1
|
Vaidya K, Rodrigues G, Gupta S, Devarajan A, Yeolekar M, Madhusudhan MS, Kamat SS. Identification of sequence determinants for the ABHD14 enzymes. Proteins 2023. [PMID: 37974539 DOI: 10.1002/prot.26632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 10/14/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
Over the course of evolution, enzymes have developed remarkable functional diversity in catalyzing important chemical reactions across various organisms, and understanding how new enzyme functions might have evolved remains an important question in modern enzymology. To systematically annotate functions, based on their protein sequences and available biochemical studies, enzymes with similar catalytic mechanisms have been clustered together into an enzyme superfamily. Typically, enzymes within a superfamily have similar overall three-dimensional structures, conserved catalytic residues, but large variations in substrate recognition sites and residues to accommodate the diverse biochemical reactions that are catalyzed within the superfamily. The serine hydrolases are an excellent example of such an enzyme superfamily. Based on known enzymatic activities and protein sequences, they are split almost equally into the serine proteases and metabolic serine hydrolases. Within the metabolic serine hydrolases, there are two outlying members, ABHD14A and ABHD14B, that have high sequence similarity, but their biological functions remained cryptic till recently. While ABHD14A still lacks any functional annotation to date, we recently showed that ABHD14B functions as a lysine deacetylase in mammals. Given their high sequence similarity, automated databases often wrongly assign ABHD14A and ABHD14B as the same enzyme, and therefore, annotating functions to them in various organisms has been problematic. In this article, we present a bioinformatics study coupled with biochemical experiments, which identifies key sequence determinants for both ABHD14A and ABHD14B, and enable better classification for them. In addition, we map these enzymes on an evolutionary timescale and provide a much-wanted resource for studying these interesting enzymes in different organisms.
Collapse
Affiliation(s)
- Kaveri Vaidya
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, India
| | - Golding Rodrigues
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, India
| | - Sonali Gupta
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, India
| | - Archit Devarajan
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Mihika Yeolekar
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, India
| | - M S Madhusudhan
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, India
| | - Siddhesh S Kamat
- Department of Biology, Indian Institute of Science Education and Research Pune, Pune, Maharashtra, India
| |
Collapse
|
2
|
Buchman AS, Yu L, Klein HU, Zammit AR, Oveisgharan S, Grodstein F, Tasaki S, Levey AI, Seyfried NT, Bennett DA. Proteome-Wide Discovery of Cortical Proteins That May Provide Motor Resilience to Offset the Negative Effects of Pathologies in Older Adults. J Gerontol A Biol Sci Med Sci 2023; 78:494-503. [PMID: 35512265 PMCID: PMC9977240 DOI: 10.1093/gerona/glac105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Motor resilience proteins have not been identified. This proteome-wide discovery study sought to identify proteins that may provide motor resilience. METHODS We studied the brains of older decedents with annual motor testing, postmortem brain pathologies, and proteome-wide data. Parkinsonism was assessed using 26 items of a modified United Parkinson Disease Rating Scale. We used linear mixed-effect models to isolate motor resilience, defined as the person-specific estimate of progressive parkinsonism after controlling for age, sex, and 10 brain pathologies. A total of 8 356 high-abundance proteins were quantified from dorsal lateral prefrontal cortex using tandem mass tag and liquid chromatography-mass spectrometry. RESULTS There were 391 older adults (70% female), mean age 80 years at baseline and 89 years at death. Five proteins were associated with motor resilience: A higher level of AP1B1 (Estimate -0.504, SE 0.121, p = 3.12 × 10-5) and GNG3 (Estimate -0.276, SE 0.068, p = 4.82 × 10-5) was associated with slower progressive parkinsonism. By contrast, a higher level of TTC38 (Estimate 0.140, SE 0.029, p = 1.87 × 10-6), CARKD (Estimate 0.413, SE 0.100, p = 3.50 × 10-5), and ABHD14B (Estimate 0.175, SE 0.044, p = 6.48 × 10-5) was associated with faster progressive parkinsonism. Together, these 5 proteins accounted for almost 25% of the variance of progressive parkinsonism above the 17% accounted for by 10 indices of brain pathologies. DISCUSSION Cortical proteins may provide more or less motor resilience in older adults. These proteins are high-value therapeutic targets for drug discovery that may lead to interventions that maintain motor function despite the accumulation of as yet untreatable brain pathologies.
