1
|
Wang Z, Wu D, Zhang Y, Chen W, Yang Y, Yang Y, Zu G, An Y, Yu X, Qin Y, Xu X, Chen X. PITX2 functions as a transcription factor for GPX4 and protects pancreatic cancer cells from ferroptosis. Exp Cell Res 2024; 439:114074. [PMID: 38710403 DOI: 10.1016/j.yexcr.2024.114074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 05/08/2024]
Abstract
Ferroptosis inhibits tumor progression in pancreatic cancer cells, while PITX2 is known to function as a pro-oncogenic factor in various tumor types, protecting them from ferroptosis and thereby promoting tumor progression. In this study, we sought to investigate the regulatory role of PITX2 in tumor cell ferroptosis within the context of pancreatic cancer. We conducted PITX2 knockdown experiments using lentiviral infection in two pancreatic cancer cell lines, namely PANC-1 and BxPC-3. We assessed protein expression through immunoblotting and mRNA expression through RT-PCR. To confirm PITX2 as a transcription factor for GPX4, we employed Chromatin Immunoprecipitation (ChIP) and Dual-luciferase assays. Furthermore, we used flow cytometry to measure reactive oxygen species (ROS), lipid peroxidation, and apoptosis and employed confocal microscopy to assess mitochondrial membrane potential. Additionally, electron microscopy was used to observe mitochondrial structural changes and evaluate PITX2's regulation of ferroptosis in pancreatic cancer cells. Our findings demonstrated that PITX2, functioning as a transcription factor for GPX4, promoted GPX4 expression, thereby exerting an inhibitory effect on ferroptosis in pancreatic cancer cells and consequently promoting tumor progression. Moreover, PITX2 enhanced the invasive and migratory capabilities of pancreatic cancer cells by activating the WNT signaling pathway. Knockdown of PITX2 increased ferroptosis and inhibited the proliferation of PANC-1 and BxPC-3 cells. Notably, the inhibitory effect on ferroptosis resulting from PITX2 overexpression in these cells could be countered using RSL3, an inhibitor of GPX4. Overall, our study established PITX2 as a transcriptional regulator of GPX4 that could promote tumor progression in pancreatic cancer by reducing ferroptosis. These findings suggest that PITX2 may serve as a potential therapeutic target for combating ferroptosis in pancreatic cancer.
Collapse
Affiliation(s)
- Zhiliang Wang
- Department of Hepatopancreatobiliary Surgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Di Wu
- Department of Hepatopancreatobiliary Surgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Yue Zhang
- Department of Hepatopancreatobiliary Surgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Weibo Chen
- Department of Hepatopancreatobiliary Surgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Yang Yang
- Department of Hepatopancreatobiliary Surgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Yue Yang
- Department of Hepatopancreatobiliary Surgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Guangchen Zu
- Department of Hepatopancreatobiliary Surgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Yong An
- Department of Hepatopancreatobiliary Surgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Department of Oncology, Shanghai Medical College, Shanghai Pancreatic Cancer Institute, Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China
| | - Yi Qin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Department of Oncology, Shanghai Medical College, Shanghai Pancreatic Cancer Institute, Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xiaowu Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, No. 270 Dong'An Road, Xuhui District, Department of Oncology, Shanghai Medical College, Shanghai Pancreatic Cancer Institute, Pancreatic Cancer Institute, Fudan University, Shanghai, 200032, China.
| | - Xuemin Chen
- Department of Hepatopancreatobiliary Surgery, Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu Province, China.
| |
Collapse
|
2
|
Attico E, Galaverni G, Torello A, Bianchi E, Bonacorsi S, Losi L, Manfredini R, Lambiase A, Rama P, Pellegrini G. Comparison between Cultivated Oral Mucosa and Ocular Surface Epithelia for COMET Patients Follow-Up. Int J Mol Sci 2023; 24:11522. [PMID: 37511281 PMCID: PMC10380900 DOI: 10.3390/ijms241411522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Total bilateral Limbal Stem Cell Deficiency is a pathologic condition of the ocular surface due to the loss of corneal stem cells. Cultivated oral mucosa epithelial transplantation (COMET) is the only autologous successful treatment for this pathology in clinical application, although abnormal peripheric corneal vascularization often occurs. Properly characterizing the regenerated ocular surface is needed for a reliable follow-up. So far, the univocal identification of transplanted oral mucosa has been challenging. Previously proposed markers were shown to be co-expressed by different ocular surface epithelia in a homeostatic or perturbated environment. In this study, we compared the transcriptome profile of human oral mucosa, limbal and conjunctival cultured holoclones, identifying Paired Like Homeodomain 2 (PITX2) as a new marker that univocally distinguishes the transplanted oral tissue from the other epithelia. We validated PITX2 at RNA and protein levels to investigate 10-year follow-up corneal samples derived from a COMET-treated aniridic patient. Moreover, we found novel angiogenesis-related factors that were differentially expressed in the three epithelia and instrumental in explaining the neovascularization in COMET-treated patients. These results will support the follow-up analysis of patients transplanted with oral mucosa and provide new tools to understand the regeneration mechanism of transplanted corneas.
