1
|
Della Sala A, Tasca L, Butnarasu C, Sala V, Prono G, Murabito A, Garbero OV, Millo E, Terranova L, Blasi F, Gramegna A, Aliberti S, Massarotti A, Visentin S, Hirsch E, Ghigo A. A nonnatural peptide targeting the A-kinase anchoring function of PI3Kγ for therapeutic cAMP modulation in pulmonary cells. J Biol Chem 2024; 300:107873. [PMID: 39393573 PMCID: PMC11585760 DOI: 10.1016/j.jbc.2024.107873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 09/10/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024] Open
Abstract
A-kinase anchoring proteins (AKAPs) are key orchestrators of cAMP signaling that act by recruiting protein kinase A (PKA) in proximity of its substrates and regulators to specific subcellular compartments. Modulation of AKAPs function offers the opportunity to achieve compartment-restricted modulation of the cAMP/PKA axis, paving the way to new targeted treatments. For instance, blocking the AKAP activity of phosphoinositide 3-kinase γ (PI3Kγ) improves lung function by inducing cAMP-mediated bronchorelaxation, ion transport, and antiinflammatory responses. Here, we report the generation of a nonnatural peptide, D-retroinverso (DRI)-Pep #20, optimized to disrupt the AKAP function of PI3Kγ. DRI-Pep #20 mimicked the native interaction between the N-terminal domain of PI3Kγ and PKA, demonstrating nanomolar affinity for PKA, high resistance to protease degradation and high permeability to the pulmonary mucus barrier. DRI-Pep #20 triggered cAMP elevation both in vivo in the airway tract of mice upon intratracheal administration, and in vitro in bronchial epithelial cells of cystic fibrosis (CF) patients. In CF cells, DRI-Pep #20 rescued the defective function of the cAMP-operated channel cystic fibrosis transmembrane conductance regulator, by boosting the efficacy of approved cystic fibrosis transmembrane conductance regulator modulators. Overall, this study unveils DRI-Pep #20 as a potent PI3Kγ/PKA disruptor for achieving therapeutic cAMP elevation in chronic respiratory disorders.
Collapse
Affiliation(s)
- Angela Della Sala
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Laura Tasca
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy; Kither Biotech Srl, Torino, Italy
| | - Cosmin Butnarasu
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Valentina Sala
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy; Kither Biotech Srl, Torino, Italy
| | - Giulia Prono
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Alessandra Murabito
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Olga Valentina Garbero
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Enrico Millo
- Section of Biochemistry, Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Leonardo Terranova
- Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Microbiology and Virology Specialization School, University of Pavia, Pavia, Italy
| | - Francesco Blasi
- Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Andrea Gramegna
- Internal Medicine Department, Respiratory Unit and Cystic Fibrosis Center, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy; Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Stefano Aliberti
- Respiratory Unit, IRCCS Humanitas Research Hospital, Humanitas University, Milan, Italy
| | - Alberto Massarotti
- Department of Pharmaceutical Science, University of Piemonte Orientale, Novara, Italy
| | - Sonja Visentin
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy
| | - Emilio Hirsch
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy; Kither Biotech Srl, Torino, Italy
| | - Alessandra Ghigo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center "Guido Tarone", University of Torino, Torino, Italy; Kither Biotech Srl, Torino, Italy.
| |
Collapse
|
2
|
Zhou X, Zhu H, Luo C, Xiao H, Zou X, Zou J, Zhang G. Targeting integrin α5β1 in urological tumors: opportunities and challenges. Front Oncol 2023; 13:1165073. [PMID: 37483505 PMCID: PMC10358839 DOI: 10.3389/fonc.2023.1165073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 06/16/2023] [Indexed: 07/25/2023] Open
Abstract
Urological tumors, such as prostate cancer, renal cell carcinoma, and bladder cancer, have shown a significant rise in prevalence in recent years and account for a significant proportion of malignant tumors. It has been established that metastasis to distant organs caused by urological tumors is the main cause of death, although the mechanisms underlying metastasis have not been fully elucidated. The fibronectin receptor integrin α5β1 reportedly plays an important role in distant metastasis and is closely related to tumor development. It is widely thought to be an important cancer mediator by interacting with different ligands, mediating tumor adhesion, invasion, and migration, and leading to immune escape. In this paper, we expound on the relationship and regulatory mechanisms of integrin α5β1 in these three cancers. In addition, the clinical applications of integrin α5β1 in these cancers, especially against treatment resistance, are discussed. Last but not least, the possibility of integrin α5β1 as a potential target for treatment is examined, with new ideas for future research being proposed.
Collapse
Affiliation(s)
- Xuming Zhou
- The First Clinical College, Gannan Medical University, Ganzhou, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Hezhen Zhu
- The First Clinical College, Gannan Medical University, Ganzhou, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Cong Luo
- The First Clinical College, Gannan Medical University, Ganzhou, China
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Huan Xiao
- The First Clinical College, Gannan Medical University, Ganzhou, China
| | - Xiaofeng Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, China
| | - Junrong Zou
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, China
| | - Guoxi Zhang
- Department of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Institute of Urology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
- Jiangxi Engineering Technology Research Center of Calculi Prevention, Ganzhou, China
| |
Collapse
|
3
|
Hu K, Wu W, Xie L, Geng H, Zhang Y, Hanyu M, Zhang L, Liu Y, Nagatsu K, Suzuki H, Guo J, Wu Y, Li Z, Wang F, Zhang M. Whole-body PET tracking of a d-dodecapeptide and its radiotheranostic potential for PD-L1 overexpressing tumors. Acta Pharm Sin B 2022; 12:1363-1376. [PMID: 35530129 PMCID: PMC9069398 DOI: 10.1016/j.apsb.2021.09.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
Peptides that are composed of dextrorotary (d)-amino acids have gained increasing attention as a potential therapeutic class. However, our understanding of the in vivo fate of d-peptides is limited. This highlights the need for whole-body, quantitative tracking of d-peptides to better understand how they interact with the living body. Here, we used mouse models to track the movement of a programmed death-ligand 1 (PD-L1)-targeting d-dodecapeptide antagonist (DPA) using positron emission tomography (PET). More specifically, we profiled the metabolic routes of [64Cu]DPA and investigated the tumor engagement of [64Cu/68Ga]DPA in mouse models. Our results revealed that intact [64Cu/68Ga]DPA was primarily eliminated by the kidneys and had a notable accumulation in tumors. Moreover, a single dose of [64Cu]DPA effectively delayed tumor growth and improved the survival of mice. Collectively, these results not only deepen our knowledge of the in vivo fate of d-peptides, but also underscore the utility of d-peptides as radiopharmaceuticals.