Collapse
Affiliation(s)
- Aron S Buchman
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Lei Yu
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Hans-Ulrich Klein
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, New York, USA
| | - Andrea R Zammit
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Shahram Oveisgharan
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Francine Grodstein
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois, USA
| | - Shinya Tasaki
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| | - Allan I Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Nicholas T Seyfried
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Biochemistry, Emory University, Atlanta, Georgia, USA
| | - David A Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
3
|
An Y, Wang Q, Zhang L, Sun F, Zhang G, Dong H, Li Y, Peng Y, Li H, Zhu W, Ji S, Wang Y, Guo X. OSlgg: An Online Prognostic Biomarker Analysis Tool for Low-Grade Glioma. Front Oncol 2020; 10:1097. [PMID: 32775301 PMCID: PMC7381343 DOI: 10.3389/fonc.2020.01097] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/02/2020] [Indexed: 12/28/2022] Open
Abstract
Glioma is the most frequent primary brain tumor that causes high mortality and morbidity with poor prognosis. There are four grades of gliomas, I to IV, among which grade II and III are low-grade glioma (LGG). Although less aggressive, LGG almost universally progresses to high-grade glioma and eventual causes death if lacking of intervention. Current LGG treatment mainly depends on surgical resection followed by radiotherapy and chemotherapy, but the survival rates of LGG patients are low. Therefore, it is necessary to use prognostic biomarkers to classify patients into subgroups with different risks and guide clinical managements. Using gene expression profiling and long-term follow-up data, we established an Online consensus Survival analysis tool for LGG named OSlgg. OSlgg is comprised of 720 LGG cases from two independent cohorts. To evaluate the prognostic potency of genes, OSlgg employs the Kaplan-Meier plot with hazard ratio and p value to assess the prognostic significance of genes of interest. The reliability of OSlgg was verified by analyzing 86 previously published prognostic biomarkers of LGG. Using OSlgg, we discovered two novel potential prognostic biomarkers (CD302 and FABP5) of LGG, and patients with the elevated expression of either CD302 or FABP5 present the unfavorable survival outcome. These two genes may be novel risk predictors for LGG patients after further validation. OSlgg is public and free to the users at http://bioinfo.henu.edu.cn/LGG/LGGList.jsp.
Collapse
Affiliation(s)
- Yang An
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| | - Qiang Wang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| | - Lu Zhang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| | - Fengjie Sun
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| | - Guosen Zhang
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| | - Huan Dong
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| | - Yingkun Li
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| | - Yanyu Peng
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| | - Haojie Li
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| | - Wan Zhu
- Department of Anesthesia, Stanford University, Stanford, CA, United States
| | - Shaoping Ji
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| | - Yunlong Wang
- Henan Bioengineering Research Center, Zhengzhou, China
| | - Xiangqian Guo
- Department of Predictive Medicine, Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, Kaifeng Key Laboratory of Cell Signal Transduction, School of Basic Medical Sciences, School of Software, Henan University, Kaifeng, China
| |
Collapse
|
4
|
MiR-629-5p promotes the invasion of lung adenocarcinoma via increasing both tumor cell invasion and endothelial cell permeability. Oncogene 2020; 39:3473-3488. [PMID: 32108166 DOI: 10.1038/s41388-020-1228-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 12/18/2022]
Abstract
Tumor invasion underlies further metastasis, the leading cause for cancer-related deaths. Deregulation of microRNAs has been identified associated with the malignant behavior of various cancers, including lung adenocarcinoma (LUAD), the major subtype of lung cancer. Here, we showed the significantly positive correlation between miR-629-5p level and tumor invasion in LUAD specimens (n = 49). In a human LUAD metastasis mouse model, H1650 cells (high level of miR-629-5p) were more aggressive than A549 cells (low level of miR-629-5p) in vivo, including higher incidence of vascular invasion and pulmonary colonization. Ectopic expression of miR-629-5p in A549 cells also increased their invasive capability. Then we identified that miR-629-5p promotes LUAD invasion in a mode of dual regulation via tumor cells invasion and endothelial cells permeability, respectively. In tumor cells, miR-629-5p enhanced motility and invasiveness of tumor cells by directly targeting PPWD1 (a cyclophilin), which clinically related to tumor invasion in LUAD specimens. Restoring PPWD1 protein significantly attenuated the invasion-promoting effects of miR-629-5p. Besides, exosomal-miR-629-5p secreted from tumor cells could be transferred to endothelial cells and increased endothelial monolayers permeability by suppressing CELSR1 (a nonclassic-type cadherin), which had a low level in the endothelial cells of invasive LUAD specimens. Activating the expression of CELSR1 in endothelial cells markedly blocked the effect of miR-629-5p. Our study suggests the dual roles of miR-629-5p in tumor cells and endothelial cells for LUAD invasion, implying a therapeutic option to targeting miR-629-5p using the "one stone, two birds" strategy in LUAD.
Collapse
|
5
|
Rajendran A, Vaidya K, Mendoza J, Bridwell-Rabb J, Kamat SS. Functional Annotation of ABHD14B, an Orphan Serine Hydrolase Enzyme. Biochemistry 2019; 59:183-196. [PMID: 31478652 DOI: 10.1021/acs.biochem.9b00703] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The metabolic serine hydrolase family is, arguably, one of the largest functional enzyme classes in mammals, including humans, comprising 1-2% of the total proteome. This enzyme family uses a conserved nucleophilic serine residue in the active site to perform diverse hydrolytic reactions and consists of proteases, lipases, esterases, amidases, and transacylases, which are prototypical members of this family. In humans, this enzyme family consists of >250, of which approximately 40% members remain unannotated, in terms of both their endogenous substrates and the biological pathways that they regulate. The enzyme ABHD14B, an outlying member of this family, is also known as CCG1/TAFII250-interacting factor B, as it was found to be associated with transcription initiation factor TFIID. The crystal structure of human ABHD14B was determined more than a decade ago; however, its endogenous substrates remain elusive. In this paper, we annotate ABHD14B as a lysine deacetylase (KDAC), showing this enzyme's ability to transfer an acetyl group from a post-translationally acetylated lysine to coenzyme A (CoA), to yield acetyl-CoA, while regenerating the free amine of protein lysine residues. We validate these findings by in vitro biochemical assays using recombinantly purified human ABHD14B in conjunction with cellular studies in a mammalian cell line by knocking down ABHD14B and by identification of a putative substrate binding site. Finally, we report the development and characterization of a much-needed, exquisitely selective ABHD14B antibody, and using it, we map the cellular and tissue distribution of ABHD14B and prospective metabolic pathways that this enzyme might biologically regulate.
