015] [Indexed: 12/21/2022] Open
Abstract
MicroRNAs (miRs) are a novel class of small RNA molecules, the dysregulation of which can contribute to cancer. A combinatorial approach was used to identify miRs that promote prostate cancer progression in a unique set of prostate cancer cell lines, which originate from the parental p69 cell line and extend to a highly tumorigenic/metastatic M12 subline. Together, these cell lines are thought to mimic prostate cancer progression in vivo. Previous network analysis and miR arrays suggested that the loss of hsa-miR-125b together with the overexpression of hsa-miR-22 could contribute to prostate tumorigenesis. The dysregulation of these two miRs was confirmed in human prostate tumor samples as compared to adjacent benign glandular epithelium collected through laser capture microdissection from radical prostatectomies. In fact, alterations in hsa-miR-125b expression appeared to be an early event in tumorigenesis. Reverse phase microarray proteomic analysis revealed ErbB2/3 and downstream members of the PI3K/AKT and MAPK/ERK pathways as well as PTEN to be protein targets differentially expressed in the M12 tumor cell compared to its parental p69 cell. Relevant luciferase+3’-UTR expression studies confirmed a direct interaction between hsa-miR-125b and ErbB2 and between hsa-miR-22 and PTEN. Restoration of hsa-miR-125b or inhibition of hsa-miR-22 expression via an antagomiR resulted in an alteration of M12 tumor cell behavior in vitro. Thus, the dual action of hsa-miR-125b as a tumor suppressor and hsa-miR-22 as an oncomiR contributed to prostate tumorigenesis by modulations in PI3K/AKT and MAPK/ERK signaling pathways, key pathways known to influence prostate cancer progression.
Collapse
Affiliation(s)
- William T. Budd
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Sarah J. Seashols-Williams
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- Department of Forensic Science, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Gene C. Clark
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Danielle Weaver
- Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Valerie Calvert
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, United States of America
| | - Emanuel Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, United States of America
| | - Ema A. Dragoescu
- Department of Pathology, VCU Medical Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Katherine O’Hanlon
- American International Biotechnology, Richmond, Virginia, United States of America
| | - Zendra E. Zehner
- Department of Biochemistry and Molecular Biology, Massey Cancer Center, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
22
|
Paolini A, Curti V, Pasi F, Mazzini G, Nano R, Capelli E. Gallic acid exerts a protective or an anti-proliferative effect on glioma T98G cells via dose-dependent epigenetic regulation mediated by miRNAs. Int J Oncol 2015; 46:1491-7. [PMID: 25646699 PMCID: PMC4356495 DOI: 10.3892/ijo.2015.2864] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 12/23/2014] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most malignant primary brain tumor in adulthood, characterized by very high recurrence. Following the limited results for conventional therapies, novel therapeutic agents are under investigation. Among the putative new molecules, gallic acid (GA) represents a promising new anticancer drug. The anticancer effect of this drug has been based on its antioxidant effects. The aim of the present study was to investigate the toxic effects of GA on the T98G human glioblastoma cell line and its capacity to modulate the expression of microRNAs targeting the genes involved in tumor growth and invasion. Cytotoxicity, clonogenic ability and cell migration after GA treatment were tested. Moreover, the expression of miRNAs that target genes for antioxidant mitochondrial enzymes (miR-17-3p), p-21 protein (miR-21-5p) and ATM (miR-421-5p) was determined by qRT-PCR. The results confirmed in the T98G cells the anti-proliferative effect of GA reported for other glioma cell lines and showed that the miRNA expression changes depending on GA concentrations. Different GA concentrations can determine a protective or a toxic effect on tumor cells. Thus, the key for GA to induce a specific anticancer action is to use an optimal concentration that avoids these twin effects.
