1
|
Ippolito L, Duatti A, Iozzo M, Comito G, Pardella E, Lorito N, Bacci M, Pranzini E, Santi A, Sandrini G, Catapano CV, Serni S, Spatafora P, Morandi A, Giannoni E, Chiarugi P. Lactate supports cell-autonomous ECM production to sustain metastatic behavior in prostate cancer. EMBO Rep 2024; 25:3506-3531. [PMID: 38907027 PMCID: PMC11315984 DOI: 10.1038/s44319-024-00180-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 05/30/2024] [Accepted: 06/07/2024] [Indexed: 06/23/2024] Open
Abstract
Extracellular matrix (ECM) is a major component of the tumor environment, promoting the establishment of a pro-invasive behavior. Such environment is supported by both tumor- and stromal-derived metabolites, particularly lactate. In prostate cancer (PCa), cancer-associated fibroblasts (CAFs) are major contributors of secreted lactate, able to impact on metabolic and transcriptional regulation in cancer cells. Here, we describe a mechanism by which CAF-secreted lactate promotes in PCa cells the expression of genes coding for the collagen family. Lactate-exploiting PCa cells rely on increased α-ketoglutarate (α-KG) which activates the α-KG-dependent collagen prolyl-4-hydroxylase (P4HA1) to support collagen hydroxylation. De novo synthetized collagen plays a signaling role by activating discoidin domain receptor 1 (DDR1), supporting stem-like and invasive features of PCa cells. Inhibition of lactate-induced collagen hydroxylation and DDR1 activation reduces the metastatic colonization of PCa cells. Overall, these results provide a new understanding of the link between collagen remodeling/signaling and the nutrient environment exploited by PCa.
Collapse
Grants
- 19515 Fondazione AIRC per la ricerca sul cancro ETS (AIRC)
- 24731 Fondazione AIRC per la ricerca sul cancro ETS (AIRC)
- 22941 Fondazione AIRC per la ricerca sul cancro ETS (AIRC)
- 26599 Fondazione AIRC per la ricerca sul cancro ETS (AIRC)
- KLS-4899-08-2019 Swiss Cancer League
- CN00000041 European Union, National Recovery and Resilience Plan, Mission 4 Component 2 - Investment 1.4 - National Center for Gene Therapy and Drugs based on RNA Technology - NextGenerationEU
- ECS_00000017 European Union, National Recovery and Resilience Plan, Mission 4 Component 2, Creation and strengthening of "innovation ecosystems", construction of "territorial R&D leaders"
- Fondazione Ticinese Ricerca sul Cancro
- European Union, National Recovery and Resilience Plan, Mission 4 Component 2, Creation and strengthening of "innovation ecosystems", construction of "territorial R&D leaders"
- Fondazione Pezcoller (Pezcoller Foundation)
Collapse
Affiliation(s)
- Luigi Ippolito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy.
| | - Assia Duatti
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Marta Iozzo
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Giuseppina Comito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Elisa Pardella
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Nicla Lorito
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Marina Bacci
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Erica Pranzini
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Alice Santi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Giada Sandrini
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Carlo V Catapano
- Institute of Oncology Research (IOR), Università della Svizzera Italiana (USI), 6500, Bellinzona, Switzerland
| | - Sergio Serni
- Department of Minimally Invasive and Robotic Urologic Surgery and Kidney Transplantation, University of Florence, 50134, Florence, Italy
| | - Pietro Spatafora
- Department of Minimally Invasive and Robotic Urologic Surgery and Kidney Transplantation, University of Florence, 50134, Florence, Italy
| | - Andrea Morandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Elisa Giannoni
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy
| | - Paola Chiarugi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Viale Morgagni 50, 50134, Florence, Italy.