Collapse
Affiliation(s)
- Kuan Hu
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Wenyu Wu
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
| | - Lin Xie
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Hao Geng
- State Key Laboratory of Chemical Oncogenomics, the School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Yiding Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Masayuki Hanyu
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Lulu Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Yinghuan Liu
- State Key Laboratory of Chemical Oncogenomics, the School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
| | - Kotaro Nagatsu
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Hisashi Suzuki
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Jialin Guo
- Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Yundong Wu
- State Key Laboratory of Chemical Oncogenomics, the School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518038, China
- Corresponding authors. Tel./fax: +81 43 3823709 (Mingrong Zhang), +86 25 52271455 (Feng Wang), +86 755 26033616 (Zigang Li), +86 755 26611113 (Yundong Wu).
| | - Zigang Li
- State Key Laboratory of Chemical Oncogenomics, the School of Chemical Biology and Biotechnology, Peking University, Shenzhen Graduate School, Shenzhen 518055, China
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen 518118, China
- Corresponding authors. Tel./fax: +81 43 3823709 (Mingrong Zhang), +86 25 52271455 (Feng Wang), +86 755 26033616 (Zigang Li), +86 755 26611113 (Yundong Wu).
| | - Feng Wang
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing 210006, China
- Corresponding authors. Tel./fax: +81 43 3823709 (Mingrong Zhang), +86 25 52271455 (Feng Wang), +86 755 26033616 (Zigang Li), +86 755 26611113 (Yundong Wu).
| | - Mingrong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
- Corresponding authors. Tel./fax: +81 43 3823709 (Mingrong Zhang), +86 25 52271455 (Feng Wang), +86 755 26033616 (Zigang Li), +86 755 26611113 (Yundong Wu).
| |
Collapse
|
4
|
Qiu X, Qu Y, Guo B, Zheng H, Meng F, Zhong Z. Micellar paclitaxel boosts ICD and chemo-immunotherapy of metastatic triple negative breast cancer. J Control Release 2021; 341:498-510. [PMID: 34883139 DOI: 10.1016/j.jconrel.2021.12.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/27/2021] [Accepted: 12/02/2021] [Indexed: 12/21/2022]
Abstract
Triple negative breast cancer (TNBC) with easy metastasis, "cold" tumor immune microenvironment, and lack of targeted therapy remains poorly prognosed. Chemo-immunotherapy deemed as a potential treatment for TNBC is however confronted by low TNBC selectivity, pronounced systemic toxicity, and limited immunogenic cell death (ICD) induction. Here, employing clinically validated ATN peptide as a ligand and reduction-sensitive biodegradable micelles as a vehicle we constructed α5β1 integrin-targeted micellar paclitaxel (ATN-MPTX) to elicit strong and selective ICD and chemo-immunotherapy of TNBC. ATN-MPTX exhibited evident targetability and prominent uptake in α5β1 integrin-positive 4 T1 cells and induced significantly stronger ICD than free PTX and non-targeted MPTX. The therapeutic studies in 4 T1 TNBC model demonstrated that ATN-MPTX caused superior tumor accumulation and treatment efficacy to all controls. Of note, ATN-MPTX plus nano-STING agonist further augmented the immunotherapeutic effects by increasing secretion of proinflammatory cytokines and CD4+ and CD8+ T cells in the tumor and spleen while reducing Treg, leading to significantly improved inhibition of 4 T1 primary tumor and more interestingly mitigated lung metastases. This strong and selective ICD induction of ATN-MPTX renders it an interesting tool to enhance chemo-immunotherapy of TNBC.
Collapse
Affiliation(s)
- Xinyun Qiu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Yan Qu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Beibei Guo
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Huan Zheng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China
| | - Fenghua Meng
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China.
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
5
|
Hendrikse SIS, Contreras-Montoya R, Ellis AV, Thordarson P, Steed JW. Biofunctionality with a twist: the importance of molecular organisation, handedness and configuration in synthetic biomaterial design. Chem Soc Rev 2021; 51:28-42. [PMID: 34846055 DOI: 10.1039/d1cs00896j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The building blocks of life - nucleotides, amino acids and saccharides - give rise to a large variety of components and make up the hierarchical structures found in Nature. Driven by chirality and non-covalent interactions, helical and highly organised structures are formed and the way in which they fold correlates with specific recognition and hence function. A great amount of effort is being put into mimicking these highly specialised biosystems as biomaterials for biomedical applications, ranging from drug discovery to regenerative medicine. However, as well as lacking the complexity found in Nature, their bio-activity is sometimes low and hierarchical ordering is missing or underdeveloped. Moreover, small differences in folding in natural biomolecules (e.g., caused by mutations) can have a catastrophic effect on the function they perform. In order to develop biomaterials that are more efficient in interacting with biomolecules, such as proteins, DNA and cells, we speculate that incorporating order and handedness into biomaterial design is necessary. In this review, we first focus on order and handedness found in Nature in peptides, nucleotides and saccharides, followed by selected examples of synthetic biomimetic systems based on these components that aim to capture some aspects of these ordered features. Computational simulations are very helpful in predicting atomic orientation and molecular organisation, and can provide invaluable information on how to further improve on biomaterial designs. In the last part of the review, a critical perspective is provided along with considerations that can be implemented in next-generation biomaterial designs.