Collapse
Affiliation(s)
- Alessandro Paolini
- Department of Biology and Biotechnology, Laboratory of Neuro Radio Experimental Biology, 'Lazzaro Spallanzani', University of Pavia, 27100 Pavia, Italy
| | - Valeria Curti
- Department of Earth and Environmental Sciences, Laboratory of Immunology and Genetic Analysis, University of Pavia, 27100 Pavia, Italy
| | - Francesca Pasi
- Department of Biology and Biotechnology, Laboratory of Neuro Radio Experimental Biology, 'Lazzaro Spallanzani', University of Pavia, 27100 Pavia, Italy
| | - Giuliano Mazzini
- IGM-CNR Histochemistry and Cytometry Section, Department of Animal Biology, University of Pavia, 27100 Pavia, Italy
| | - Rosanna Nano
- Department of Biology and Biotechnology, Laboratory of Neuro Radio Experimental Biology, 'Lazzaro Spallanzani', University of Pavia, 27100 Pavia, Italy
| | - Enrica Capelli
- Department of Earth and Environmental Sciences, Laboratory of Immunology and Genetic Analysis, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
23
|
Breast- and Salivary Gland-Derived Adenoid Cystic Carcinomas: Potential Post-Transcriptional Divergencies. A Pilot Study Based on miRNA Expression Profiling of Four Cases and Review of the Potential Relevance of the Findings. Pathol Oncol Res 2014; 21:29-44. [DOI: 10.1007/s12253-014-9770-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 03/25/2014] [Indexed: 12/18/2022]
|
24
|
Epithelial-to-mesenchymal transition and the cancer stem cell phenotype: insights from cancer biology with therapeutic implications for colorectal cancer. Cancer Gene Ther 2014; 21:181-7. [PMID: 24787239 PMCID: PMC4041800 DOI: 10.1038/cgt.2014.15] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 12/15/2022]
Abstract
Although mortality from colorectal cancer (CRC) is decreasing, colorectal cancer is still the second highest cause of cancer related deaths in America. Chemotherapy and radiation therapy now play central roles in our strategies to fight cancer, although we continue to lack novel strategies overcoming therapeutic resistance. Molecular mechanisms of therapeutic resistance in CRC continue to be under intense investigation. In this review, we highlight the recent evidence linking epithelial-to-mesenchymal transition (EMT) with aggressive tumor biology as well as with the cancer stem cells (CSC) across multiple organ systems including colon cancer. Furthermore, in the era of neo-adjuvant treatment, the clinical implications are concerning that our treatments may have the potential to induce more aggressive cancer cells through EMT, perhaps even generating CSCs more capable of metastasis and further resistant to treatment. This concern and potential reality highlights the critical need for further understanding the impact of clinical therapy on the pathobiology of cancer and further supports the need to therapeutically target the CSC. Besides serving as potential biomarkers for aggressive tumor biology and therapeutic resistance, EMT and CSC molecular pathways may highlight novel therapeutic targets as strategies for improving the response to conventional anti-neoplastic agents translating into improved oncologic outcomes.
Collapse
|
25
|
Leung CM, Li SC, Chen TW, Ho MR, Hu LY, Liu WS, Wu TT, Hsu PC, Chang HT, Tsai KW. Comprehensive microRNA profiling of prostate cancer cells after ionizing radiation treatment. Oncol Rep 2014; 31:1067-78. [PMID: 24452514 PMCID: PMC3926670 DOI: 10.3892/or.2014.2988] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 12/23/2013] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that negatively regulate gene expression and have emerged as potential biomarkers in radiation response to human cancer. Only a few miRNAs have been identified in radiation response to prostate cancer and the involvement of the radiation-associated miRNA machinery in the response of prostate cancer cells to radiation is not thoroughly understood. Therefore, the purpose of the present study was to comprehensively investigate the expression levels, arm selection preference and isomiRs of radiation-response miRNAs in radiation-treated PC3 cells using a next-generation sequencing (NGS) approach. Our data revealed that the arm selection preference and 3′ modification of miRNAs may be altered in prostate cancer after radiation exposure. In addition, the proportion of AA dinucleotide modifications at the end of the read gradually increased in a time-dependent manner after PC3 radiation treatment. We also identified 6 miRNAs whose expression increased and 16 miRNAs whose expression decreased after exposure to 10 Gy of radiation. A pathway enrichment analysis revealed that the target genes of these radiation-induced miRNAs significantly co-modulated the radiation response pathway, including the mitogen-activated protein kinase (MAPK), Wnt, transforming growth factor-β (TGF-β) and ErbB signaling pathways. Furthermore, analysis of The Cancer Genome Atlas (TCGA) database revealed that the expression of these radiation-induced miRNAs was frequently dysregulated in prostate cancer. Our study identified radiation-induced miRNA candidates which may contribute to radiosensitivity and can be used as biomarkers for radiotherapy.