Collapse
Affiliation(s)
- Eustachio Attico
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Giulia Galaverni
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Andrea Torello
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, 41125 Modena, Italy
- Holostem Terapie Avanzate s.r.l., 41125 Modena, Italy
| | - Elisa Bianchi
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Susanna Bonacorsi
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Lorena Losi
- Unit of Pathology, Department of Life Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Rossella Manfredini
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, 41125 Modena, Italy
| | | | - Paolo Rama
- SC Ophathalmology, IRCCS Policlinico San Matteo Foundation, 27100 Pavia, Italy
| | - Graziella Pellegrini
- Centre for Regenerative Medicine "Stefano Ferrari", University of Modena and Reggio Emilia, 41125 Modena, Italy
- Holostem Terapie Avanzate s.r.l., 41125 Modena, Italy
| |
Collapse
|
3
|
Wu D, Chen W, Yang Y, Qin Y, Zu G, Zhang Y, An Y, Sun D, Xu X, Chen X. PITX2 in pancreatic stellate cells promotes EMT in pancreatic cancer cells via the Wnt/β-catenin pathway. Acta Biochim Biophys Sin (Shanghai) 2023; 55:1393-1403. [PMID: 37337632 PMCID: PMC10520469 DOI: 10.3724/abbs.2023118] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/06/2023] [Indexed: 06/21/2023] Open
Abstract
Since the prognosis of patients with pancreatic cancer is very poor and there is a lack of treatment methods, this study is performed to investigate the function of PITX2 in pancreatic stellate cells (PSCs) in the progression of pancreatic cancer. Scientific hypotheses are proposed according to bioinformatics analysis and tissue microarray analysis. Stable knockdown of PITX2 in PSCs is achieved through lentiviral infection. The relative expressions of PITX2, α-SMA, vimentin, CTNNB1, AXIN1 and LEF1 are measured in wild-type PSCs and PITX2-knockdown PSCs. Proliferative capacity is measured by EdU assay. After coculture with PSCs, the proliferation, invasion and migration capacity of pancreatic cancer cells are tested. EMT and Wnt/β-catenin downstream genes of pancreatic cancer cells are investigated to reveal the potential mechanism. Bioinformatics analysis reveals that the PITX2 gene is highly expressed in stromal cells in pancreatic cancer and is correlated with squamous-type PDAC. Analysis of PDAC tissue microarray further demonstrates that high PITX2 level in stromal cells is correlated with poor prognosis in PDAC. After stable knockdown of PITX2 in PSCs, the relative protein levels of α-SMA, vimentin, CTNNB1, AXIN1 and LEF1 are decreased, and the proliferative capacity of PSCs is also decreased. After coculture with PSCs, in which PITX2 expression is downregulated, the proliferation, invasion and migration capacities of pancreatic cancer cells are inhibited. Thus, our results show that PITX2-silenced PSCs inhibit the growth, migration and invasion of pancreatic cancer cells via reduced EMT and Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Di Wu
- Department of HepatopancreatobiliaryThird Affiliated Hospital of Soochow UniversityChangzhou213001China
| | - Weibo Chen
- Department of HepatopancreatobiliaryThird Affiliated Hospital of Soochow UniversityChangzhou213001China
| | - Yang Yang
- Department of HepatopancreatobiliaryThird Affiliated Hospital of Soochow UniversityChangzhou213001China
| | - Yi Qin
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
| | - Guangchen Zu
- Department of HepatopancreatobiliaryThird Affiliated Hospital of Soochow UniversityChangzhou213001China
| | - Yue Zhang
- Department of HepatopancreatobiliaryThird Affiliated Hospital of Soochow UniversityChangzhou213001China
| | - Yong An
- Department of HepatopancreatobiliaryThird Affiliated Hospital of Soochow UniversityChangzhou213001China
| | - Donglin Sun
- Department of HepatopancreatobiliaryThird Affiliated Hospital of Soochow UniversityChangzhou213001China
| | - Xiaowu Xu
- Department of Pancreatic SurgeryFudan University Shanghai Cancer CenterShanghai200032China
| | - Xuemin Chen
- Department of HepatopancreatobiliaryThird Affiliated Hospital of Soochow UniversityChangzhou213001China
| |
Collapse
|
4
|
Jiang L, Wang X, Ma F, Wang X, Shi M, Yan Q, Liu M, Chen J, Shi C, Guan XY. PITX2C increases the stemness features of hepatocellular carcinoma cells by up-regulating key developmental factors in liver progenitor. J Exp Clin Cancer Res 2022; 41:211. [PMID: 35765089 PMCID: PMC9238105 DOI: 10.1186/s13046-022-02424-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/20/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Tumor cells exhibited phenotypic and molecular characteristics similar to their lineage progenitor cells. Liver developmental signaling pathways are showed to be associated with HCC development and oncogenesis. The similarities of expression profiling between liver progenitors (LPs) and HCC suggest that understanding the molecular mechanism during liver development could provide insights into HCC.
Methods
To profile the dynamic gene expression during liver development, cells from an in vitro liver differentiation model and two paired hepatocellular carcinoma (HCC) samples were analyzed using deep RNA sequencing. The expression levels of selected genes were analyzed by qRT-PCR. Moreover, the role of a key transcription factor, pituitary homeobox 2 (PITX2), was characterized via in vitro and vivo functional assays. Furthermore, molecular mechanism studies were performed to unveil how PITX2C regulate the key developmental factors in LPs, thereby increasing the stemness of HCC.
Results
PITX2 was found to exhibit a similar expression pattern to specific markers of LPs. PITX2 consists of three isoforms (PITX2A/B/C). The expression of PITX2 is associated with tumor size and overall survival rate, whereas only PITX2C expression is associated with AFP and differentiation in clinical patients. PITX2A/B/C has distinct functions in HCC tumorigenicity. PITX2C promotes HCC metastasis, self-renewal and chemoresistance. Molecular mechanism studies showed that PITX2C could up-regulate RALYL which could enhance HCC stemness via the TGF-β pathway. Furthermore, ChIP assays confirmed the role of PITX2C in regulating key developmental factors in LP.
Conclusion
PITX2C is a newly discovered transcription factor involved in hepatic differentiation and could increase HCC stemness by upregulating key transcriptional factors related to liver development.