Collapse
Affiliation(s)
- Abinaya Rajendran
- Department of Biology , Indian Institute of Science Education and Research (IISER) Pune , Dr. Homi Bhabha Road Pashan , Pune 411008 , Maharashtra , India
| | - Kaveri Vaidya
- Department of Biology , Indian Institute of Science Education and Research (IISER) Pune , Dr. Homi Bhabha Road Pashan , Pune 411008 , Maharashtra , India
| | - Johnny Mendoza
- Department of Chemistry, College of Literature, Science and the Arts , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Jennifer Bridwell-Rabb
- Department of Chemistry, College of Literature, Science and the Arts , University of Michigan , Ann Arbor , Michigan 48109 , United States
| | - Siddhesh S Kamat
- Department of Biology , Indian Institute of Science Education and Research (IISER) Pune , Dr. Homi Bhabha Road Pashan , Pune 411008 , Maharashtra , India
| |
Collapse
|
6
|
Berner AM, Morrissey GJ, Murugaesu N. Clinical Analysis of Whole Genome Sequencing in Cancer Patients. CURRENT GENETIC MEDICINE REPORTS 2019. [DOI: 10.1007/s40142-019-00169-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Alexandraki KI, Tsoli M, Kyriakopoulos G, Angelousi A, Nikolopoulos G, Kolomodi D, Kaltsas GA. Current concepts in the diagnosis and management of neuroendocrine neoplasms of unknown primary origin. MINERVA ENDOCRINOL 2019; 44:378-386. [PMID: 30991795 DOI: 10.23736/s0391-1977.19.03012-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neuroendocrine neoplasms (NENs) of unknown primary origin (UPO-NENs) are advanced neoplasms constituting 11-22% of all NENs that by definition their primary tissue of origin has not been identified with standard diagnostic work-up. Delineating the primary site of origin of UPO-NENs has important implications for selecting the appropriate treatment and overall prognosis. The small bowel, followed by the lung and pancreas are the most prevalent primary sites of origin of UPO-NENs that are uncovered during an extensive and prolonged diagnostic work-up; however, a number of UPO-NENs may still remain occult even after prolonged follow-up. A number of diagnostic algorithms that incorporate histopathological, molecular, imaging (either morphological or functional imaging), and serum biomarkers can help to identify the primary tumor origin. It is expected that advances in these fields will help reduce significantly the number of UPO-NENs.
Collapse
Affiliation(s)
- Krystallenia I Alexandraki
- Unit of Endocrinology, First Department of Internal Medicine, Laiko University Hospital, National and Kapodistrian University of Athens, Athens, Greece -
| | - Marina Tsoli
- Unit of Endocrinology, First Department of Internal Medicine, Laiko University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Anna Angelousi
- Unit of Endocrinology, First Department of Internal Medicine, Laiko University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Nikolopoulos
- Unit of Endocrinology, First Department of Internal Medicine, Laiko University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Denise Kolomodi
- Unit of Endocrinology, First Department of Internal Medicine, Laiko University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Gregory A Kaltsas
- Unit of Endocrinology, First Department of Internal Medicine, Laiko University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
8
|
Xu J, Gu W, Ji K, Xu Z, Zhu H, Zheng W. Sequence analysis and structure prediction of ABHD16A and the roles of the ABHD family members in human disease. Open Biol 2019; 8:rsob.180017. [PMID: 29794032 PMCID: PMC5990648 DOI: 10.1098/rsob.180017] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Abhydrolase domain containing 16A (ABHD16A) is a member of the α/β hydrolase domain-containing (ABHD) protein family and is expressed in a variety of animal cells. Studies have shown that ABHD16A has acylglycerol lipase and phosphatidylserine lipase activities. Its gene location in the main histocompatibility complex (MHC) III gene cluster suggests that this protein may participate in the immunomodulation of the body. The results of studies investigating nearly 20 species of ABHDs reveal that the ABHD proteins are key factors in metabolic regulation and disease occurrence and development. In this paper, we summarize the related progress regarding the function of ABHD16A and other ABHD proteins. A prediction of the active sites and structural domains of ABHD16A and an analysis of the amino acid sites are included. Moreover, we analysed the amino acid sequences of the ABHD16A molecules in different species and provide an overview of the related functions and diseases associated with these proteins. The functions and diseases related to ABHD are systematically summarized and highlighted. Future research directions for studies investigating the functions and mechanisms of these proteins are also suggested. Further studies investigating the function of ABHD proteins may further confirm their positions as important determinants of lipid metabolism and related diseases.