| |
Collapse
|
2
|
Fernandes S, Oliver-De La Cruz J, Morazzo S, Niro F, Cassani M, Ďuríková H, Caravella A, Fiore P, Azzato G, De Marco G, Lauria A, Izzi V, Bosáková V, Fric J, Filipensky P, Forte G. TGF-β induces matrisome pathological alterations and EMT in patient-derived prostate cancer tumoroids. Matrix Biol 2024; 125:12-30. [PMID: 37944712 DOI: 10.1016/j.matbio.2023.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 09/28/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Extracellular matrix (ECM) tumorigenic alterations resulting in high matrix deposition and stiffening are hallmarks of adenocarcinomas and are collectively defined as desmoplasia. Here, we thoroughly analysed primary prostate cancer tissues obtained from numerous patients undergoing radical prostatectomy to highlight reproducible structural changes in the ECM leading to the loss of the glandular architecture. Starting from patient cells, we established prostate cancer tumoroids (PCTs) and demonstrated they require TGF-β signalling pathway activity to preserve phenotypical and structural similarities with the tissue of origin. By modulating TGF-β signalling pathway in PCTs, we unveiled its role in ECM accumulation and remodelling in prostate cancer. We also found that TGF-β-induced ECM remodelling is responsible for the initiation of prostate cell epithelial-to-mesenchymal transition (EMT) and the acquisition of a migratory, invasive phenotype. Our findings highlight the cooperative role of TGF-β signalling and ECM desmoplasia in prompting prostate cell EMT and promoting tumour progression and dissemination.
Collapse
Affiliation(s)
- Soraia Fernandes
- International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic.
| | - Jorge Oliver-De La Cruz
- International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic
| | - Sofia Morazzo
- International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic; Faculty of Medicine, Department of Biomedical Sciences, Masaryk University, Brno 62500, Czech Republic
| | - Francesco Niro
- International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic; Faculty of Medicine, Department of Biomedical Sciences, Masaryk University, Brno 62500, Czech Republic
| | - Marco Cassani
- International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic
| | - Helena Ďuríková
- International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic
| | - Alessio Caravella
- Department of Computer Engineering, Modelling, Electronics and Systems Engineering (DIMES), University of Calabria (UNICAL), Via P. Bucci, Cubo 42C, Rende (CS) 87036, Italy
| | - Piergiuseppe Fiore
- Department of Computer Engineering, Modelling, Electronics and Systems Engineering (DIMES), University of Calabria (UNICAL), Via P. Bucci, Cubo 42C, Rende (CS) 87036, Italy
| | - Giulia Azzato
- Department of Computer Engineering, Modelling, Electronics and Systems Engineering (DIMES), University of Calabria (UNICAL), Via P. Bucci, Cubo 42C, Rende (CS) 87036, Italy
| | - Giuseppe De Marco
- Information Technology Center (ICT), University of Calabria (UNICAL), Via P. Bucci, Cubo 22B, Rende (CS) 87036, Italy
| | - Agostino Lauria
- Department of Engineering for Innovation, University of Salento (UNISALENTO), Corpo Z, Campus Ecotekne, SP.6 per Monteroni, Lecce (LE), Italy
| | - Valerio Izzi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu FI-90014, Finland; Faculty of Medicine, BioIM Research Unit, University of Oulu, Oulu FI-90014, Finland; Foundation for the Finnish Cancer Institute, Tukholmankatu 8, Helsinki, Finland
| | - Veronika Bosáková
- International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic; Faculty of Medicine, Department of Biomedical Sciences, Masaryk University, Brno 62500, Czech Republic
| | - Jan Fric
- International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic; Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Petr Filipensky
- Department of Urology, St. Anne's University Hospital, Brno 60200, Czech Republic
| | - Giancarlo Forte
- International Clinical Research Center, St. Anne's University Hospital, Brno 60200, Czech Republic; School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London SE5 9NU, UK.