Collapse
|
5
|
Ning S, Liu C, Lou W, Yang JC, Lombard AP, D'Abronzo LS, Batra N, Yu AM, Leslie AR, Sharifi M, Evans CP, Gao AC. Bioengineered BERA-Wnt5a siRNA Targeting Wnt5a/FZD2 Signaling Suppresses Advanced Prostate Cancer Tumor Growth and Enhances Enzalutamide Treatment. Mol Cancer Ther 2022; 21:1594-1607. [PMID: 35930737 PMCID: PMC9547958 DOI: 10.1158/1535-7163.mct-22-0216] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/23/2022] [Accepted: 07/28/2022] [Indexed: 01/21/2023]
Abstract
The next-generation antiandrogen drugs such as enzalutamide and abiraterone extend survival times and improve quality of life in patients with advanced prostate cancer. However, resistance to both drugs occurs frequently through mechanisms that are incompletely understood. Wnt signaling, particularly through Wnt5a, plays vital roles in promoting prostate cancer progression and induction of resistance to enzalutamide and abiraterone. Development of novel strategies targeting Wnt5a to overcome resistance is an urgent need. In this study, we demonstrated that Wnt5a/FZD2-mediated noncanonical Wnt pathway is overexpressed in enzalutamide-resistant prostate cancer. In patient databases, both the levels of Wnt5a and FZD2 expression are upregulated upon the development of enzalutamide resistance and correlate with higher Gleason score, biochemical recurrence, and metastatic status, and with shortened disease-free survival duration. Blocking Wnt5a/FZD2 signal transduction not only diminished the activation of noncanonical Wnt signaling pathway, but also suppressed the constitutively activated androgen receptor (AR) and AR variants. Furthermore, we developed a novel bioengineered BERA-Wnt5a siRNA construct and demonstrated that inhibition of Wnt5a expression by the BERA-Wnt5a siRNA significantly suppressed tumor growth and enhanced enzalutamide treatment in vivo. These results indicate that Wnt5a/FZD2 signal pathway plays a critical role in promoting enzalutamide resistance, and targeting this pathway by BERA-Wnt5a siRNA can be developed as a potential therapy to treat advanced prostate cancer.
Collapse
Affiliation(s)
- Shu Ning
- Department of Urologic Surgery, University of California Davis, Davis, California
| | - Chengfei Liu
- Department of Urologic Surgery, University of California Davis, Davis, California
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California
| | - Wei Lou
- Department of Urologic Surgery, University of California Davis, Davis, California
| | - Joy C Yang
- Department of Urologic Surgery, University of California Davis, Davis, California
| | - Alan P Lombard
- Department of Urologic Surgery, University of California Davis, Davis, California
| | - Leandro S D'Abronzo
- Department of Urologic Surgery, University of California Davis, Davis, California
| | - Neelu Batra
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, California
| | - Ai-Ming Yu
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, California
| | - Amy R Leslie
- Department of Urologic Surgery, University of California Davis, Davis, California
| | - Masuda Sharifi
- Department of Urologic Surgery, University of California Davis, Davis, California
| | - Christopher P Evans
- Department of Urologic Surgery, University of California Davis, Davis, California
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California
| | - Allen C Gao
- Department of Urologic Surgery, University of California Davis, Davis, California
- UC Davis Comprehensive Cancer Center, University of California Davis, Davis, California
- VA Northern California Health Care System, Sacramento, California
| |
Collapse
|
6
|
Tuerxun K, Zhang S, Zhang Y. Downregulation of PITX2 inhibits the proliferation and migration of liver cancer cells and induces cell apoptosis. Open Life Sci 2022; 16:1322-1329. [PMID: 35071766 PMCID: PMC8724353 DOI: 10.1515/biol-2021-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/01/2021] [Accepted: 09/21/2021] [Indexed: 11/15/2022] Open
Abstract
Paired-like homeodomain 2 (PITX2) functions as a transcription factor to participate in vertebrate embryogenesis, and dysregulated PITX2 expression was associated with the progression of various cancers. The functional role of PITX2 in tumorigenesis of liver cancer remains unknown. Western blot analysis showed that expression levels of PITX2 were enhanced in the liver cancer tissues and cells. siRNAs targeting PITX2 induced downregulation of PITX2 in liver cancer cells. siRNA-induced knockdown of PITX2 decreased liver cancer cell viability and proliferation, while promoting cell apoptosis by increasing cleaved-PARP, cleaved caspase 3, and cleaved caspase 9. The knockdown of PITX2 repressed liver cancer cell migration and invasion. In conclusion, elevated PITX2 expression was associated with liver cancer progression through repression of cell apoptosis and promoting cell proliferation and metastasis, and silencing of PITX2 might serve as a potential therapeutic strategy for the treatment of liver cancer.