Collapse
Affiliation(s)
- Simone I S Hendrikse
- Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia. .,School of Chemistry, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | | | - Amanda V Ellis
- Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Pall Thordarson
- School of Chemistry, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | | |
Collapse
|
6
|
Le HH, Cinaroglu SS, Manalo EC, Ors A, Gomes MM, Duan Sahbaz B, Bonic K, Origel Marmolejo CA, Quentel A, Plaut JS, Kawashima TE, Ozdemir ES, Malhotra SV, Ahiska Y, Sezerman U, Bayram Akcapinar G, Saldivar JC, Timucin E, Fischer JM. Molecular modelling of the FOXO4-TP53 interaction to design senolytic peptides for the elimination of senescent cancer cells. EBioMedicine 2021; 73:103646. [PMID: 34689087 PMCID: PMC8546421 DOI: 10.1016/j.ebiom.2021.103646] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Senescent cells accumulate in tissues over time as part of the natural ageing process and the removal of senescent cells has shown promise for alleviating many different age-related diseases in mice. Cancer is an age-associated disease and there are numerous mechanisms driving cellular senescence in cancer that can be detrimental to recovery. Thus, it would be beneficial to develop a senolytic that acts not only on ageing cells but also senescent cancer cells to prevent cancer recurrence or progression. METHODS We used molecular modelling to develop a series of rationally designed peptides to mimic and target FOXO4 disrupting the FOXO4-TP53 interaction and releasing TP53 to induce apoptosis. We then tested these peptides as senolytic agents for the elimination of senescent cells both in cell culture and in vivo. FINDINGS Here we show that these peptides can act as senolytics for eliminating senescent human cancer cells both in cell culture and in orthotopic mouse models. We then further characterized one peptide, ES2, showing that it disrupts FOXO4-TP53 foci, activates TP53 mediated apoptosis and preferentially binds FOXO4 compared to TP53. Next, we show that intratumoural delivery of ES2 plus a BRAF inhibitor results in a significant increase in apoptosis and a survival advantage in mouse models of melanoma. Finally, we show that repeated systemic delivery of ES2 to older mice results in reduced senescent cell numbers in the liver with minimal toxicity. INTERPRETATION Taken together, our results reveal that peptides can be generated to specifically target and eliminate FOXO4+ senescent cancer cells, which has implications for eradicating residual disease and as a combination therapy for frontline treatment of cancer. FUNDING This work was supported by the Cancer Early Detection Advanced Research Center at Oregon Health & Science University.
Collapse
Affiliation(s)
- Hillary H Le
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, USA
| | - Suleyman S Cinaroglu
- Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Atasehir Istanbul 34752, Turkey; Eternans Ltd., UK
| | - Elise C Manalo
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, USA
| | - Aysegul Ors
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, USA
| | - Michelle M Gomes
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, USA
| | | | - Karla Bonic
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, USA
| | - Carlos A Origel Marmolejo
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, USA
| | - Arnaud Quentel
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, USA
| | - Justin S Plaut
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, USA; Dept of Bioengineering, University of California San Diego, USA
| | - Taryn E Kawashima
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, USA
| | - E Sila Ozdemir
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, USA
| | - Sanjay V Malhotra
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, USA; Dept of Cell, Developmental and Cancer Biology, Oregon Health & Science University, USA
| | | | - Ugur Sezerman
- Eternans Ltd., UK; School of Medicine, Acibadem Mehmet Ali Aydinlar University, Atasehir Istanbul 34752, Turkey
| | - Gunseli Bayram Akcapinar
- Institute of Health Sciences, Acibadem Mehmet Ali Aydinlar University, Atasehir Istanbul 34752, Turkey; Eternans Ltd., UK
| | - Joshua C Saldivar
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, USA; Division of Oncological Sciences, Knight Cancer Institute, Oregon Health & Science University, USA
| | - Emel Timucin
- Eternans Ltd., UK; School of Medicine, Acibadem Mehmet Ali Aydinlar University, Atasehir Istanbul 34752, Turkey
| | - Jared M Fischer
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health & Science University, USA; Dept of Molecular and Medical Genetics, Oregon Health & Science University, USA.