| |
Collapse
|
3
|
Ditto M, Jacho D, Eisenmann KM, Yildirim-Ayan E. Extracellular Mechanical Stimuli Alters the Metastatic Progression of Prostate Cancer Cells within 3D Tissue Matrix. Bioengineering (Basel) 2023; 10:1271. [PMID: 38002395 PMCID: PMC10669840 DOI: 10.3390/bioengineering10111271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/19/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
This study aimed to understand extracellular mechanical stimuli's effect on prostate cancer cells' metastatic progression within a three-dimensional (3D) bone-like microenvironment. In this study, a mechanical loading platform, EQUicycler, has been employed to create physiologically relevant static and cyclic mechanical stimuli to a prostate cancer cell (PC-3)-embedded 3D tissue matrix. Three mechanical stimuli conditions were applied: control (no loading), cyclic (1% strain at 1 Hz), and static mechanical stimuli (1% strain). The changes in prostate cancer cells' cytoskeletal reorganization, polarity (elongation index), proliferation, expression level of N-Cadherin (metastasis-associated gene), and migratory potential within the 3D collagen structures were assessed upon mechanical stimuli. The results have shown that static mechanical stimuli increased the metastasis progression factors, including cell elongation (p < 0.001), cellular F-actin accumulation (p < 0.001), actin polymerization (p < 0.001), N-Cadherin gene expression, and invasion capacity of PC-3 cells within a bone-like microenvironment compared to its cyclic and control loading counterparts. This study established a novel system for studying metastatic cancer cells within bone and enables the creation of biomimetic in vitro models for cancer research and mechanobiology.
Collapse
Affiliation(s)
- Maggie Ditto
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA
| | - Diego Jacho
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA
| | - Kathryn M. Eisenmann
- Department of Cell and Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, Toledo, OH 43614, USA
| | - Eda Yildirim-Ayan
- Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
4
|
Collagen-Specific Molecular Magnetic Resonance Imaging of Prostate Cancer. Int J Mol Sci 2022; 24:ijms24010711. [PMID: 36614152 PMCID: PMC9821004 DOI: 10.3390/ijms24010711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 01/03/2023] Open
Abstract
Constant interactions between tumor cells and the extracellular matrix (ECM) influence the progression of prostate cancer (PCa). One of the key components of the ECM are collagen fibers, since they are responsible for the tissue stiffness, growth, adhesion, proliferation, migration, invasion/metastasis, cell signaling, and immune recruitment of tumor cells. To explore this molecular marker in the content of PCa, we investigated two different tumor volumes (500 mm3 and 1000 mm3) of a xenograft mouse model of PCa with molecular magnetic resonance imaging (MRI) using a collagen-specific probe. For in vivo MRI evaluation, T1-weighted sequences before and after probe administration were analyzed. No significant signal difference between the two tumor volumes could be found. However, we detected a significant difference between the signal intensity of the peripheral tumor area and the central area of the tumor, at both 500 mm3 (p < 0.01, n = 16) and at 1000 mm3 (p < 0.01, n = 16). The results of our histologic analyses confirmed the in vivo studies: There was no significant difference in the amount of collagen between the two tumor volumes (p > 0.05), but within the tumor, higher collagen expression was observed in the peripheral area compared with the central area of the tumor. Laser ablation with inductively coupled plasma mass spectrometry further confirmed these results. The 1000 mm3 tumors contained 2.8 ± 1.0% collagen and the 500 mm3 tumors contained 3.2 ± 1.2% (n = 16). There was a strong correlation between the in vivo MRI data and the ex vivo histological data (y = −0.068x + 1.1; R2 = 0.74) (n = 16). The results of elemental analysis by inductively coupled plasma mass spectrometry supported the MRI data (y = 3.82x + 0.56; R2 = 0.79; n = 7). MRI with the collagen-specific probe in PCa enables differentiation between different tumor areas. This may help to differentiate tumor from healthy tissue, potentially identifying tumor areas with a specific tumor biology.