Collapse
Affiliation(s)
- Kebinuer Tuerxun
- Department of Infection and Liver Disease Center, The First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan South Road, Urumqi, Xinjiang, 830054, China
| | - Shufang Zhang
- Department of Infection and Liver Disease Center, The First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan South Road, Urumqi, Xinjiang, 830054, China
| | - Yuexin Zhang
- Department of Infection and Liver Disease Center, The First Affiliated Hospital of Xinjiang Medical University, No. 137, Liyushan South Road, Urumqi, Xinjiang, 830054, China
| |
Collapse
|
7
|
Napieralski R, Schricker G, Auer G, Aubele M, Perkins J, Magdolen V, Ulm K, Hamann M, Walch A, Weichert W, Kiechle M, Wilhelm OG. PITX2 DNA-Methylation: Predictive versus Prognostic Value for Anthracycline-Based Chemotherapy in Triple-Negative Breast Cancer Patients. Breast Care (Basel) 2021; 16:523-531. [PMID: 34720812 DOI: 10.1159/000510468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 07/24/2020] [Indexed: 12/31/2022] Open
Abstract
Background PITX2 DNA methylation has been shown to predict outcomes in high-risk breast cancer patients after anthracycline-based chemotherapy. To determine its prognostic versus predictive value, the impact of PITX2 DNA methylation on outcomes was studied in an untreated cohort vs. an anthracycline-treated triple-negative breast cancer (TNBC) cohort. Material and Methods The percent DNA methylation ratio (PMR) of paired-like homeodomain transcription factor 2 (PITX2) was determined by a validated methylation-specific real-time PCR test. Patient samples of routinely collected archived formalin-fixed paraffin-embedded (FFPE) tissue and clinical data from 144 TNBC patients of 2 independent cohorts (i.e., 66 untreated patients and 78 patients treated with anthracycline-based chemotherapy) were analyzed. Results The risk of 5- and 10-year overall survival (OS) increased continuously with rising PITX2 DNA methylation in the anthracycline-treated population, but it increased only slightly during 10-year follow-up time in the untreated patient population. PITX2 DNA methylation with a PMR cutoff of 2 did not show significance for poor vs. good outcomes (OS) in the untreated patient cohort (HR = 1.55; p = 0.259). In contrast, the PITX2 PMR cutoff of 2 identified patients with poor (PMR >2) vs. good (PMR ≤2) outcomes (OS) with statistical significance in the anthracycline-treated cohort (HR = 3.96; p = 0.011). The results in the subgroup of patients who did receive anthracyclines only (no taxanes) confirmed this finding (HR = 5.71; p = 0.014). Conclusion In this hypothesis-generating study PITX2 DNA methylation demonstrated predominantly predictive value in anthracycline treatment in TNBC patients. The risk of poor outcome (OS) correlates with increasing PITX2 DNA methylation.
Collapse
Affiliation(s)
| | | | - Gert Auer
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | | | | | - Viktor Magdolen
- Department of Gynecology and Obstetrics and Comprehensive Cancer Center (CCCTUM), Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Kurt Ulm
- Institute of Medical Informatics, Statistics and Epidemiology, Technische Universität München, Munich, Germany
| | - Moritz Hamann
- Department of Gynecology Rotkreuzklinikum München, Munich, Germany
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Munich, Germany
| | - Wilko Weichert
- Institute of Pathology, Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | - Marion Kiechle
- Department of Gynecology and Obstetrics and Comprehensive Cancer Center (CCCTUM), Klinikum Rechts der Isar, Technische Universität München, Munich, Germany
| | | |
Collapse
|
8
|
Kaplan Z, Zielske SP, Ibrahim KG, Cackowski FC. Wnt and β-Catenin Signaling in the Bone Metastasis of Prostate Cancer. Life (Basel) 2021; 11:1099. [PMID: 34685470 PMCID: PMC8537160 DOI: 10.3390/life11101099] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 01/08/2023] Open
Abstract
Wnt family proteins and β-catenin are critical for the regulation of many developmental and oncogenic processes. Wnts are secreted protein ligands which signal using a canonical pathway, and involve the transcriptional co-activator β-catenin or non-canonical pathways that are independent of β-catenin. Bone metastasis is unfortunately a common occurrence in prostate cancer and can be conceptualized as a series of related steps or processes, most of which are regulated by Wnt ligands and/or β-catenin. At the primary tumor site, cancer cells often take on mesenchymal properties, termed epithelial mesenchymal transition (EMT), which are regulated in part by the Wnt receptor FZD4. Then, Wnt signaling, especially Wnt5A, is of importance as the cells circulate in the blood stream. Upon arriving in the bones, cancer cells migrate and take on stem-like or tumorigenic properties, as aided through Wnt or β-catenin signaling involving CHD11, CD24, and Wnt5A. Additionally, cancer cells can become dormant and evade therapy, in part due to regulation by Wnt5A. In the bones, E-selectin can aid in the reversal of EMT, a process termed mesenchymal epithelial transition (MET), as a part of metastatic tumorigenesis. Once bone tumors are established, Wnt/β-catenin signaling is involved in the suppression of osteoblast function largely through DKK1.
Collapse
Affiliation(s)
- Zachary Kaplan
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA;
| | - Steven P. Zielske
- Department of Oncology and Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.P.Z.); (K.G.I.)
| | - Kristina G. Ibrahim
- Department of Oncology and Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.P.Z.); (K.G.I.)
| | - Frank C. Cackowski
- Department of Oncology and Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA; (S.P.Z.); (K.G.I.)
| |
Collapse
|
9
|
Zhang H, Qi J, Guo J, Wang Y, Guan Y, Fan J, Sui L, Xu Y, Kong L, Yan B, Kong Y. Paired-like homeodomain transcription factor 2 affects endometrial cell function and embryo implantation through the Wnt/β-catenin pathway. Cell Biol Int 2021; 45:1957-1965. [PMID: 34003541 DOI: 10.1002/cbin.11636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/03/2021] [Accepted: 05/16/2021] [Indexed: 11/10/2022]
Abstract
The successful implantation of embryos is crucial for pregnancy in mammals. This complex process is inevitably dependent on the development of the endometrium. The paired-like homeodomain transcription factor 2 (PITX2) is involved in a variety of biological processes, but whether it is involved in embryo implantation has not been reported. In this study, we aimed to investigate uterine expression and regulation of PITX2 during implantation. We found that PITX2 was elevated in the human endometrium in the secretory phase. The results of the pregnant mouse models showed that PITX2 expression was spatiotemporal in mouse endometrial tissue throughout peri-implantation period, and it was significantly upregulated at the time of implantation. Interestingly, PITX2 was mainly localized to the glandular epithelium cells on D2.5-3.5 of pregnancy, while D5.5-6.5 was largely expressed in stromal cells. In vitro, PITX2 regulated endometrial cells proliferation, migration, invasion, and other functions through the Wnt/β-catenin signaling pathway. In addition, a significant decrease in the rate of embryo implantation was observed after injecting PITX2 small interfering RNA into the uterine horn. These results demonstrate the effects of PITX2 on the physiological function of endometrial cells and embryo implantation, suggesting a role in the endometrial regulatory mechanism during implantation.