Collapse
Affiliation(s)
- Chung-Man Leung
- Department of Radiation Oncology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, R.O.C
| | - Sung-Chou Li
- Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan, R.O.C
| | - Ting-Wen Chen
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan, R.O.C
| | - Meng-Ru Ho
- Genomics Research Center, Academia Sinica, Taipei, Taiwan, R.O.C
| | - Ling-Yueh Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, R.O.C
| | - Wen-Shan Liu
- Department of Radiation Oncology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, R.O.C
| | - Tony T Wu
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, R.O.C
| | - Ping-Chi Hsu
- Department of Safety, Health and Environmental Engineering, National Kaohsiung First University of Science and Technology, Kaohsiung, Taiwan, R.O.C
| | - Hong-Tai Chang
- Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, R.O.C
| | - Kuo-Wang Tsai
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, R.O.C
| |
Collapse
|
26
|
Molecular markers for prostate cancer in formalin-fixed paraffin-embedded tissues. BIOMED RESEARCH INTERNATIONAL 2013; 2013:283635. [PMID: 24371818 PMCID: PMC3859157 DOI: 10.1155/2013/283635] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/10/2013] [Indexed: 12/14/2022]
Abstract
Prostate cancer (PCa) is the most frequently diagnosed type of cancer in developed countries. The decisive method of diagnosis is based on the results of biopsies, morphologically evaluated to determine the presence or absence of cancer. Although this approach leads to a confident diagnosis in most cases, it can be improved by using the molecular markers present in the tissue. Both miRNAs and proteins are considered excellent candidates for biomarkers in formalin-fixed paraffin-embedded (FFPE) tissues, due to their stability over long periods of time. In the last few years, a concerted effort has been made to develop the necessary tools for their reliable measurement in these types of samples. Furthermore, the use of these kinds of markers may also help in establishing tumor grade and aggressiveness, as well as predicting the possible outcomes in each particular case for the different treatments available. This would aid clinicians in the decision-making process. In this review, we attempt to summarize and discuss the potential use of microRNA and protein profiles in FFPE tissue samples as markers to better predict PCa diagnosis, progression, and response to therapy.
Collapse
|
27
|
Liu T, Qin W, Huang Y, Zhao Y, Wang J. Induction of estrogen-sensitive epithelial cells derived from human-induced pluripotent stem cells to repair ovarian function in a chemotherapy-induced mouse model of premature ovarian failure. DNA Cell Biol 2013; 32:685-98. [PMID: 24032550 DOI: 10.1089/dna.2013.2032] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The incidence of premature ovarian failure (POF), a condition causing amenorrhea and hypergonadotropic hypoestrogenism in women before the age of 40, has been increasing in recent years. As an irreversible pathological change, improved treatment strategies for this disease are urgently needed. In this study, a type of microRNA (miR-17-3p) was used to guide the differentiation of human-induced pluripotent stem (iPS) cells into hormone-sensitive ovarian epithelial (OSE)-like cells in vitro. To prevent their morphological transformation into fibroblast-like cells, MiR-17-3p, a microRNA that suppresses vimentin expression, was transfected into human iPS cells. Subsequently, these cells were successfully induced into OSE-like cells in vitro after treatment with estrogen and cell growth factors. Compared with controls, iPS cells transfected with miR-17-3p expressed higher levels of epithelial markers (cytokeratin 7, AE1, AE3, and E-cadherin) and estrogen receptors (ERα and ERβ) while levels of mesenchymal markers (fibronectin, vimentin, and N-cadherin) lowered after the induction. The human iPS cell-derived OSE-like cells were then injected into cyclophosphamide-induced POF model mice to determine their potential benefit as grafts to repair ovarian tissues. The OSE-like cells survived within POF mouse ovaries for at least 14 days in vivo. Compared with the negative controls, expressions of cytokeratin 7 and ERβ proteins were elevated while fibronectin and vimentin levels in ovarian tissues were downregulated in the OSE-like cell transplantation group. Moreover, the ovarian weight and plasma E2 level increased over time in the transplantation with OSE-like cells, compared with control groups. Hence, we can draw the conclusion that iPS cells can be induced to differentiate into OSE-like cells in vitro.
Collapse
Affiliation(s)
- Te Liu
- 1 Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine , Shanghai, China
| | | | | | | | | |
Collapse
|
28
|
Chou J, Shahi P, Werb Z. microRNA-mediated regulation of the tumor microenvironment. Cell Cycle 2013; 12:3262-71. [PMID: 24036551 DOI: 10.4161/cc.26087] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The tumor microenvironment includes cells such as fibroblasts, immune cells, endothelial cells, as well as extracellular matrix (ECM), proteases, and cytokines. Together, these components participate in a complex crosstalk with neoplastic tumor cells that affects growth, angiogenesis, and metastasis. MicroRNAs (miRNAs) are small, non-coding RNAs involved in post-transcriptional regulation of gene expression and have recently emerged as important players involved in regulating multiple aspects of cancer biology and the tumor microenvironment. Differential miRNA expression in both the epithelial and stromal compartments of tumors compared with normal tissue suggests that miRNAs are important drivers of tumorigenesis and metastasis. This review article summarizes our current understanding of the diverse roles of miRNAs involved in tumor microenvironment regulation and underscores the importance of miRNAs within multiple cell types that contribute to the hallmarks of cancer.