Collapse
Affiliation(s)
- Jun Xu
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, People's Republic of China
| | - Weizhen Gu
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, People's Republic of China
| | - Kai Ji
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, People's Republic of China
| | - Zhao Xu
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, People's Republic of China
| | - Haihua Zhu
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, People's Republic of China.,Henan Business Research Institute Co. Ltd, Zhengzhou, He'nan, People's Republic of China
| | - Wenming Zheng
- College of Life Sciences, Henan Agricultural University, 95 Wenhua Road, Zhengzhou 450002, People's Republic of China
| |
Collapse
|
9
|
Kyriakopoulos G, Mavroeidi V, Chatzellis E, Kaltsas GA, Alexandraki KI. Histopathological, immunohistochemical, genetic and molecular markers of neuroendocrine neoplasms. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:252. [PMID: 30069454 DOI: 10.21037/atm.2018.06.27] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neuroendocrine neoplasms (NENs) arise from cells of the neuroendocrine system located in many sites amongst which most common are the gastrointestinal (GI) system and the lung. The efforts to assess the specific site of origin or predict the biological behavior of NENs is based upon a detailed study of neoplasm's architectural pattern, immunohistochemical, genetic and molecular profile. Immunohistochemistry is used to characterize the aggressivity of NENs, by assessing the proliferation index Ki-67, as well as the neuroendocrine differentiation by assessing chromogranin A (CgA) and CD56. Basal panels of immunohistochemical markers such as CDX-2, Isl-1, TTF-1, PAX6/8 are currently being used to allocate the neoplasms, while in dubious cases new markers are investigating. Unraveling the genetic and molecular mechanisms of NENs pathogenesis along with shedding light on the molecular heterogeneity of neoplasms and the individual patterns of molecular lesions, underlining these neoplasms may provide new tools in terms of diagnostics and therapeutics. Molecular targeted therapies (MTTs) such as everolimus and sunitinib have been the first example of druggable molecular targets implicated in NENs that have been approved for NEN treatment. New investigational drugs are developing along with genetic tests that may allow the identification of the specific subset of patients that will respond to each individual MTT. Multiparametrical molecular and genetic analysis such as the NETest and the MASTER are already in trials shedding light in a step-by-step management of NENs that allow not only the selection of an appropriate therapeutic option but also the identification of response to treatment or early relapse allowing an early amendment of the strategy. Summarizing the combination of histopathological, immunohistochemical, genetic and molecular profile of a NEN opens new horizons in the efficient management of NENs.
Collapse
Affiliation(s)
| | - Vasiliki Mavroeidi
- Endocrine Unit, 1st Department of Propaedeutic Medicine, Laiko University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Eleftherios Chatzellis
- Endocrine Unit, 1st Department of Propaedeutic Medicine, Laiko University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Gregory A Kaltsas
- Endocrine Unit, 1st Department of Propaedeutic Medicine, Laiko University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Krystallenia I Alexandraki
- Endocrine Unit, 1st Department of Propaedeutic Medicine, Laiko University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
10
|
Alexandraki K, Angelousi A, Boutzios G, Kyriakopoulos G, Rontogianni D, Kaltsas G. Management of neuroendocrine tumors of unknown primary. Rev Endocr Metab Disord 2017; 18:423-431. [PMID: 29199361 DOI: 10.1007/s11154-017-9437-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Neuroendocrine neoplams (NENs) are mostly relatively indolent malignancies but a significant number have metastatic disease at diagnosis mainly to the liver. Although in the majority of such cases the primary origin of the tumor can be identified, in approximately 11-22% no primary tumor is found and such cases are designated as NENs of unknown primary origin (UPO). This has significant therapeutic implications with respect to potentially resectable hepatic disease and/or application of appropriate medical therapy, either chemotherapeutic agents or targeted treatment, as the response to various treatments varies according to the origin of the primary tumor. This lack of tumor specific orientated treatment may also account for the relatively poorer prognosis of NENs of UPO compared to metastatic NENs with a known primary site. In the majority of cases the primary tumors are located in the small bowel and the lung, but a number may still elude detection. Occasionally the presence of a functional syndrome may direct to the specific tissue of origin but in the majority of cases a number of biochemical, imaging, histopathological and molecular modalities are utilized to help identify the primary origin of the tumor and direct treatment accordingly. Several diagnostic algorithms have recently been developed to help localize an occult primary tumor; however, in a number of cases no lesion is identified even after prolonged follow-up. It is expected that the delineation of the molecular signature of the different NENs may help identify such cases and provide appropriate treatment.
Collapse
Affiliation(s)
- Krystallenia Alexandraki
- Division of Endocrinology, Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anna Angelousi
- Division of Endocrinology, Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Boutzios
- Division of Endocrinology, Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | | | - Gregory Kaltsas
- Division of Endocrinology, Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
11
|
Integration of 3D multimodal imaging data of a head and neck cancer and advanced feature recognition. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:946-956. [DOI: 10.1016/j.bbapap.2016.08.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 08/03/2016] [Accepted: 08/27/2016] [Indexed: 12/14/2022]
|
12
|
Rahn J, Lennicke C, Kipp AP, Müller AS, Wessjohann LA, Lichtenfels R, Seliger B. Altered protein expression pattern in colon tissue of mice upon supplementation with distinct selenium compounds. Proteomics 2017; 17. [DOI: 10.1002/pmic.201600486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/16/2017] [Accepted: 04/11/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Jette Rahn
- Institute of Medical Immunology; Martin Luther University Halle-Wittenberg; Halle (Saale) Germany
| | - Claudia Lennicke
- Institute of Medical Immunology; Martin Luther University Halle-Wittenberg; Halle (Saale) Germany
| | - Anna P. Kipp
- German Institute of Human Nutrition; Potsdam-Rehbrücke; Nuthetal Germany
| | - Andreas S. Müller
- Institute of Agricultural and Nutritional Sciences; Martin Luther University Halle-Wittenberg; Halle (Saale) Germany
- Delacon Biotechnik GmbH; Steyregg Austria
| | | | - Rudolf Lichtenfels
- Institute of Medical Immunology; Martin Luther University Halle-Wittenberg; Halle (Saale) Germany
| | - Barbara Seliger
- Institute of Medical Immunology; Martin Luther University Halle-Wittenberg; Halle (Saale) Germany
| |
Collapse
|
13
|
Holder JL, Cheung SW. Refinement of the postnatal growth restriction locus of chromosome 5q12-13 deletion syndrome. Am J Med Genet A 2015; 167A:2737-41. [PMID: 26138022 DOI: 10.1002/ajmg.a.37228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 06/11/2015] [Indexed: 11/05/2022]
Abstract
Individuals with deletions of chromosome 5q12-13 have rarely been reported and have a range of phenotypes including postnatal growth restriction, intellectual disability, hyperactivity, and ocular abnormalities. Most individuals reported have large deletions or complex rearrangements which have made identifying genes responsible for these phenotypes challenging. Here we report an individual with a chromosome 5q12-13 deletion with intellectual disability, hyperactivity and restricted linear growth. Based on the location of our patient's deletion in relation to the previously reported deletions, we have narrowed the locus for postnatal growth restriction to less than 1 megabase. Further refinement of this locus with reports of additional individuals with deletions of this region will allow for better understanding of the gene(s) responsible for this phenotype.