Collapse
Affiliation(s)
- Hongshuo Zhang
- Core Laboratory Glycobiology & Glycoengineering, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Jia Qi
- Core Laboratory Glycobiology & Glycoengineering, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Jinqiu Guo
- Core Laboratory Glycobiology & Glycoengineering, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Yufei Wang
- Core Laboratory Glycobiology & Glycoengineering, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Ying Guan
- Core Laboratory Glycobiology & Glycoengineering, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Jianhui Fan
- Core Laboratory Glycobiology & Glycoengineering, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Linlin Sui
- Core Laboratory Glycobiology & Glycoengineering, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Yuefei Xu
- Core Laboratory Glycobiology & Glycoengineering, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Li Kong
- Department of Histology and Embryology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Bin Yan
- Department of Gynecology, First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Ying Kong
- Core Laboratory Glycobiology & Glycoengineering, Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
10
|
Lin SR, Mokgautsi N, Liu YN. Ras and Wnt Interaction Contribute in Prostate Cancer Bone Metastasis. Molecules 2020; 25:E2380. [PMID: 32443915 PMCID: PMC7287876 DOI: 10.3390/molecules25102380] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/15/2020] [Accepted: 05/16/2020] [Indexed: 12/12/2022] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent and malignant cancer types in men, which causes more than three-hundred thousand cancer death each year. At late stage of PCa progression, bone marrow is the most often metastatic site that constitutes almost 70% of metastatic cases of the PCa population. However, the characteristic for the osteo-philic property of PCa is still puzzling. Recent studies reported that the Wnt and Ras signaling pathways are pivotal in bone metastasis and that take parts in different cytological changes, but their crosstalk is not well studied. In this review, we focused on interactions between the Wnt and Ras signaling pathways during each stage of bone metastasis and present the fate of those interactions. This review contributes insights that can guide other researchers by unveiling more details with regard to bone metastasis and might also help in finding potential therapeutic regimens for preventing PCa bone metastasis.
Collapse
Affiliation(s)
- Shian-Ren Lin
- Graduate Institute of Cancer Biology and Drug Discovery, Collage of Medical Science and Technology, Taipei Medical University, Taipei 11024, Taiwan;
| | - Ntlotlang Mokgautsi
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11024, Taiwan;
| | - Yen-Nien Liu
- Graduate Institute of Cancer Biology and Drug Discovery, Collage of Medical Science and Technology, Taipei Medical University, Taipei 11024, Taiwan;
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11024, Taiwan;
| |
Collapse
|
11
|
PITX2 enhances progression of lung adenocarcinoma by transcriptionally regulating WNT3A and activating Wnt/β-catenin signaling pathway. Cancer Cell Int 2019; 19:96. [PMID: 31043858 PMCID: PMC6460850 DOI: 10.1186/s12935-019-0800-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 03/23/2019] [Indexed: 12/28/2022] Open
Abstract
Background The homeodomain transcription factor, PITX2 is associated with tumorigenesis of multiple cancers. In this research, we aimed to study the expression, function and mechanism of PITX2 in lung adenocarcinoma (LUAD). Methods The TCGA dataset was used to analyze the expression and clinical significance of PITX2 in LUAD. The expression of PITX2 in tumor samples and LUAD cell lines was examined by quantitative real-time PCR (qRT-PCR) and western blotting. Small interfering RNAs (siRNAs) were constructed to knockdown PITX2 and to determine the physiological function of PITX2 in vitro. Xenograft model was used to confirm the role of PITX2 in vivo. Results PITX2 was overexpressed in LUAD and patients with high level of PITX2 had a worse overall survival and an advanced clinical stage. Knockdown of PITX2 inhibited cell proliferation, migration and invasion of LUAD cells. Further study revealed that the oncogenic role of PITX2 was dependent on activating Wnt/β-catenin signaling pathway, especially by transcriptionally regulating the Wnt gene family member, WNT3A. Lastly, we identified miR-140-5p as a negative mediator of PITX2 by binding its 3′UTR and ectopic expression of miR-140-5p inhibited progression of LUAD cells via suppressing the expression of PITX2. Conclusions Up-regulation of PITX2 acts as an oncogene in LUAD by activating Wnt/β-catenin signaling pathway, suggesting that PITX2 may serve as a novel diagnostic and prognostic biomarker in LUAD. Electronic supplementary material The online version of this article (10.1186/s12935-019-0800-7) contains supplementary material, which is available to authorized users.