Collapse
Affiliation(s)
- Jonathan Chou
- Department of Anatomy; University of California, San Francisco; San Francisco, CA USA; Biomedical Sciences Program; University of California, San Francisco; San Francisco, CA USA
| | | | | |
Collapse
|
29
|
Seelan RS, Warner DR, Mukhopadhyay PM, Andres SA, Smolenkova IA, Wittliff JL, Michele Pisano M, Greene RM. Epigenetic analysis of laser capture microdissected fetal epithelia. Anal Biochem 2013; 442:68-74. [PMID: 23911529 DOI: 10.1016/j.ab.2013.07.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 07/16/2013] [Accepted: 07/19/2013] [Indexed: 12/30/2022]
Abstract
Laser capture microdissection (LCM) is a superior method for nondestructive collection of specific cell populations from tissue sections. Although DNA, RNA, and protein have been analyzed from LCM-procured samples, epigenetic analyses, particularly of fetal, highly hydrated tissue, have not been attempted. A standardized protocol with quality assurance measures was established to procure cells by LCM of the medial edge epithelia (MEE) of the fetal palatal processes for isolation of intact microRNA for expression analyses and genomic DNA (gDNA) for CpG methylation analyses. MicroRNA preparations, obtained using the RNAqueous Micro kit (Life Technologies), exhibited better yields and higher quality than those obtained using the Arcturus PicoPure RNA Isolation kit (Life Technologies). The approach was validated using real-time polymerase chain reaction (PCR) to determine expression of selected microRNAs (miR-99a and miR-200b) and pyrosequencing to determine CpG methylation status of selected genes (Aph1a and Dkk4) in the MEE. These studies describe an optimized approach for employing LCM of epithelial cells from fresh frozen fetal tissue that enables quantitative analyses of microRNA expression levels and CpG methylation.
Collapse
Affiliation(s)
- Ratnam S Seelan
- Birth Defects Center, Department of Molecular, Cellular, and Craniofacial Biology, University of Louisville, Louisville, KY 40202, USA
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Yin R, Wang R, Guo L, Zhang W, Lu Y. MiR-17-3p inhibits angiogenesis by downregulating flk-1 in the cell growth signal pathway. J Vasc Res 2012; 50:157-66. [PMID: 23258273 DOI: 10.1159/000345697] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 10/31/2012] [Indexed: 12/27/2022] Open
Abstract
MicroRNAs (miRs) are endogenously expressed small noncoding RNAs that regulate gene expression at the posttranscriptional level. Previous works indicated that the miR-17-92 cluster could regulate endothelial cell (EC) functions involved in angiogenesis. miR-17-3p, a component of the miR-17-92 cluster, could control the angiogenic activity of human umbilical vein ECs in a cell-autonomous manner in vitro. A 21-bp fragment from the Flk-1 3'-untranslated region containing miR-17-3p targeting sites was required for the rapid downregulation of Flk-1 expression by in silico and experimental analysis. Subsequently, the downstream cell growth pathway was inhibited by forced upregulation of miR-17-3p. Based on these data, we conclude that miR-17-3p is a negative regulator of the angiogenic phenotype of ECs through its ability to modulate the expression of Flk-1, which is implicated in the pleiotropic effects of miR-17-92 in angiogenesis.
Collapse
Affiliation(s)
- Runting Yin
- Department of Pharmacology, Nantong University Medical College, Nantong, PR China
| | | | | | | | | |
Collapse
|
31
|
Gong AY, Eischeid AN, Xiao J, Zhao J, Chen D, Wang ZY, Young CY, Chen XM. miR-17-5p targets the p300/CBP-associated factor and modulates androgen receptor transcriptional activity in cultured prostate cancer cells. BMC Cancer 2012; 12:492. [PMID: 23095762 PMCID: PMC3519561 DOI: 10.1186/1471-2407-12-492] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 10/18/2012] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Androgen receptor (AR) signalling is critical to the initiation and progression of prostate cancer (PCa). Transcriptional activity of AR involves chromatin recruitment of co-activators, including the p300/CBP-associated factor (PCAF). Distinct miRNA expression profiles have been identified in PCa cells during the development and progression of the disease. Whether miRNAs regulate PCAF expression in PCa cells to regulate AR transcriptional activity is still unclear. METHODS Expression of PCAF was investigated in several PCa cell lines by qRT-PCR, Western blot, and immunocytochemistry. The effects of PCAF expression on AR-regulated transcriptional activity and cell growth in PCa cells were determined by chromatin immunoprecipitation, reporter gene construct analysis, and MTS assay. Targeting of PCAF by miR-17-5p was evaluated using the luciferase reporter assay. RESULTS PCAF was upregulated in several PCa cell lines. Upregulation of PCAF promoted AR transcriptional activation and cell growth in cultured PCa cells. Expression of PCAF in PCa cells was associated with the downregulation of miR-17-5p. Targeting of the 3'-untranslated region of PCAF mRNA by miR-17-5p caused translational suppression and RNA degradation, and, consequently, modulation of AR transcriptional activity in PCa cells. CONCLUSIONS PCAF is upregulated in cultured PCa cells, and upregulation of PCAF is associated with the downregulation of miR-17-5p. Targeting of PCAF by miR-17-5p modulates AR transcriptional activity and cell growth in cultured PCa cells.