| |
Collapse
|
7
|
Hou J, Yan D, Liu Y, Huang P, Cui H. The Roles of Integrin α5β1 in Human Cancer. Onco Targets Ther 2020; 13:13329-13344. [PMID: 33408483 PMCID: PMC7781020 DOI: 10.2147/ott.s273803] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022] Open
Abstract
Cell adhesion to the extracellular matrix has important roles in tissue integrity and human health. Integrins are heterodimeric cell surface receptors that are composed by two non-covalently linked alpha and beta subunits that mainly participate in the interaction of cell-cell adhesion and cell-extracellular matrix and regulate cell motility, adhesion, differentiation, migration, proliferation, etc. In mammals, there have been eighteen α subunits and 8 β subunits and so far 24 distinct types of αβ integrin heterodimers have been identified in humans. Integrin α5β1, also known as the fibronectin receptor, is a heterodimer with α5 and β1 subunits and has emerged as an essential mediator in many human carcinomas. Integrin α5β1 alteration is closely linked to the progression of several types of human cancers, including cell proliferation, angiogenesis, tumor metastasis, and cancerogenesis. In this review, we will introduce the functions of integrin α5β1 in cancer progression and also explore its regulatory mechanisms. Additionally, the potential clinical applications as a target for cancer imaging and therapy are discussed. Collectively, the information reviewed here may increase the understanding of integrin α5β1 as a potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Jianbing Hou
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, People's Republic of China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, People's Republic of China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, People's Republic of China
| | - Du Yan
- Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing 400716, People's Republic of China
| | - Yudong Liu
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, People's Republic of China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, People's Republic of China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, People's Republic of China
| | - Pan Huang
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, People's Republic of China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, People's Republic of China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, People's Republic of China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Key Laboratory for Sericulture Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing 400716, People's Republic of China.,Cancer Center, Medical Research Institute, Southwest University, Chongqing 400716, People's Republic of China.,Chongqing Engineering and Technology Research Centre for Silk Biomaterials and Regenerative Medicine, Chongqing 400716, People's Republic of China
| |
Collapse
|
8
|
Evans BJ, King AT, Katsifis A, Matesic L, Jamie JF. Methods to Enhance the Metabolic Stability of Peptide-Based PET Radiopharmaceuticals. Molecules 2020; 25:molecules25102314. [PMID: 32423178 PMCID: PMC7287708 DOI: 10.3390/molecules25102314] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/28/2022] Open
Abstract
The high affinity and specificity of peptides towards biological targets, in addition to their favorable pharmacological properties, has encouraged the development of many peptide-based pharmaceuticals, including peptide-based positron emission tomography (PET) radiopharmaceuticals. However, the poor in vivo stability of unmodified peptides against proteolysis is a major challenge that must be overcome, as it can result in an impractically short in vivo biological half-life and a subsequently poor bioavailability when used in imaging and therapeutic applications. Consequently, many biologically and pharmacologically interesting peptide-based drugs may never see application. A potential way to overcome this is using peptide analogues designed to mimic the pharmacophore of a native peptide while also containing unnatural modifications that act to maintain or improve the pharmacological properties. This review explores strategies that have been developed to increase the metabolic stability of peptide-based pharmaceuticals. It includes modifications of the C- and/or N-termini, introduction of d- or other unnatural amino acids, backbone modification, PEGylation and alkyl chain incorporation, cyclization and peptide bond substitution, and where those strategies have been, or could be, applied to PET peptide-based radiopharmaceuticals.
Collapse
Affiliation(s)
- Brendan J. Evans
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; (B.J.E.); (A.T.K.)
| | - Andrew T. King
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; (B.J.E.); (A.T.K.)
| | - Andrew Katsifis
- Department of Molecular Imaging, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia;
| | - Lidia Matesic
- Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia;
| | - Joanne F. Jamie
- Department of Molecular Sciences, Macquarie University, Sydney, NSW 2109, Australia; (B.J.E.); (A.T.K.)
- Correspondence: ; Tel.: +61-2-9850-8283
| |
Collapse
|
9
|
Joshi R, Ren W, Mathew P. A Bispecific Antibody Targeting the αv and α5β1 Integrins Induces Integrin Degradation in Prostate Cancer Cells and Is Superior to Monospecific Antibodies. Mol Cancer Res 2019; 18:27-32. [DOI: 10.1158/1541-7786.mcr-19-0442] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/03/2019] [Accepted: 10/16/2019] [Indexed: 11/16/2022]
|
10
|
Novel therapeutic interventions in cancer treatment using protein and peptide-based targeted smart systems. Semin Cancer Biol 2019; 69:249-267. [PMID: 31442570 DOI: 10.1016/j.semcancer.2019.08.023] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 01/12/2023]
Abstract
Cancer, being the most prevalent and resistant disease afflicting any gender, age or social status, is the ultimate challenge for the scientific community. The new generation therapeutics for cancer management has shifted the approach to personalized/precision medicine, making use of patient- and tumor-specific markers for specifying the targeted therapies for each patient. Peptides targeting these cancer-specific signatures hold enormous potential for cancer therapy and diagnosis. The rapid advancements in the combinatorial peptide libraries served as an impetus to the development of multifunctional peptide-based materials for targeted cancer therapy. The present review outlines benefits and shortcomings of peptides as cancer therapeutics and the potential of peptide modified nanomedicines for targeted delivery of anticancer agents.
Collapse
|
11
|
HDAC Inhibition Counteracts Metastatic Re-Activation of Prostate Cancer Cells Induced by Chronic mTOR Suppression. Cells 2018; 7:cells7090129. [PMID: 30200497 PMCID: PMC6162415 DOI: 10.3390/cells7090129] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 12/11/2022] Open
Abstract
This study was designed to investigate whether epigenetic modulation by histone deacetylase (HDAC) inhibition might circumvent resistance towards the mechanistic target of rapamycin (mTOR) inhibitor temsirolimus in a prostate cancer cell model. Parental (par) and temsirolimus-resistant (res) PC3 prostate cancer cells were exposed to the HDAC inhibitor valproic acid (VPA), and tumor cell adhesion, chemotaxis, migration, and invasion were evaluated. Temsirolimus resistance was characterized by reduced binding of PC3res cells to endothelium, immobilized collagen, and fibronectin, but increased adhesion to laminin, as compared to the parental cells. Chemotaxis, migration, and invasion of PC3res cells were enhanced following temsirolimus re-treatment. Integrin α and β receptors were significantly altered in PC3res compared to PC3par cells. VPA significantly counteracted temsirolimus resistance by down-regulating tumor cell–matrix interaction, chemotaxis, and migration. Evaluation of integrin expression in the presence of VPA revealed a significant down-regulation of integrin α5 in PC3res cells. Blocking studies demonstrated a close association between α5 expression on PC3res and chemotaxis. In this in vitro model, temsirolimus resistance drove prostate cancer cells to become highly motile, while HDAC inhibition reversed the metastatic activity. The VPA-induced inhibition of metastatic activity was accompanied by a lowered integrin α5 surface level on the tumor cells.