Collapse
|
12
|
Xu YY, Yu HR, Sun JY, Zhao Z, Li S, Zhang XF, Liao ZX, Cui MK, Li J, Li C, Zhang Q. Upregulation of PITX2 Promotes Letrozole Resistance Via Transcriptional Activation of IFITM1 Signaling in Breast Cancer Cells. Cancer Res Treat 2019; 51:576-592. [PMID: 30025446 PMCID: PMC6473270 DOI: 10.4143/crt.2018.100] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 07/14/2018] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Although the interferon α (IFNα) signaling and the paired-like homeodomain transcription factor 2 (PITX2) have both been implicated in the progression of breast cancer (BCa), it remains obscure whether these two pathways act in a coordinated manner. We therefore aimed to elucidate the expression and function of PITX2 during the pathogenesis of endocrine resistance in BCa. MATERIALS AND METHODS PITX2 expression was assessed in BCa tissues using quantitative reverse transcription polymerase chain reaction (RT-qPCR) and immunohistochemistry and in experimentally induced letrozole-resistant BCa cells using RT-qPCR and immunoblotting. Effects of PITX2 deregulation on BCa progression was determined by assessing MTT, apoptosis and xenograft model. Finally, using multiple assays, the transcriptional regulation of interferon-inducible transmembrane protein 1 (IFITM1) by PITX2 was studied at both molecular and functional levels. RESULTS PITX2 expression was induced in letrozole-resistant BCa tissues and cells, and PITX2 induction by IFNα signaling powerfully protected BCa cells against letrozole insult and potentiated letrozole-resistance. Mechanistically, PITX2 enhanced IFNα-induced AKT activation by transactivating the transcription of IFITM1, thus rendering BCa cells unresponsive to letrozoleelicited cell death. Additionally, ablation of IFITM1 expression using siRNA substantially abolished IFNα-elicited AKT phosphorylation, even in the presence of PITX2 overexpression, thus sensitizing BCa cells to letrozole treatment. CONCLUSION These results demonstrate that constitutive upregulation of PITX2/IFITM1 cascade is an intrinsic adaptive mechanism during the pathogenesis of letrozole-resistance, and modulation of PITX2/IFITM1 level using different genetic and pharmacological means would thus have a novel therapeutic potential against letrozole resistance in BCa.
Collapse
Affiliation(s)
- Ying-ying Xu
- Department of Breast Surgery, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Hai-ru Yu
- Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Jia-yi Sun
- Department of Medical Imaging, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Zhao Zhao
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Shuang Li
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Xin-feng Zhang
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Zhi-xuan Liao
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Ming-ke Cui
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Juan Li
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Chan Li
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| | - Qiang Zhang
- Department of Breast Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, China
| |
Collapse
|
13
|
Gao J, Yu SR, Yuan Y, Zhang LL, Lu JW, Feng JF, Hu SN. MicroRNA-590-5p functions as a tumor suppressor in breast cancer conferring inhibitory effects on cell migration, invasion, and epithelial-mesenchymal transition by downregulating the Wnt-β-catenin signaling pathway. J Cell Physiol 2019; 234:1827-1841. [PMID: 30191949 DOI: 10.1002/jcp.27056] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/25/2018] [Indexed: 12/21/2022]
Abstract
Breast cancer remains one of the foremost primary causes of female morbidity and mortality worldwide. During the current study, the effect of miR-590-5p and paired-like homeodomain transcription factor 2 (PITX2) on proliferation, invasion, migration, and epithelial-mesenchymal transition (EMT) of human breast cancer via the Wnt-β-catenin signaling pathway was investigated. Breast cancer-related genes and related signaling pathways were obtained from KEGG database. The PITX2 regulatory microRNA was predicted. To define the contributory role by which miR-590-5p influences the progression of breast cancer, the interaction between miR-590-5p and PITX2 was explored; the proliferation, invasion, and migration abilities as well as the tumor growth and metastasis in nude mice were detected following the overexpression or silencing of miR-590-5p. PITX2 was determined to share a correlation with breast cancer and miR-590-5p was selected for further analysis. PITX2, Wnt-1, β-catenin, N-cadherin, and vimentin all displayed higher levels, while miR-590-5p and E-cadherin expression were lower among breast cancer tissues than in the adjacent normal tissue. After overexpression of miR-590-5p or si-PITX2, the expression of E-cadherin was markedly increased, decreases in the expression of Wnt-1, β-catenin, N-cadherin, and vimentin, as well as inhibited cell proliferation, invasion, migration, metastasis, and EMT were observed. This study provides evidence suggesting that the transfection of overexpressed miR-590-5p can act to alleviate the effects of breast cancer demonstrating an ability to inhibit the processes of cell proliferation, migration, and invasion as well as EMT by suppressing the expression of PITX2 and activation of the Wnt-β-catenin pathway.