Collapse
Affiliation(s)
- Ai-Yu Gong
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE 68178, USA
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Gordanpour A, Nam RK, Sugar L, Seth A. MicroRNAs in prostate cancer: from biomarkers to molecularly-based therapeutics. Prostate Cancer Prostatic Dis 2012; 15:314-9. [PMID: 22333688 DOI: 10.1038/pcan.2012.3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
MicroRNAs (miRNAs) are effective regulators of gene expression that have a significant role in the pathogenesis of prostate and various other cancers. The high prevalence of aberrant miRNA expression in prostate cancer, and miRNAs' distinctive properties, give much hope that they can be used as biomarkers and next generation of molecular anticancer therapeutics. Herein, we review the literature on miRNA involvement in prostate cancer pathogenesis and the current understanding of their role as oncogenes, tumor suppressors and metastasis-regulators. We also review the latest research on miRNAs in prostate cancer preclinical studies and clinical trials, and highlight the advantages and challenges of possible miRNA-based therapies. The emerging information regarding the biology of miRNAs in prostate cancer is promising, and may lead to a role(s) for these molecules as diagnostic/prognostic markers and effective therapeutic tools for better molecularly targeted treatment of prostate cancer.
Collapse
Affiliation(s)
- A Gordanpour
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
33
|
Factors affecting the yield of microRNAs from laser microdissectates of formalin-fixed tissue sections. BMC Res Notes 2012; 5:40. [PMID: 22260539 PMCID: PMC3284398 DOI: 10.1186/1756-0500-5-40] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 01/19/2012] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Quantification of microRNAs in specific cell populations microdissected from tissues can be used to define their biological roles, and to develop and deploy biomarker assays. In this study, a number of variables were examined for their effect on the yield of microRNAs in samples obtained from formalin-fixed paraffin-embedded tissues by laser microdissection. RESULTS MicroRNA yield was improved by using cresyl violet instead of hematoxylin-eosin to stain tissue sections in preparation for microdissection, silicon carbide instead of glass fiber as matrix in RNA-binding columns, and overnight digestion of dissected samples with proteinase K. Storage of slides carrying stained tissue sections at room temperature for up to a week before microdissection, and storage of the microdissectates at room temperature for up to a day before RNA extraction did not adversely affect microRNA yield. CONCLUSIONS These observations should be of value for the efficient isolation of microRNAs from microdissected formalin-fixed tissues with a flexible workflow.
Collapse
|
34
|
Ritchey L, Ottman R, Roumanos M, Chakrabarti R. A functional cooperativity between Aurora A kinase and LIM kinase1: implication in the mitotic process. Cell Cycle 2012; 11:296-309. [PMID: 22214762 DOI: 10.4161/cc.11.2.18734] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Aurora kinase A (Aur-A), a mitotic kinase, regulates initiation of mitosis through centrosome separation and proper assembly of bipolar spindles. LIM kinase 1 (LIMK1), a modulator of actin and microtubule dynamics, is involved in the mitotic process through inactivating phosphorylation of cofilin. Phosphorylated LIMK1 is recruited to the centrosomes during early prophase, where it colocalizes with γ-tubulin. Here, we report a novel functional cooperativity between Aur-A and LIMK1 through mutual phosphorylation. LIMK1 is recruited to the centrosomes during early prophase and then to the spindle poles, where it colocalizes with Aur-A. Aur-A physically associates with LIMK1 and activates it through phosphorylation, which is important for its centrosomal and spindle pole localization. Aur-A also acts as a substrate of LIMK1, and the function of LIMK1 is important for its specific localization and regulation of spindle morphology. Taken together, the novel molecular interaction between these two kinases and their regulatory roles on one another's function may provide new insight on the role of Aur-A in manipulation of actin and microtubular structures during spindle formation.