Collapse
|
12
|
Garton M, Nim S, Stone TA, Wang KE, Deber CM, Kim PM. Method to generate highly stable D-amino acid analogs of bioactive helical peptides using a mirror image of the entire PDB. Proc Natl Acad Sci U S A 2018; 115:1505-1510. [PMID: 29378946 PMCID: PMC5816147 DOI: 10.1073/pnas.1711837115] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Biologics are a rapidly growing class of therapeutics with many advantages over traditional small molecule drugs. A major obstacle to their development is that proteins and peptides are easily destroyed by proteases and, thus, typically have prohibitively short half-lives in human gut, plasma, and cells. One of the most effective ways to prevent degradation is to engineer analogs from dextrorotary (D)-amino acids, with up to 105-fold improvements in potency reported. We here propose a general peptide-engineering platform that overcomes limitations of previous methods. By creating a mirror image of every structure in the Protein Data Bank (PDB), we generate a database of ∼2.8 million D-peptides. To obtain a D-analog of a given peptide, we search the (D)-PDB for similar configurations of its critical-"hotspot"-residues. As a proof of concept, we apply our method to two peptides that are Food and Drug Administration approved as therapeutics for diabetes and osteoporosis, respectively. We obtain D-analogs that activate the GLP1 and PTH1 receptors with the same efficacy as their natural counterparts and show greatly increased half-life.
Collapse
Affiliation(s)
- Michael Garton
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto M5S 3E1, Canada
| | - Satra Nim
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto M5S 3E1, Canada
| | - Tracy A Stone
- Department of Biochemistry, University of Toronto, Toronto M5S 1A8, Canada
- Division of Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Kyle Ethan Wang
- Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
| | - Charles M Deber
- Department of Biochemistry, University of Toronto, Toronto M5S 1A8, Canada
- Division of Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto M5G 0A4, Canada
| | - Philip M Kim
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto M5S 3E1, Canada;
- Department of Molecular Genetics, University of Toronto, Toronto M5S 1A8, Canada
- Department of Computer Science, University of Toronto, Toronto M5S 2E4, Canada
| |
Collapse
|
13
|
Juan-Rivera MC, Martínez-Ferrer M. Integrin Inhibitors in Prostate Cancer. Cancers (Basel) 2018; 10:E44. [PMID: 29415418 PMCID: PMC5836076 DOI: 10.3390/cancers10020044] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/12/2018] [Accepted: 01/19/2018] [Indexed: 01/20/2023] Open
Abstract
Prostate cancer (PCa) is the most frequently diagnosed cancer and the third highest cause of cancer-related deaths in men in the U.S. The development of chemotherapeutic agents that can bind PCa tumor cells with high specificity is critical in order to increase treatment effectiveness. Integrin receptors and their corresponding ligands have different expression patterns in PCa cells. They have been identified as promising targets to inhibit pathways involved in PCa progression. Currently, several compounds have proven to target specific integrins and their subunits in PCa cells. In this article, we review the role of integrins inhibitors in PCa and their potential as therapeutic targets for PCa treatments. We have discussed the following: natural compounds, monoclonal antibodies, statins, campothecins analog, aptamers, d-aminoacid, and snake venom. Recent studies have shown that their mechanisms of action result in decrease cell migration, cell invasion, cell proliferation, and metastasis of PCa cells.
Collapse
Affiliation(s)
- Maylein C Juan-Rivera
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA.
- University of Puerto Rico Comprehensive Cancer Center, Medical Sciences Campus, San Juan, PR 00936, USA.
| | - Magaly Martínez-Ferrer
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Puerto Rico, Medical Sciences Campus, San Juan, PR 00936, USA.
- University of Puerto Rico Comprehensive Cancer Center, Medical Sciences Campus, San Juan, PR 00936, USA.
| |
Collapse
|
14
|
A computational approach for designing D-proteins with non-canonical amino acid optimised binding affinity. PLoS One 2017; 12:e0187524. [PMID: 29108013 PMCID: PMC5673230 DOI: 10.1371/journal.pone.0187524] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 10/21/2017] [Indexed: 01/08/2023] Open
Abstract
Redesigning protein surface topology to improve target binding holds great promise in the search for highly selective therapeutics. While significant binding improvements can be achieved using natural amino acids, the introduction of non-canonical residues vastly increases sequence space and thus the chance to significantly out-compete native partners. The potency of protein inhibitors can be further enhanced by synthesising mirror image, D-amino versions. This renders them non-immunogenic and makes them highly resistant to proteolytic degradation. Current experimental design methods often preclude the use of D-amino acids and non-canonical amino acids for a variety of reasons. To address this, we build an in silico pipeline for D-protein designs featuring non-canonical amino acids. For a test scaffold we use an existing D-protein inhibitor of VEGF: D-RFX001. We benchmark the approach by recapitulating previous experimental optimisation with canonical amino acids. Subsequent incorporation of non-canonical amino acids allows designs that are predicted to improve binding affinity by up to -7.18 kcal/mol.