Collapse
Affiliation(s)
- Jin Gao
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Shao-Rong Yu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yuan Yuan
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Li-Li Zhang
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Jian-Wei Lu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Ji-Feng Feng
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Sai-Nan Hu
- Department of Medical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
14
|
Li X, Yang J, Bao M, Zeng K, Fu S, Wang C, Ye L. Wnt signaling in bone metastasis: mechanisms and therapeutic opportunities. Life Sci 2018; 208:33-45. [PMID: 29969609 DOI: 10.1016/j.lfs.2018.06.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 06/29/2018] [Accepted: 06/29/2018] [Indexed: 02/05/2023]
Abstract
Bone metastasis frequently occurs in advanced cancer patients, who will develop osteogenic/osteolytic bone lesions in the late stage of the disease. Wnt signaling pathway, which is mainly grouped into the β-catenin dependent pathway and β-catenin independent pathway, is a well-organized cascade that has been reported to play important roles in a variety of physiological and pathological conditions, including bone metastasis. Regulation of Wnt signaling in bone metastasis involves multiple stages, including dissemination of primary tumor cells to bone, dormancy and outgrowth of metastatic tumor cells, and tumor-induced osteogenic and osteolytic bone destruction, suggesting the importance of Wnt signaling in bone metastasis pathology. In this review, we will introduce the involvement of Wnt signaling components in specific bone metastasis stages and summarize the promising Wnt modulators that have shown potential as bone metastasis therapeutics, in the hope to maximize the therapeutic opportunities of Wnt signaling for bone metastasis.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jing Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Minyue Bao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kan Zeng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shijin Fu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China; Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
15
|
Aznar N, Ear J, Dunkel Y, Sun N, Satterfield K, He F, Kalogriopoulos NA, Lopez-Sanchez I, Ghassemian M, Sahoo D, Kufareva I, Ghosh P. Convergence of Wnt, growth factor, and heterotrimeric G protein signals on the guanine nucleotide exchange factor Daple. Sci Signal 2018; 11:11/519/eaao4220. [PMID: 29487190 DOI: 10.1126/scisignal.aao4220] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cellular proliferation, differentiation, and morphogenesis are shaped by multiple signaling cascades, and their dysregulation plays an integral role in cancer progression. Three cascades that contribute to oncogenic potential are those mediated by Wnt proteins and the receptor Frizzled (FZD), growth factor receptor tyrosine kinases (RTKs), and heterotrimeric G proteins and associated GPCRs. Daple is a guanine nucleotide exchange factor (GEF) for the G protein Gαi Daple also binds to FZD and the Wnt/FZD mediator Dishevelled (Dvl), and it enhances β-catenin-independent Wnt signaling in response to Wnt5a-FZD7 signaling. We identified Daple as a substrate of multiple RTKs and non-RTKs and, hence, as a point of convergence for the three cascades. We found that phosphorylation near the Dvl-binding motif in Daple by both RTKs and non-RTKs caused Daple/Dvl complex dissociation and augmented the ability of Daple to bind to and activate Gαi, which potentiated β-catenin-independent Wnt signals and stimulated epithelial-mesenchymal transition (EMT) similarly to Wnt5a/FZD7 signaling. Although Daple acts as a tumor suppressor in the healthy colon, the concurrent increased abundance of Daple and epidermal growth factor receptor (EGFR) in colorectal tumors was associated with poor patient prognosis. Thus, the Daple-dependent activation of Gαi and the Daple-dependent enhancement of β-catenin-independent Wnt signals are not only stimulated by Wnt5a/FZD7 to suppress tumorigenesis but also hijacked by growth factor-activated RTKs to enhance tumor progression. These findings identify a cross-talk paradigm among growth factor RTKs, heterotrimeric G proteins, and the Wnt/FZD pathway in cancer.
Collapse
Affiliation(s)
- Nicolas Aznar
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| | - Jason Ear
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ying Dunkel
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nina Sun
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kendall Satterfield
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Fang He
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | | | | | - Majid Ghassemian
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Debashis Sahoo
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA.,Department of Computer Science and Engineering, Jacobs School of Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Irina Kufareva
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Pradipta Ghosh
- Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA. .,Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA.,Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
16
|
Wang X, Sun Q, Chen C, Yin R, Huang X, Wang X, Shi R, Xu L, Ren B. ZYG11A serves as an oncogene in non-small cell lung cancer and influences CCNE1 expression. Oncotarget 2016; 7:8029-42. [PMID: 26771237 PMCID: PMC4884973 DOI: 10.18632/oncotarget.6904] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 01/06/2016] [Indexed: 12/23/2022] Open
Abstract
By analyzing The Cancer Genome Atlas (TCGA) database, we identified ZYG11A as a potential oncogene. We determined the expression of ZYG11A in NSCLC tissues and explored its clinical significance. And also evaluated the effects of ZYG11A on NSCLC cell proliferation, migration, and invasion both in vitro and in vivo. Our results show that ZYG11A is hyper-expressed in NSCLC tissues compared to adjacent normal tissues, and increased expression of ZYG11A is associated with a poor prognosis (HR: 2.489, 95%CI: 1.248-4.963, p = 0.010). ZYG11A knockdown induces cell cycle arrest and inhibits proliferation, migration, and invasion of NSCLC cells. ZYG11A knockdown also results in decreased expression of CCNE1. Over-expression of CCNE1 in cells with ZYG11A knockdown restores their oncogenic activities. Our data suggest that ZYG11A may serve as a novel oncogene promoting tumorigenicity of NSCLC cells by inducing cell cycle alterations and increasing CCNE1 expression.