Collapse
Affiliation(s)
- Lisa Ritchey
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | | | | | | |
Collapse
|
35
|
Jiang L, Lin C, Song L, Wu J, Chen B, Ying Z, Fang L, Yan X, He M, Li J, Li M. MicroRNA-30e* promotes human glioma cell invasiveness in an orthotopic xenotransplantation model by disrupting the NF-κB/IκBα negative feedback loop. J Clin Invest 2011; 122:33-47. [PMID: 22156201 DOI: 10.1172/jci58849] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 10/19/2011] [Indexed: 01/21/2023] Open
Abstract
Constitutive activation of NF-κB is a frequent event in human cancers, playing important roles in cancer development and progression. In nontransformed cells, NF-κB activation is tightly controlled by IκBs. IκBs bind NF-κB in the cytoplasm, preventing it from translocating to the nucleus to modulate gene expression. Stimuli that activate NF-κB signaling trigger IκB degradation, enabling nuclear translocation of NF-κB. Among the genes regulated by NF-κB are those encoding the IκBs, providing a negative feedback loop that limits NF-κB activity. How transformed cells override this NF-κB/IκB negative feedback loop remains unclear. Here, we report in human glioma cell lines that microRNA-30e* (miR-30e*) directly targets the IκBα 3ι-UTR and suppresses IκBα expression. Overexpression of miR-30e* in human glioma cell lines led to hyperactivation of NF-κB and enhanced expression of NF-κB-regulated genes, which promoted glioma cell invasiveness in in vitro assays and in an orthotopic xenotransplantation model. These effects of miR-30e* were shown to be clinically relevant, as miR-30e* was found to be upregulated in primary human glioma cells and correlated with malignant progression and poor survival. Hence, miR-30e* provides an epigenetic mechanism that disrupts the NF-κB/IκBα loop and may represent a new therapeutic target and prognostic marker.
Collapse
Affiliation(s)
- Lili Jiang
- Department of Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
MicroRNAs (miRNAs) are small physiological non-coding RNAs that regulate gene expression through an RNA interference (RNAi) mechanism. The expression of miRNAs is tightly controlled both spatially and temporally. Aberrant miRNA expression has been correlated with various cancers. Recent findings suggest that some miRNAs can function as tumor suppressors or oncogenes. In model experiments, the cancer phenotype of some cells can be reverted to normal when the cells are treated with miRNA mimics or inhibitors. Here, we discuss in brief the potential utility of miRNA-based cancer therapy as well as the current limitations thwarting their useful clinical application.
Collapse
Affiliation(s)
- Man Lung Yeung
- Department of Microbiology, the University of Hong Kong, SAR, China
| | - Kuan-Teh Jeang
- Molecular Virology Section, Laboratory of Molecular Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0460, USA
| |
Collapse
|
37
|
Yeung ML, Jeang KT. Roles of miRNAs in virus-mediated cellular transformation: lessons from human T-cell leukemia virus type 1. Future Virol 2011. [DOI: 10.2217/fvl.11.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
miRNAs are small noncoding RNAs of ˜18–25 nucleotides that contribute to the regulation of a diverse variety of biological pathways. Perturbed miRNA expression is seen in many diseases, including cancers. Here, we first discuss the oncogenic and tumor suppressor roles of miRNA, including the roles played by miRNAs in the replication of some oncogenic viruses. Next, using human T-cell leukemia virus type 1 as an example, we discuss the contributions of virus-induced miRNAs in human T-cell leukemia virus type 1-transformation of human cells. Finally, we briefly survey the therapeutic potential of miRNA mimics or anti-miRNAs, antagomirs, to reverse cancer phenotypes.
Collapse
Affiliation(s)
- Man Lung Yeung
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Hong Kong
- Research Centre of Infection & Immunology, The University of Hong Kong, Hong Kong
- Department of Microbiology, The University of Hong Kong, Hong Kong
- Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong
| | - Kuan-Teh Jeang
- Molecular Virology Section, Laboratory of Molecular Microbiology National Institute of Allergy and Infectious Diseases, National Institutes of Health, Building 4, Room 306, 9000 Rockville Pike, Bethesda, MD 20892–0460, USA
| |
Collapse
|
38
|
Satelli A, Li S. Vimentin in cancer and its potential as a molecular target for cancer therapy. Cell Mol Life Sci 2011; 68:3033-46. [PMID: 21637948 PMCID: PMC3162105 DOI: 10.1007/s00018-011-0735-1] [Citation(s) in RCA: 1074] [Impact Index Per Article: 82.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 05/12/2011] [Accepted: 05/16/2011] [Indexed: 02/06/2023]
Abstract
Vimentin, a major constituent of the intermediate filament family of proteins, is ubiquitously expressed in normal mesenchymal cells and is known to maintain cellular integrity and provide resistance against stress. Vimentin is overexpressed in various epithelial cancers, including prostate cancer, gastrointestinal tumors, tumors of the central nervous system, breast cancer, malignant melanoma, and lung cancer. Vimentin's overexpression in cancer correlates well with accelerated tumor growth, invasion, and poor prognosis; however, the role of vimentin in cancer progression remains obscure. In recent years, vimentin has been recognized as a marker for epithelial-mesenchymal transition (EMT). Although EMT is associated with several tumorigenic events, vimentin's role in the underlying events mediating these processes remains unknown. By virtue of its overexpression in cancer and its association with tumor growth and metastasis, vimentin serves as an attractive potential target for cancer therapy; however, more research would be crucial to evaluate its specific role in cancer. Our recent discovery of a vimentin-binding mini-peptide has generated further impetus for vimentin-targeted tumor-specific therapy. Furthermore, research directed toward elucidating the role of vimentin in various signaling pathways would reveal new approaches for the development of therapeutic agents. This review summarizes the expression and functions of vimentin in various types of cancer and suggests some directions toward future cancer therapy utilizing vimentin as a potential molecular target.