Collapse
|
15
|
Roberts J, de Hoog L, Bix GJ. Mice deficient in endothelial α5 integrin are profoundly resistant to experimental ischemic stroke. J Cereb Blood Flow Metab 2017; 37:85-96. [PMID: 26661237 PMCID: PMC5363730 DOI: 10.1177/0271678x15616979] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/27/2015] [Accepted: 09/27/2015] [Indexed: 11/16/2022]
Abstract
Stroke is a disease in dire need of better therapies. We have previously shown that a fragment of the extracellular matrix proteoglycan, perlecan, has beneficial effects following cerebral ischemia via the α5β1 integrin receptor. We now report that endothelial cell selective α5 integrin deficient mice (α5 KO) are profoundly resistant to ischemic infarct after transient middle cerebral artery occlusion. Specifically, α5 KOs had little to no infarct 2-3 days post-stroke, whereas controls had an increase in mean infarct volume over the same time period as expected. Functional outcome is also improved in the α5 KOs compared with controls. Importantly, no differences in cerebrovascular anatomy or collateral blood flow were noted that could account for this difference in ischemic injury. Rather, we demonstrate that α5 KOs have increased blood-brain barrier integrity (increased expression of claudin-5, and absent brain parenchymal IgG extravasation) after stroke compared with controls, which could explain their resistance to ischemic injury. Additionally, inhibition of α5 integrin in vitro leads to decreased permeability of brain endothelial cells following oxygen-glucose deprivation. Together, these findings indicate endothelial cell α5 integrin plays an important role in stroke outcome and blood-brain barrier integrity, suggesting that α5 integrin could be a novel therapeutic target for stroke.
Collapse
Affiliation(s)
- Jill Roberts
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA.,Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY, USA
| | - Leon de Hoog
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - Gregory J Bix
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA .,Department of Anatomy and Neurobiology, University of Kentucky, Lexington, KY, USA.,Department of Neurology, University of Kentucky, Lexington, KY, USA
| |
Collapse
|
16
|
Corbi-Verge C, Garton M, Nim S, Kim PM. Strategies to Develop Inhibitors of Motif-Mediated Protein-Protein Interactions as Drug Leads. Annu Rev Pharmacol Toxicol 2016; 57:39-60. [PMID: 27618737 DOI: 10.1146/annurev-pharmtox-010716-104805] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Protein-protein interactions are fundamental for virtually all functions of the cell. A large fraction of these interactions involve short peptide motifs, and there has been increased interest in targeting them using peptide-based therapeutics. Peptides benefit from being specific, relatively safe, and easy to produce. They are also easy to modify using chemical synthesis and molecular biology techniques. However, significant challenges remain regarding the use of peptides as therapeutic agents. Identification of peptide motifs is difficult, and peptides typically display low cell permeability and sensitivity to enzymatic degradation. In this review, we outline the principal high-throughput methodologies for motif discovery and describe current methods for overcoming pharmacokinetic and bioavailability limitations.
Collapse
Affiliation(s)
- Carles Corbi-Verge
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada; , , ,
| | - Michael Garton
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada; , , ,
| | - Satra Nim
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada; , , ,
| | - Philip M Kim
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada; , , , .,Department of Molecular Genetics, University of Toronto, Toronto, Ontario M5S 3E1, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| |
Collapse
|
17
|
Joshi R, Goihberg E, Ren W, Pilichowska M, Mathew P. Proteolytic fragments of fibronectin function as matrikines driving the chemotactic affinity of prostate cancer cells to human bone marrow mesenchymal stromal cells via the α5β1 integrin. Cell Adh Migr 2016; 11:305-315. [PMID: 27715399 DOI: 10.1080/19336918.2016.1212139] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The haematopoietic niche is contributed to by bone marrow-resident mesenchymal stromal cells (BM-MSCs) and subverted by prostate cancer cells. To study mechanisms by which BM-MSCs and prostate cancer cells may interact, we assessed the migration, invasion, adhesion and proliferation of bone-derived prostate cancer cells (PC-3) in co-culture with pluripotent human BM-MSCs. We observed a strong adhesive, migratory and invasive phenotype of PC-3 cells with BM- MSC-co-culture and set out to isolate and characterize the bioactive principle. Initial studies indicated that chemotaxis was secondary to a protein residing in the >100kDa fraction. Size-exclusion chromatography (SEC) recovered peak activity in a high-molecular weight fraction containing thrombospondin-1 (TSP1). While TSP1 immunodepletion decreased activity, put-back with purified TSP1 did not reproduce bioactivity. Further purification of the TSP1-containing high-molecular weight fraction of the BM-MSC secretome with heparin-affinity chromatography recovered bioactivity with highly restricted bands on polyacrylamide gel electrophoresis, determined by mass spectroscopy to be proteolytic fragments of fibronectin (FN). Put-back experiments with full-length FN permitted adhesion but failed to induce migration. Monospecific antibodies to FN blocked adhesion. Proteolytic cleavage of FN generated FN fragments which now induced migration. Neutralizing monoclonal antibodies to FN receptors α5 and β1 integrins, and α5 knockdown specifically blocked migration and adhesion. CONCLUSION Fibronectin fragments (FNFr) function as matrikines driving the chemotactic affinity of prostate cancer cells via the α5β1 integrin. Taken together with the high-frequency of α5β1 expression in disseminated prostate cancer cells in bone marrow aspirates from patients, the FNFr/FN-α5β1 interaction warrants further study as a therapeutic target.