Collapse
Affiliation(s)
- J Lloyd Holder
- Department of Pediatrics, Division of Neurology and Developmental Neuroscience, Baylor College of Medicine and Texas Children's Hospital, Houston, Texas
| | - Sau-Wai Cheung
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
14
|
Frilling A, Smith G, Clift AK, Martin J. Capsule endoscopy to detect primary tumour site in metastatic neuroendocrine tumours. Dig Liver Dis 2014; 46:1038-42. [PMID: 25086997 DOI: 10.1016/j.dld.2014.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Revised: 07/02/2014] [Accepted: 07/06/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND In patients with metastatic neuroendocrine tumours, primary tumour localisation is often difficult with morphological and/or functional imaging. Although utilised in investigating various small bowel pathologies, evidence for using video capsule endoscopy to identify suspected small bowel primaries in patients exhibiting metastatic neuroendocrine tumours is limited. AIMS To assess the role of video capsule endoscopy in locating primary small bowel neuroendocrine tumours when conventional imaging fails to identify the origin of metastatic disease. METHODS We retrospectively compared our institutional database of patients presenting with metastatic neuroendocrine tumours between January 2010 and December 2013 with an analogous database of patients undergoing video capsule endoscopy for various indications. Patients whose primary tumours were not located radiologically and also underwent capsule endoscopy were identified. RESULTS 390 patients with metastasised neuroendocrine tumours presented within the study period. In 11 (2.8%) the primary tumour was not located radiologically. Video capsule endoscopy identified lesions suggestive of small bowel primary in 8/10 patients in whom it was successful. Small bowel primary was confirmed by histological analysis of surgical specimens. CONCLUSIONS Our study supports the use of video capsule endoscopy as part of the diagnostic work-up in selected patients presenting with metastatic neuroendocrine tumours of unknown primary. The clinical utility of this technology requires clearer definition.
Collapse
Affiliation(s)
- Andrea Frilling
- Department of Surgery and Cancer, Imperial College London, Hammersmith Campus, London, United Kingdom.
| | - Geoff Smith
- Department of Gastroenterology, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - Ashley Kieran Clift
- School of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom
| | - John Martin
- Department of Gastroenterology, Imperial College London, Hammersmith Campus, London, United Kingdom
| |
Collapse
|
15
|
Gene expression accurately distinguishes liver metastases of small bowel and pancreas neuroendocrine tumors. Clin Exp Metastasis 2014; 31:935-44. [PMID: 25241033 DOI: 10.1007/s10585-014-9681-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 09/12/2014] [Indexed: 12/31/2022]
Abstract
Small bowel (SBNETs) and pancreatic neuroendocrine tumors (PNETs) often present with liver metastases. Although liver biopsy establishes a neuroendocrine diagnosis, the primary tumor site is frequently unknown without exploratory surgery. Gene expression differences in metastases may distinguish primary SBNETs and PNETs. This study sought to determine expression differences of four genes in neuroendocrine metastases and to create a gene expression algorithm to distinguish the primary site. Nodal and liver metastases from SBNETs and PNETs (n = 136) were collected at surgery under an Institutional Review Board-approved protocol. Quantitative PCR measured expression of bombesin-like receptor-3, opioid receptor kappa-1, oxytocin receptor, and secretin receptor in metastases. Logistic regression models defined an algorithm predicting the primary tumor site. Models were developed on a training set of 21 nodal metastases and performance was validated on an independent set of nodal and liver metastases. Expression of all four genes was significantly different in SBNET compared to PNET metastases. The optimal model employed expression of bombesin-like receptor-3 and opioid receptor kappa-1. When these genes did not amplify, the algorithm used oxytocin receptor and secretin receptor expression, which allowed classification of all 136 metastases with 94.1 % accuracy. In the independent liver metastasis validation set, 52/56 (92.9 %) were correctly classified. Positive predictive values were 92.5 % for SBNETs and 93.8 % for PNETs. This validated algorithm accurately distinguishes SBNET and PNET metastases based on their expression of four genes. High accuracy in liver metastases demonstrates applicability to the clinical setting. Studies assessing this algorithm's utility in prospective clinical decision-making are warranted.