Collapse
Affiliation(s)
- Arun Satelli
- Department of Pediatrics, Unit 853, The University of Texas MD Anderson Cancer Center, 1515 Holocombe Blvd, Houston, TX 77030 USA
| | - Shulin Li
- Department of Pediatrics, Unit 853, The University of Texas MD Anderson Cancer Center, 1515 Holocombe Blvd, Houston, TX 77030 USA
- UTMD, Graduate School of Biomedical Science, Houston, TX 77030 USA
| |
Collapse
|
39
|
Henry JC, Azevedo-Pouly ACP, Schmittgen TD. microRNA Replacement Therapy for Cancer. Pharm Res 2011; 28:3030-42. [DOI: 10.1007/s11095-011-0548-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 07/22/2011] [Indexed: 12/19/2022]
|
40
|
Khamis ZI, Iczkowski KA, Sang QXA. Metastasis suppressors in human benign prostate, intraepithelial neoplasia, and invasive cancer: their prospects as therapeutic agents. Med Res Rev 2011; 32:1026-77. [PMID: 22886631 DOI: 10.1002/med.20232] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite advances in diagnosis and treatment of prostate cancer, development of metastases remains a major clinical challenge. Research efforts are dedicated to overcome this problem by understanding the molecular basis of the transition from benign cells to prostatic intraepithelial neoplasia (PIN), localized carcinoma, and metastatic cancer. Identification of proteins that inhibit dissemination of cancer cells will provide new perspectives to define novel therapeutics. Development of antimetastatic drugs that trigger or mimic the effect of metastasis suppressors represents new therapeutic approaches to improve patient survival. This review focuses on different biochemical and cellular functions of metastasis suppressors known to play a role in prostate carcinogenesis and progression. Ten putative metastasis suppressors implicated in prostate cancer are discussed. CD44s is decreased in both PIN and cancer; Drg-1, E-cadherin, KAI-1, RKIP, and SSeCKS show similar expression between benign epithelia and PIN, but are downregulated in invasive cancer; whereas, maspin, MKK4, Nm23 and PTEN are upregulated in PIN and downregulated in cancer. Moreover, the potential role of microRNA in prostate cancer progression, the understanding of the cellular distribution and localization of metastasis suppressors, their mechanism of action, their effect on prostate invasion and metastasis, and their potential use as therapeutics are addressed.
Collapse
Affiliation(s)
- Zahraa I Khamis
- Department of Chemistry and Biochemistry and Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida 32306-4390, USA
| | | | | |
Collapse
|
41
|
Xu Y, Fang F, Zhang J, Josson S, St. Clair WH, St. Clair DK. miR-17* suppresses tumorigenicity of prostate cancer by inhibiting mitochondrial antioxidant enzymes. PLoS One 2010; 5:e14356. [PMID: 21203553 PMCID: PMC3008681 DOI: 10.1371/journal.pone.0014356] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Accepted: 10/20/2010] [Indexed: 12/14/2022] Open
Abstract
Aberrant micro RNA (miRNA) expression has been implicated in the pathogenesis of cancer. Recent studies have shown that the miR-17-92 cluster is overexpressed in many types of cancer. The oncogenic function of mature miRNAs encoded by the miR-17–92 cluster has been identified from the 5′ arm of six precursors. However, the function of the miRNAs produced from the 3′ arm of these precursors remains unknown. The present study demonstrates that miR-17* is able to suppress critical primary mitochondrial antioxidant enzymes, such as manganese superoxide dismutase (MnSOD), glutathione peroxidase-2 (GPX2) and thioredoxin reductase-2 (TrxR2). Transfection of miR-17* into prostate cancer PC-3 cells significantly reduces levels of the three antioxidant proteins and activity of the luciferase reporter under the control of miR-17* binding sequences located in the 3′-untranslated regions of the three target genes. Disulfiram (DSF), a dithiolcarbomate drug shown to have an anticancer effect, induces the level of mature miR-17* and cell death in PCa cells, which can be attenuated by transfection of antisense miR-17*. Increasing miR-17* level in PC-3 cells by a Tet-on based conditional expression system markedly suppresses its tumorigencity. These results suggest that miR-17* may suppress tumorigenicity of prostate cancer through inhibition of mitochondrial antioxidant enzymes.