Collapse
Affiliation(s)
- Raghav Joshi
- a Molecular Oncology Research Institute , Tufts Medical Center , Boston , MA , USA
| | - Edi Goihberg
- a Molecular Oncology Research Institute , Tufts Medical Center , Boston , MA , USA
| | - Wenying Ren
- a Molecular Oncology Research Institute , Tufts Medical Center , Boston , MA , USA
| | | | - Paul Mathew
- a Molecular Oncology Research Institute , Tufts Medical Center , Boston , MA , USA
| |
Collapse
|
18
|
Therapeutic inhibition of breast cancer bone metastasis progression and lung colonization: breaking the vicious cycle by targeting α5β1 integrin. Breast Cancer Res Treat 2016; 157:489-501. [PMID: 27255534 DOI: 10.1007/s10549-016-3844-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 05/24/2016] [Indexed: 10/21/2022]
Abstract
At diagnosis, 10 % of breast cancer patients already have locally advanced or metastatic disease; moreover, metastasis eventually develops in at least 40 % of early breast cancer patients. Osteolytic bone colonization occurs in 80-85 % of metastatic breast cancer patients and is thought to be an early step in metastatic progression. Thus, breast cancer displays a strong preference for metastasis to bone, and most metastatic breast cancer patients will experience its complications. Our prior research has shown that the α5β1 integrin fibronectin receptor mediates both metastatic and angiogenic invasion. We invented a targeted peptide inhibitor of activated α5β1, Ac-PHSCN-NH2 (PHSCN), as a validated lead compound to impede both metastatic invasion and neovascularization. Systemic PHSCN monotherapy prevented disease progression for up to 14 months in Phase I clinical trial. Here, we report that the next-generation construct, Ac-PhScN-NH2 (PhScN), which contains D-isomers of histidine (h) and cysteine (c), is greater than 100,000-fold more potent than PHSCN at blocking basement membrane invasion. Moreover, PhScN is also up to 10,000-fold more potent than PHSCN at inhibiting lung extravasation and colonization in athymic mice for both MDA-MB-231 metastatic and SUM149PT inflammatory breast cancer cells. Furthermore, we show that systemic treatment with 50 mg/kg PhScN monotherapy reduces established intratibial MDA-MB-231 bone colony progression by 80 %. Thus, PhScN is a highly potent, well-tolerated inhibitor of both lung colonization and bone colony progression.
Collapse
|
19
|
Pharmacology of the cell/matrix form of adhesion. Pharmacol Res 2016; 107:430-436. [DOI: 10.1016/j.phrs.2015.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 10/23/2015] [Accepted: 10/23/2015] [Indexed: 12/11/2022]
|
20
|
Winkelblech J, Xie X, Li SM. Characterisation of 6-DMATSMo from Micromonospora olivasterospora leading to identification of the divergence in enantioselectivity, regioselectivity and multiple prenylation of tryptophan prenyltransferases. Org Biomol Chem 2016; 14:9883-9895. [DOI: 10.1039/c6ob01803c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Identification of a new tryptophan prenyltransferase 6-DMATSMo and different behaviours of DMATS enzymes for regiospecific mono- and diprenylations of l- and d-tryptophan as well as methylated derivatives.
Collapse
Affiliation(s)
- Julia Winkelblech
- Philipps-Universität Marburg
- Institut für Pharmazeutische Biologie und Biotechnologie
- 35037 Marburg
- Germany
- Zentrum für Synthetische Mikrobiologie
| | - Xiulan Xie
- Philipps-Universität Marburg
- Fachbereich Chemie
- 35032 Marburg
- Germany
| | - Shu-Ming Li
- Philipps-Universität Marburg
- Institut für Pharmazeutische Biologie und Biotechnologie
- 35037 Marburg
- Germany
- Zentrum für Synthetische Mikrobiologie
| |
Collapse
|
21
|
Distribution, industrial applications, and enzymatic synthesis of d-amino acids. Appl Microbiol Biotechnol 2015; 99:3341-9. [DOI: 10.1007/s00253-015-6507-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 02/22/2015] [Accepted: 02/23/2015] [Indexed: 01/05/2023]
|
22
|
Jin ZH, Furukawa T, Kumata K, Xie L, Yui J, Wakizaka H, Fujibayashi Y, Zhang MR, Saga T. Development of the Fibronectin–Mimetic Peptide KSSPHSRN(SG) 5RGDSP as a Novel Radioprobe for Molecular Imaging of the Cancer Biomarker α 5β 1 Integrin. Biol Pharm Bull 2015; 38:1722-31. [DOI: 10.1248/bpb.b15-00344] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Zhao-Hui Jin
- Molecular Imaging Center, National Institute of Radiological Sciences
| | - Takako Furukawa
- Molecular Imaging Center, National Institute of Radiological Sciences
| | - Katsushi Kumata
- Molecular Imaging Center, National Institute of Radiological Sciences
| | - Lin Xie
- Molecular Imaging Center, National Institute of Radiological Sciences
| | - Joji Yui
- Molecular Imaging Center, National Institute of Radiological Sciences
| | | | | | - Ming-Rong Zhang
- Molecular Imaging Center, National Institute of Radiological Sciences
| | - Tsuneo Saga
- Molecular Imaging Center, National Institute of Radiological Sciences
| |
Collapse
|
23
|
Kappler CS, Guest ST, Irish JC, Garrett-Mayer E, Kratche Z, Wilson RC, Ethier SP. Oncogenic signaling in amphiregulin and EGFR-expressing PTEN-null human breast cancer. Mol Oncol 2014; 9:527-43. [PMID: 25454348 PMCID: PMC4304881 DOI: 10.1016/j.molonc.2014.10.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 12/31/2022] Open
Abstract
A subset of triple negative breast cancer (TNBC) is characterized by overexpression of the epidermal growth factor receptor (EGFR) and loss of PTEN, and patients with these determinants have a poor prognosis. We used cell line models of EGFR‐positive/PTEN null TNBC to elucidate the signaling networks that drive the malignant features of these cells and cause resistance to EGFR inhibitors. In these cells, amphiregulin (AREG)‐mediated activation of EGFR results in up‐regulation of fibronectin (FN1), which is known to be a mediator of invasive capacity via interaction with integrin β1. EGFR activity in this PTEN null background also results in Wnt/beta‐catenin signaling and activation of NF‐κB. In addition, AKT is constitutively phosphorylated in these cells and is resistant to gefitinib. Expression profiling demonstrated that AREG‐activated EGFR regulates gene expression differently than EGF‐activated EGFR, and functional analysis via genome‐scale shRNA screening identified a set of genes, including PLK1 and BIRC5, that are essential for survival of SUM‐149 cells, but are uncoupled from EGFR signaling. Thus, our results demonstrate that in cells with constitutive EGFR activation and PTEN loss, critical survival genes are uncoupled from regulation by EGFR, which likely mediates resistance to EGFR inhibitors. Activation of EGFR by AREG alters signaling and gene expression compared to EGF. Activation of EGFR by AREG reduces mTORC1 pathway expression and phosphorylation. EGF‐positive, PTEN‐null TNBC cells are poised for Wnt/beta‐catenin signaling. Wnt/beta‐catenin activity occurs in a subset of cells and is enhanced in mammospheres. Regulation of growth/survival genes is uncoupled from EGFR in PTEN‐null TNBC cells.