Collapse
|
16
|
Kaemmerer D, Posorski N, von Eggeling F, Ernst G, Hörsch D, Baum RP, Prasad V, Langer R, Esposito I, Klöppel G, Sehner S, Knösel T, Hommann M. The search for the primary tumor in metastasized gastroenteropancreatic neuroendocrine neoplasm. Clin Exp Metastasis 2014; 31:817-27. [PMID: 25098566 DOI: 10.1007/s10585-014-9672-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/28/2014] [Indexed: 12/16/2022]
Abstract
Gastroenteropancreatic neuroendocrine tumors (NETs) often present as liver metastasis from a carcinoma of unknown primary. We recently showed that primary NETs from the pancreas, small intestine and stomach as well as their respective liver metastases differ from each other by the expression profile of the three genes CD302, PPWD1 and ABHB14B. The gene and protein expression of CD302, PPWD1, and ABHB14B was studied in abdominal NET metastases to identify the site of the respective primary tumors. Cryopreserved tissue from NET metastases collected in different institutions (group A: 29, group B: 50, group C: 132 specimens) were examined by comparative genomic hybridization (Agilent 105 K), gene expression analysis (Agilent 44 K) (groups A and B) and immunohistochemistry (group C). The data were blindly evaluated, i.e. without knowing the site of the primary. Gene expression analysis correctly revealed the primary in the ileum in 94 % of the cases of group A and in 58 % of group B. A pancreatic primary was predicted in 83 % (group A) and 20 % (group B), respectively. The combined sensitivity of group A and B was 75 % for ileal NETs and 38 % for pancreatic NETs. Immunohistochemical analysis of group C revealed an overall sensitivity of 80 %. Gene and protein expression analysis of CD302 and PPWD1 in NET metastases correctly identifies the primary in the pancreas or the ileum in 80 % of the cases, provided that the tissue is well preserved. Immunohistochemical profiling revealed CD302 as the best marker for ileal and PPWD1 for pancreatic detection.
Collapse
Affiliation(s)
- D Kaemmerer
- Department of General and Visceral Surgery, Zentralklinik Bad Berka, Robert-Koch-Allee 9, 99437, Bad Berka, Germany,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kidd M, Modlin IM, Drozdov I. Gene network-based analysis identifies two potential subtypes of small intestinal neuroendocrine tumors. BMC Genomics 2014; 15:595. [PMID: 25023465 PMCID: PMC4124138 DOI: 10.1186/1471-2164-15-595] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/07/2014] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Tumor transcriptomes contain information of critical value to understanding the different capacities of a cell at both a physiological and pathological level. In terms of clinical relevance, they provide information regarding the cellular "toolbox" e.g., pathways associated with malignancy and metastasis or drug dependency. Exploration of this resource can therefore be leveraged as a translational tool to better manage and assess neoplastic behavior. The availability of public genome-wide expression datasets, provide an opportunity to reassess neuroendocrine tumors at a more fundamental level. We hypothesized that stringent analysis of expression profiles as well as regulatory networks of the neoplastic cell would provide novel information that facilitates further delineation of the genomic basis of small intestinal neuroendocrine tumors. RESULTS We re-analyzed two publically available small intestinal tumor transcriptomes using stringent quality control parameters and network-based approaches and validated expression of core secretory regulatory elements e.g., CPE, PCSK1, secretogranins, including genes involved in depolarization e.g., SCN3A, as well as transcription factors associated with neurodevelopment (NKX2-2, NeuroD1, INSM1) and glucose homeostasis (APLP1). The candidate metastasis-associated transcription factor, ST18, was highly expressed (>14-fold, p < 0.004). Genes previously associated with neoplasia, CEBPA and SDHD, were decreased in expression (-1.5 - -2, p < 0.02). Genomic interrogation indicated that intestinal tumors may consist of two different subtypes, serotonin-producing neoplasms and serotonin/substance P/tachykinin lesions. QPCR validation in an independent dataset (n = 13 neuroendocrine tumors), confirmed up-regulated expression of 87% of genes (13/15). CONCLUSIONS An integrated cellular transcriptomic analysis of small intestinal neuroendocrine tumors identified that they are regulated at a developmental level, have key activation of hypoxic pathways (a known regulator of malignant stem cell phenotypes) as well as activation of genes involved in apoptosis and proliferation. Further refinement of these analyses by RNAseq studies of large-scale databases will enable definition of individual master regulators and facilitate the development of novel tissue and blood-based tools to better understand diagnose and treat tumors.
Collapse
Affiliation(s)
- Mark Kidd
- Yale University School of Medicine, New Haven, CT 06510, USA.
| | | | | |
Collapse
|
18
|
Frilling A, Modlin IM, Kidd M, Russell C, Breitenstein S, Salem R, Kwekkeboom D, Lau WY, Klersy C, Vilgrain V, Davidson B, Siegler M, Caplin M, Solcia E, Schilsky R. Recommendations for management of patients with neuroendocrine liver metastases. Lancet Oncol 2014; 15:e8-21. [PMID: 24384494 DOI: 10.1016/s1470-2045(13)70362-0] [Citation(s) in RCA: 329] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many management strategies exist for neuroendocrine liver metastases. These strategies range from surgery to ablation with various interventional radiology procedures, and include both regional and systemic therapy with diverse biological, cytotoxic, or targeted agents. A paucity of biological, molecular, and genomic information and an absence of data from rigorous trials limit the validity of many publications detailing management. This Review represents the views from an international conference, for which 15 expert working groups prepared evidence-based assessments addressing specific questions, and from which an independent jury derived final recommendations. The aim of the conference was to review the existing approaches to neuroendocrine liver metastases, assess the evidence on which management decisions were based, develop internationally acceptable recommendations for clinical practice (when evidence was available), and make recommendations for clinical and research endeavours. This report represents the final clinical statements and proposals for future research.