Collapse
Affiliation(s)
- Yong Xu
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Fang Fang
- Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Jiayou Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky, Lexington, Kentucky, United States of America
| | - Sajni Josson
- Cedars-Sinai Medical Center, University of California Los Angeles, Los Angeles, California, United States of America
| | - William H. St. Clair
- Department of Radiation Medicine, University of Kentucky, Lexington, Kentucky, United States of America
| | - Daret K. St. Clair
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
42
|
Abstract
RNA interference (RNAi) is an evolutionary conserved mechanism for specific gene silencing. This mechanism has great potential for use in targeted cancer therapy. Understanding the RNAi mechanism has led to the development of several novel RNAi-based therapeutic approaches currently in the early phases of clinical trials. It remains difficult to effectively deliver the nucleic acids required in vivo to initiate RNAi, and intense effort is under way in developing effective and targeted systemic delivery systems for RNAi. Description of in vivo delivery systems is not the focus of this review. In this review, we cover the rationale for pursuing personalised cancer therapy with RNAi, briefly review the mechanism of each major RNAi therapeutic technique, summarise and sample recent results with animal models applying RNAi for cancer, and provide an update on current clinical trials with RNAi-based therapeutic agents for cancer therapy. RNAi-based cancer therapy is still in its infancy, and there are numerous obstacles and issues that need to be resolved before its application in personalised therapy focusing on patient-cancer-specific targets can become standard cancer treatment, either alone or in combination with other treatments.
Collapse
|
43
|
Abstract
MicroRNAs (miRNAs) constitute an evolutionarily conserved class of small non-coding RNAs that are endogenously expressed with crucial functions in fundamental cellular processes such as cell cycle, apoptosis and differentiation. Disturbance of miRNA expression and function leads to deregulation of basic cellular processes leading to tumorigenesis. A growing body of experimental evidence suggests that human tumors have deregulated expression of microRNAs, which have been proposed as novel oncogenes or tumor suppressors. Recent studies have shown that microRNA expression patterns serve as phenotypic signatures of different cancers and could be used as diagnostic, prognostic and therapeutic tools. A few studies have analyzed global microRNA expression profiles or the functional role of microRNAs in prostate cancer. Here we have reviewed the role of microRNAs in prostate carcinogenesis by summarizing the findings from such studies. In addition, recent evidence indicates that dietary factors play an important role in the process of carcinogenesis through modulation of miRNA expression, though such studies are lacking in regards to prostate cancer. It has been proposed that dietary modulation of miRNA expression may contribute to the cancer-protective effects of dietary components. In this review, we have summarized findings from studies on the effect of dietary agents on miRNA expression and function.
Collapse
Affiliation(s)
- Sharanjot Saini
- Department of Urology, Veterans Affairs Medical Center and University of California San Francisco, 4150 Clement Street, San Francisco, CA 94121 USA
| | - Shahana Majid
- Department of Urology, Veterans Affairs Medical Center and University of California San Francisco, 4150 Clement Street, San Francisco, CA 94121 USA
| | - Rajvir Dahiya
- Department of Urology, Veterans Affairs Medical Center and University of California San Francisco, 4150 Clement Street, San Francisco, CA 94121 USA
| |
Collapse
|
44
|
Diagnostic, prognostic and therapeutic implications of microRNAs in urologic tumors. Nat Rev Urol 2010; 7:286-97. [PMID: 20368743 DOI: 10.1038/nrurol.2010.45] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that have an important role in the regulation of carcinogenic pathways. The observations that miRNAs are differentially expressed in tumor versus corresponding normal tissue, and that they regulate important breakpoints during carcinogenesis, are of interest for urologic oncologists. As biomarkers, they might be helpful tools for diagnostic, prognostic and monitoring purposes. Furthermore, miRNAs might be potential targets for novel therapeutic strategies, especially in patients with tumor subtypes that do not respond to currently available therapies. In this Review, we will focus on the current proceedings of miRNA research in urologic tumors. In the past decade, the number of published articles related to miRNAs in urologic oncology has increased, highlighting the ongoing importance of miRNAs in this field. Current studies support the hypothesis that miRNA will gain influence in clinical practice. Here, therefore, we illustrate the current knowledge of miRNA function in urologic tumors and draw the attention of urologists to the future opportunities and challenges of this research field.
Collapse
|