Collapse
Affiliation(s)
- Christiana S Kappler
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA.
| | - Stephen T Guest
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jonathan C Irish
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Elizabeth Garrett-Mayer
- Department of Public Health Science, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Zachary Kratche
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Robert C Wilson
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Stephen P Ethier
- Department of Pathology and Laboratory Medicine, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
24
|
Yurdagul A, Green J, Albert P, McInnis MC, Mazar AP, Orr AW. α5β1 integrin signaling mediates oxidized low-density lipoprotein-induced inflammation and early atherosclerosis. Arterioscler Thromb Vasc Biol 2014; 34:1362-73. [PMID: 24833794 DOI: 10.1161/atvbaha.114.303863] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Endothelial cell activation drives early atherosclerotic plaque formation. Both fibronectin deposition and accumulation of oxidized low-density lipoprotein (oxLDL) occur early during atherogenesis, and both are implicated in enhanced endothelial cell activation. However, interplay between these responses has not been established. The objective of our study was to determine whether endothelial matrix composition modulates the inflammatory properties of oxLDL. APPROACH AND RESULTS We now show that oxLDL-induced nuclear factor-κB activation, proinflammatory gene expression, and monocyte binding are significantly enhanced when endothelial cells are attached to fibronectin compared with basement membrane proteins. This enhanced response does not result from altered oxLDL receptor expression, oxLDL uptake, or reactive oxygen species production, but results from oxLDL-induced activation of the fibronectin-binding integrin α5β1. Preventing α5β1 signaling (blocking antibodies, knockout cells) inhibits oxLDL-induced nuclear factor-κB activation and vascular cell adhesion molecule-1 expression. Furthermore, oxLDL drives α5β1-dependent integrin signaling through the focal adhesion kinase pathway, and focal adhesion kinase inhibition (PF-573228, small interfering RNA) blunts oxLDL-induced nuclear factor-κB activation, vascular cell adhesion molecule-1 expression, and monocyte adhesion. Last, treatment with the α5β1 signaling inhibitor, ATN-161, significantly blunts atherosclerotic plaque development in apolipoprotein E-deficient mice, characterized by reduced vascular cell adhesion molecule-1 expression and macrophage accumulation without affecting fibrous cap size. CONCLUSIONS Our data suggest that α5β1-mediated cross-talk between fibronectin and oxLDL regulates inflammation in early atherogenesis and that therapeutics that inhibit α5 integrins may reduce inflammation without adversely affecting plaque structure.
Collapse
Affiliation(s)
- Arif Yurdagul
- From the Departments of Pathology (A.Y., J.G., P.A., M.C.M., A.W.O.) and Cell Biology and Anatomy (A.Y., A.W.O.), Louisiana State University Health Sciences Center, Shreveport; and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL (A.P.M.)
| | - Jonette Green
- From the Departments of Pathology (A.Y., J.G., P.A., M.C.M., A.W.O.) and Cell Biology and Anatomy (A.Y., A.W.O.), Louisiana State University Health Sciences Center, Shreveport; and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL (A.P.M.)
| | - Patrick Albert
- From the Departments of Pathology (A.Y., J.G., P.A., M.C.M., A.W.O.) and Cell Biology and Anatomy (A.Y., A.W.O.), Louisiana State University Health Sciences Center, Shreveport; and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL (A.P.M.)
| | - Marshall C McInnis
- From the Departments of Pathology (A.Y., J.G., P.A., M.C.M., A.W.O.) and Cell Biology and Anatomy (A.Y., A.W.O.), Louisiana State University Health Sciences Center, Shreveport; and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL (A.P.M.)
| | - Andrew P Mazar
- From the Departments of Pathology (A.Y., J.G., P.A., M.C.M., A.W.O.) and Cell Biology and Anatomy (A.Y., A.W.O.), Louisiana State University Health Sciences Center, Shreveport; and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL (A.P.M.)
| | - A Wayne Orr
- From the Departments of Pathology (A.Y., J.G., P.A., M.C.M., A.W.O.) and Cell Biology and Anatomy (A.Y., A.W.O.), Louisiana State University Health Sciences Center, Shreveport; and Chemistry of Life Processes Institute, Northwestern University, Evanston, IL (A.P.M.).
| |
Collapse
|