Collapse
Affiliation(s)
| | | | - Mark Kidd
- Yale University, New Haven, Connecticut, USA
| | | | | | - Riad Salem
- Northwestern University Chicago, Chicago, USA
| | | | - Wan-yee Lau
- Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | | | - Martyn Caplin
- University College London, London, UK; Royal Free Hospital, London, UK
| | - Enrico Solcia
- IRCCS Fondazione Policlinico San Matteo, Pavia, Italy
| | | | | |
Collapse
|
19
|
Krieg A, Mersch S, Boeck I, Dizdar L, Weihe E, Hilal Z, Krausch M, Möhlendick B, Topp SA, Piekorz RP, Huckenbeck W, Stoecklein NH, Anlauf M, Knoefel WT. New model for gastroenteropancreatic large-cell neuroendocrine carcinoma: establishment of two clinically relevant cell lines. PLoS One 2014; 9:e88713. [PMID: 24551139 PMCID: PMC3925161 DOI: 10.1371/journal.pone.0088713] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 01/09/2014] [Indexed: 12/12/2022] Open
Abstract
Recently, a novel WHO-classification has been introduced that divided gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN) according to their proliferation index into G1- or G2-neuroendocrine tumors (NET) and poorly differentiated small-cell or large-cell G3-neuroendocrine carcinomas (NEC). Our knowledge on primary NECs of the GEP-system is limited due to the rarity of these tumors and chemotherapeutic concepts of highly aggressive NEC do not provide convincing results. The aim of this study was to establish a reliable cell line model for NEC that could be helpful in identifying novel druggable molecular targets. Cell lines were established from liver (NEC-DUE1) or lymph node metastases (NEC-DUE2) from large cell NECs of the gastroesophageal junction and the large intestine, respectively. Morphological characteristics and expression of neuroendocrine markers were extensively analyzed. Chromosomal aberrations were mapped by array comparative genomic hybridization and DNA profiling was analyzed by DNA fingerprinting. In vitro and in vivo tumorigenicity was evaluated and the sensitivity against chemotherapeutic agents assessed. Both cell lines exhibited typical morphological and molecular features of large cell NEC. In vitro and in vivo experiments demonstrated that both cell lines retained their malignant properties. Whereas NEC-DUE1 and -DUE2 were resistant to chemotherapeutic drugs such as cisplatin, etoposide and oxaliplatin, a high sensitivity to 5-fluorouracil was observed for the NEC-DUE1 cell line. Taken together, we established and characterized the first GEP large-cell NEC cell lines that might serve as a helpful tool not only to understand the biology of these tumors, but also to establish novel targeted therapies in a preclinical setup.
Collapse
Affiliation(s)
- Andreas Krieg
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
- * E-mail:
| | - Sabrina Mersch
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Inga Boeck
- Institute of Pathology, Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Levent Dizdar
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Eberhard Weihe
- Institute of Anatomy and Cell Biology, Department of Molecular Neuroscience, Philipps University Marburg, Marburg, Germany
| | - Zena Hilal
- Institute of Pathology, Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Markus Krausch
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Birte Möhlendick
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Stefan A. Topp
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Roland P. Piekorz
- Institute of Biochemistry and Molecular Biology II, Heinrich-Heine University Duesseldorf, Duesseldorf, Germany
| | - Wolfgang Huckenbeck
- Institute of Forensic Medicine, Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Nikolas H. Stoecklein
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Martin Anlauf
- Institute of Pathology, Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| | - Wolfram T. Knoefel
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
20
|
Carr JC, Sherman SK, Wang D, Dahdaleh FS, Bellizzi AM, O'Dorisio MS, O'Dorisio TM, Howe JR. Overexpression of membrane proteins in primary and metastatic gastrointestinal neuroendocrine tumors. Ann Surg Oncol 2013; 20 Suppl 3:S739-S746. [PMID: 24114056 DOI: 10.1245/s10434-013-3318-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Indexed: 01/02/2023]
Abstract
BACKGROUND Small bowel and pancreatic neuroendocrine tumors (SBNETs and PNETs) are rare tumors whose incidence is increasing. Drugs targeting the somatostatin receptor are beneficial in these tumors. To identify additional cell-surface targets, we recently found receptors and membrane proteins with gene expression significantly different from adjacent normal tissues in a small number of primary SBNETs and PNETs. We set out to validate these expression differences in a large group of primary neuroendocrine tumors and to determine whether they are present in corresponding liver and lymph node metastases. METHODS Primary SBNETs and PNETs, normal tissue, nodal, and liver metastases were collected and mRNA expression of six target genes was determined by quantitative PCR. Expression was normalized to GAPDH and POLR2A internal controls, and differences as compared to normal tissue were assessed by Welch's t test. RESULTS Gene expression was determined in 45 primary PNETs with 20 nodal and 17 liver metastases, and 51 SBNETs with 50 nodal and 29 liver metastases. Compared to normal tissue, the oxytocin receptor (OXTR) showed significant overexpression in both primary and metastatic SBNETs and PNETs. Significant overexpression was observed for MUC13 and MEP1B in PNET primary tumors, and for GPR113 in primary SBNETs and their metastases. SCTR and ADORA1 were significantly underexpressed in PNETs and their metastases. OXTR protein expression was confirmed by immunohistochemistry. CONCLUSIONS OXTR is significantly overexpressed relative to normal tissue in primary SBNETs and PNETs, and this overexpression is present in their liver and lymph node metastases, making OXTR a promising target for imaging and therapeutic interventions.