Collapse
|
5
|
Alvarez-Cubero MJ, Arance E, de Santiago E, Sanchez P, Sepúlveda MR, Marrero R, Lorente JA, Gonzalez-Cabezuelo JM, Cuenca-Lopez S, Cozar JM, Vazquez-Alonso F, Martinez-Gonzalez LJ. Follow-Up Biomarkers in the Evolution of Prostate Cancer, Levels of S100A4 as a Detector in Plasma. Int J Mol Sci 2022; 24:ijms24010547. [PMID: 36613987 PMCID: PMC9820153 DOI: 10.3390/ijms24010547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/30/2022] Open
Abstract
The management and screening of prostate cancer (PC) is still the main problem in clinical practice. In this study, we investigated the role of aggressiveness genetic markers for PC stratification. We analyzed 201 plasma samples from PC patients and controls by digital PCR. For selection and validation, 26 formalin-fixed paraffin-embedded tissues, 12 fresh tissues, and 24 plasma samples were characterized by RNA-Seq, immunochemistry, immunofluorescence, Western blot, and extracellular-vesicles analyses. We identified three novel non-invasive biomarkers; all with an increased expression pattern in patients (PCA3: p = 0.002, S100A4: p ≤ 0.0001 and MRC2: p = 0.005). S100A4 presents the most informative AUC (area under the curve) (0.735). Combination of S100A4, MRC2, and PCA3 increases the discriminatory power between patients and controls and between different more and less aggressive stages (AUC = 0.761, p ≤ 0.0001). However, although a sensitivity of 97.47% in PCA3 and a specificity of 90.32% in S100A4 was reached, the detection signal level could be variable in some analyses owing to tumor heterogeneity. This is the first time that the role of S100A4 and MRC2 has been described in PC aggressiveness. Moreover, the combination of S100A4, MRC2, and PCA3 has never been described as a non-invasive biomarker for PC screening and aggressiveness.
Collapse
Affiliation(s)
- Maria Jesus Alvarez-Cubero
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Genomics Unit, PTS Granada, Avenida de la Ilustración 114, 18016 Granada, Spain
- Nutrition, Diet and Risk Assessment Group, Bio-Health Research Institute (Instituto de Investigación Biosanitaria ibs.GRANADA), Avenida de las Fuerzas Armadas 2, 18014 Granada, Spain
- Department of Biochemistry and Molecular Biology III, Faculty of Medicine, University of Granada, PTS Granada, 18016 Granada, Spain
| | - Elena Arance
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Genomics Unit, PTS Granada, Avenida de la Ilustración 114, 18016 Granada, Spain
| | - Esperanza de Santiago
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Genomics Unit, PTS Granada, Avenida de la Ilustración 114, 18016 Granada, Spain
| | - Pilar Sanchez
- Department of Biochemistry and Molecular Biology III, Faculty of Medicine, University of Granada, PTS Granada, 18016 Granada, Spain
| | - Maria Rosario Sepúlveda
- Department of Cell Biology, Faculty of Sciences, University of Granada, Avenida de la Fuente Nueva S/N CP, 18071 Granada, Spain
| | - Raquel Marrero
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Genomics Unit, PTS Granada, Avenida de la Ilustración 114, 18016 Granada, Spain
| | - Jose Antonio Lorente
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Genomics Unit, PTS Granada, Avenida de la Ilustración 114, 18016 Granada, Spain
- Department of Legal Medicine and Toxicology, Faculty of Medicine, University of Granada, PTS Granada, 18016 Granada, Spain
| | | | - Sergio Cuenca-Lopez
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Genomics Unit, PTS Granada, Avenida de la Ilustración 114, 18016 Granada, Spain
- Department of Biochemistry and Molecular Biology III, Faculty of Medicine, University of Granada, PTS Granada, 18016 Granada, Spain
| | - Jose Manuel Cozar
- Urology Department, Virgen de las Nieves Hospital, 18014 Granada, Spain
| | | | - Luis Javier Martinez-Gonzalez
- GENYO, Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Genomics Unit, PTS Granada, Avenida de la Ilustración 114, 18016 Granada, Spain
- Correspondence: ; Tel.: +34-958-715-500 (ext. 108); Fax: +34-958-637-071
| |
Collapse
|
6
|
Luthold C, Hallal T, Labbé DP, Bordeleau F. The Extracellular Matrix Stiffening: A Trigger of Prostate Cancer Progression and Castration Resistance? Cancers (Basel) 2022; 14:cancers14122887. [PMID: 35740556 PMCID: PMC9221142 DOI: 10.3390/cancers14122887] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Despite advancements made in diagnosis and treatment, prostate cancer remains the second most diagnosed cancer among men worldwide in 2020, and the first in North America and Europe. Patients with localized disease usually respond well to first-line treatments, however, up to 30% develop castration-resistant prostate cancer (CRPC), which is often metastatic, making this stage of the disease incurable and ultimately fatal. Over the last years, interest has grown into the extracellular matrix (ECM) stiffening as an important mediator of diseases, including cancers. While this process is increasingly well-characterized in breast cancer, a similar in-depth look at ECM stiffening remains lacking for prostate cancer. In this review, we scrutinize the current state of literature regarding ECM stiffening in prostate cancer and its potential association with disease progression and castration resistance.