Collapse
Affiliation(s)
- Xin Wang
- Department of Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China.,Department of The Fourth Clinical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qi Sun
- Department of Cardiothoracic Surgery at Jinling Hospital, Southern Medical University, Nanjing, Jiangsu, China
| | - Chen Chen
- Department of The Second Clinical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Rong Yin
- Department of Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China.,Department of Thoracic Surgery, Jiangsu Cancer Hospital, Nanjing, Jiangsu, China
| | - Xing Huang
- Department of Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China.,Department of The Fourth Clinical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuan Wang
- Department of The Fourth Clinical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Run Shi
- Department of Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China.,Department of The Fourth Clinical College, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lin Xu
- Department of Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China.,Department of Thoracic Surgery, Jiangsu Cancer Hospital, Nanjing, Jiangsu, China
| | - Binhui Ren
- Department of Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, Jiangsu, China.,Department of Thoracic Surgery, Jiangsu Cancer Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
17
|
Wang Q, Li J, Wu W, Shen R, Jiang H, Qian Y, Tang Y, Bai T, Wu S, Wei L, Zang Y, Zhang J, Wang L. Smad4-dependent suppressor pituitary homeobox 2 promotes PPP2R2A-mediated inhibition of Akt pathway in pancreatic cancer. Oncotarget 2016; 7:11208-22. [PMID: 26848620 PMCID: PMC4905467 DOI: 10.18632/oncotarget.7158] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 01/23/2016] [Indexed: 12/14/2022] Open
Abstract
The importance of Pituitary homeobox 2 (Pitx2) in malignancy remains enigmatic, and Pitx2 has not been previously implicated in pancreatic ductal adenocarcinoma (PDAC). In this study, we performed gene expression profiling of human PDAC tissues and identified Pitx2 as a promising candidate. Pitx2 expression was decreased from 2.6- to 19-fold in human PDAC tissues from microarray units. Immunochemistry staining showed that Pitx2 expression was moderate to intense in normal pancreatic and pancreatic intraepithelial neoplastic lesions, whereas low in human PDAC tissues. The Pitx2 levels correlated with overall patient survival post-operatively in PDAC. Induction of Pitx2 expression partly inhibited the malignant phenotype of PDAC cells. Interestingly, low Pitx2 expression was correlated with Smad4 mutant inactivation, but not with Pitx2 DNA-methylation. Furthermore, Smad4 protein bound to Pitx2 promoter and stimulated Pitx2 expression in PDAC. In addition, Pitx2 protein bound to the promoter of the protein phosphatase 2A regulatory subunit B55α (PPP2R2A) and upregulated PPP2R2A expression, which may activate dephosphorylation of Akt in PDAC. These findings provide new mechanistic insights into Pitx2 as a tumor suppressor in the downstream of Smad4. And Pitx2 protein promotes PPP2R2A expression which may inhibit Akt pathway. Therefore, we propose that the Smad4-Pitx2-PPP2R2A axis, a new signaling pathway, suppresses the pancreatic carcinogenesis.
Collapse
Affiliation(s)
- Qi Wang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Juanjuan Li
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Wu
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ruizhe Shen
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - He Jiang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yuting Qian
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yanping Tang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tingting Bai
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Sheng Wu
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lumin Wei
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi Zang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ji Zhang
- State Key Laboratory of Medical Genomics and Sino-French Research Center for Life Sciences and Genomics, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lifu Wang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
18
|
Bernardo ADEM, Thorsteinsdóttir S, Mummery CL. Advantages of the avian model for human ovarian cancer. Mol Clin Oncol 2015; 3:1191-1198. [PMID: 26807219 DOI: 10.3892/mco.2015.619] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 05/15/2015] [Indexed: 12/18/2022] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecological cancer. Early detection of OC is crucial for providing efficient treatment, whereas high mortality rates correlate with late detection of OC, when the tumor has already metastasized to other organs. The most prevalent type of OC is epithelial OC (EOC). Models that have been used to study EOC include the fruit fly, mouse and laying hen, in addition to human EOC cells in 3D culture in vitro. These models have helped in the elucidation of the genetic component of this disease and the development of drug therapies. However, the histological origin of EOC and early markers of the disease remain largely unknown. In this study, we aimed to review the relative value of each of the different models in EOC and their contributions to understanding this disease. It was concluded that the spontaneous occurrence of EOC in the adult hen, the prolific ovulation, the similarity of metastatic progression with that in humans and the advantages of using the chicken embryo for modelling the development of the reproductive system, renders the hen particularly suitable for studying the early development of EOC. Further investigation of this avian model may contribute to a better understanding of EOC, improve clinical insight and ultimately contribute to decreasing its mortality rates among humans.
Collapse
Affiliation(s)
- Ana DE Melo Bernardo
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Sólveig Thorsteinsdóttir
- Centre for Ecology, Evolution and Environmental Change, Department of Animal Biology, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Christine L Mummery
- Department of Anatomy and Embryology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| |
Collapse
|
19
|
Diagnostic value of SFRP1 as a favorable predictive and prognostic biomarker in patients with prostate cancer. PLoS One 2015; 10:e0118276. [PMID: 25719802 PMCID: PMC4342152 DOI: 10.1371/journal.pone.0118276] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 01/12/2015] [Indexed: 11/22/2022] Open
Abstract
Growing genetic and molecular biological evidence suggests that the disruption of balance between Secreted Frizzled-Related Protein-1 (SFRP1) and β-catenin plays an important role in the initiation and development of multiple cancers. The aim of this study was to examine whether the expression of SFRP1 and β-catenin is associated with the clinical-pathologic features of patients with prostate cancer (PCa), and to evaluate their potential roles as predictive and prognostic biomarkers. In this study, a total of 61 patients with PCa and 10 patients with benign prostatic hyperplasia were included, and we showed that the expression of SFRP1 and β-catenin was correlated with the Gleason score, survival rate and response for endocrine therapy of PCa. The survival rates of PCa patients with low SFRP1 expression (P = 0.016) or high β-catenin expression (P = 0.004) were significantly poorer. A negative correlation (r = -0.275, P = 0.032) between SFRP1 and β-catenin was observed by Chi-square test. Multivariate analysis suggested that SFRP1 (hazard ratio, 0.429; 95% confidence intervals, 0.227–0.812; P = 0.009) may serve as an independent predictive and prognostic factor for PCa. We also showed that the protein and mRNA levels of SFRP1 in androgen-dependent PCa cell line LNCaP were significantly higher than those in androgen-independent PCa cell lines DU145 and PC3. However, the protein level of β-catenin in LNCaP cells was significantly lower than that in DU145 and PC3 cells, and no significant difference of β-catenin mRNA level was observed in LNCaP, DU145 and PC3 cells. Bisulfite sequencing PCR assay revealed significantly lower methylation level of SFRP1 promoter in LNCaP cells than that in DU145 and PC3 cells. Taken together, these findings suggest that SFRP1, which expression inversely correlates with that of β-catenin, is a favorable predictive and prognostic biomarker.
Collapse
|