Collapse
Affiliation(s)
- Jennifer C Carr
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Scott K Sherman
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Donghong Wang
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Fadi S Dahdaleh
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Andrew M Bellizzi
- Department of Pathology, University of Iowa Carver College of Medicine, Iowa City, IA
| | - M Sue O'Dorisio
- Department of Pediatrics, University of Iowa Carver College of Medicine, Iowa City, IA
| | - Thomas M O'Dorisio
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA
| | - James R Howe
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, IA
| |
Collapse
|
21
|
Current world literature. Curr Opin Endocrinol Diabetes Obes 2013; 20:74-9. [PMID: 23247096 DOI: 10.1097/med.0b013e32835cb529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Carr JC, Boese EA, Spanheimer PM, Dahdaleh FS, Martin M, Calva D, Schafer B, Thole DM, Braun T, O'Dorisio TM, O'Dorisio MS, Howe JR. Differentiation of small bowel and pancreatic neuroendocrine tumors by gene-expression profiling. Surgery 2013; 152:998-1007. [PMID: 23158174 DOI: 10.1016/j.surg.2012.08.040] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 08/20/2012] [Indexed: 12/17/2022]
Abstract
BACKGROUND Between 10% and 20% of patients with neuroendocrine tumors (NETs) present with metastases of unknown primary site. Because knowledge of the primary site has important implications for treatment, we set out to define gene-expression profiles to differentiate between small-bowel NETs (SBNETs) and pancreatic NETs (PNETs). METHODS RNA was extracted from tumor and normal tissues in 11 patients with SBNETs and 15 patients with PNETs, and qPCR was performed for 367 GPCR genes. Differentially expressed genes were identified using the RT2 Profiler. Whole genome expression analysis was performed on 11 SBNETs, 5 PNETS, and corresponding normal tissues. Statistical significance was evaluated by the Student t test and ANOVA. RESULTS Whole-genome analysis revealed 173 significantly differentially expressed genes in SBNETs and normal tissues and in 52 in PNETs. GPCR arrays identified 28 genes in SBNETs and 18 in PNETs, with significant expression differences from normal tissues. In all SBNETs, 2 genes were significantly upregulated by more than fivefold: OXTR and GPR113. No PNETs shared this profile, whereas 73% had a greater than fivefold downregulation of ADORA1 and SCTR. These genes also allowed for determination of the primary site in 8 of 10 liver metastases. CONCLUSION Differential expression patterns using as few as 2 to 4 GPCR genes successfully discriminated primary sites in small bowel and pancreatic NETs.
Collapse
Affiliation(s)
- Jennifer C Carr
- Department of Surgery, University of Iowa Carver College of Medicine, Iowa City, IA 52242-1086, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lord CC, Thomas G, Brown JM. Mammalian alpha beta hydrolase domain (ABHD) proteins: Lipid metabolizing enzymes at the interface of cell signaling and energy metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:792-802. [PMID: 23328280 DOI: 10.1016/j.bbalip.2013.01.002] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 12/07/2012] [Accepted: 01/02/2013] [Indexed: 11/16/2022]
Abstract
Dysregulation of lipid metabolism underlies many chronic diseases such as obesity, diabetes, cardiovascular disease, and cancer. Therefore, understanding enzymatic mechanisms controlling lipid synthesis and degradation is imperative for successful drug discovery for these human diseases. Genes encoding α/β hydrolase fold domain (ABHD) proteins are present in virtually all reported genomes, and conserved structural motifs shared by these proteins predict common roles in lipid synthesis and degradation. However, the physiological substrates and products for these lipid metabolizing enzymes and their broader role in metabolic pathways remain largely uncharacterized. Recently, mutations in several members of the ABHD protein family have been implicated in inherited inborn errors of lipid metabolism. Furthermore, studies in cell and animal models have revealed important roles for ABHD proteins in lipid metabolism, lipid signal transduction, and metabolic disease. The purpose of this review is to provide a comprehensive summary surrounding the current state of knowledge regarding mammalian ABHD protein family members. In particular, we will discuss how ABHD proteins are ideally suited to act at the interface of lipid metabolism and signal transduction. Although, the current state of knowledge regarding mammalian ABHD proteins is still in its infancy, this review highlights the potential for the ABHD enzymes as being attractive targets for novel therapies targeting metabolic disease.
Collapse
Affiliation(s)
- Caleb C Lord
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Gwynneth Thomas
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - J Mark Brown
- Department of Pathology, Section on Lipid Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
24
|
Conesa-Zamora P, García-Solano J, García-García F, Turpin MDC, Trujillo-Santos J, Torres-Moreno D, Oviedo-Ramírez I, Carbonell-Muñoz R, Muñoz-Delgado E, Rodriguez-Braun E, Conesa A, Pérez-Guillermo M. Expression profiling shows differential molecular pathways and provides potential new diagnostic biomarkers for colorectal serrated adenocarcinoma. Int J Cancer 2012; 132:297-307. [DOI: 10.1002/ijc.27674] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Accepted: 06/01/2012] [Indexed: 12/22/2022]
|