Collapse
Affiliation(s)
- Carole Luthold
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada;
- Division of Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Québec, QC G1R 3S3, Canada
| | - Tarek Hallal
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada;
| | - David P. Labbé
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, QC H4A 3J1, Canada;
- Division of Urology, Department of Surgery, McGill University, Montréal, QC H4A 3J1, Canada
- Correspondence: (D.P.L.); (F.B.)
| | - François Bordeleau
- Centre de Recherche sur le Cancer, Université Laval, Québec, QC G1R 3S3, Canada;
- Division of Oncology, Centre de Recherche du CHU de Québec-Université Laval, Hôtel-Dieu de Québec, Québec, QC G1R 3S3, Canada
- Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
- Correspondence: (D.P.L.); (F.B.)
| |
Collapse
|
7
|
Gucciardo F, Pirson S, Baudin L, Lebeau A, Noël A. uPARAP/Endo180: a multifaceted protein of mesenchymal cells. Cell Mol Life Sci 2022; 79:255. [PMID: 35460056 PMCID: PMC9033714 DOI: 10.1007/s00018-022-04249-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/11/2022] [Accepted: 03/14/2022] [Indexed: 11/03/2022]
Abstract
The urokinase plasminogen activator receptor-associated protein (uPARAP/Endo180) is already known to be a key collagen receptor involved in collagen internalization and degradation in mesenchymal cells and some macrophages. It is one of the four members of the mannose receptor family along with a macrophage mannose receptor (MMR), a phospholipase lipase receptor (PLA2R), and a dendritic receptor (DEC-205). As a clathrin-dependent endocytic receptor for collagen or large collagen fragments as well as through its association with urokinase (uPA) and its receptor (uPAR), uPARAP/Endo180 takes part in extracellular matrix (ECM) remodeling, cell chemotaxis and migration under physiological (tissue homeostasis and repair) and pathological (fibrosis, cancer) conditions. Recent advances that have shown an expanded contribution of this multifunctional protein across a broader range of biological processes, including vascular biology and innate immunity, are summarized in this paper. It has previously been demonstrated that uPARAP/Endo180 assists in lymphangiogenesis through its capacity to regulate the heterodimerization of vascular endothelial growth factor receptors (VEGFR-2 and VEGFR-3). Moreover, recent findings have demonstrated that it is also involved in the clearance of collectins and the regulation of the immune system, something which is currently being studied as a biomarker and a therapeutic target in a number of cancers.
Collapse
Affiliation(s)
- Fabrice Gucciardo
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, B23, Avenue Hippocrate 13, Sart-Tilman, B-4000, Liege, Belgium
| | - Sébastien Pirson
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, B23, Avenue Hippocrate 13, Sart-Tilman, B-4000, Liege, Belgium
| | - Louis Baudin
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, B23, Avenue Hippocrate 13, Sart-Tilman, B-4000, Liege, Belgium
| | - Alizée Lebeau
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, B23, Avenue Hippocrate 13, Sart-Tilman, B-4000, Liege, Belgium
| | - Agnès Noël
- Laboratory of Tumor and Development Biology, GIGA-Cancer, Liege University, B23, Avenue Hippocrate 13, Sart-Tilman, B-4000, Liege, Belgium.
| |
Collapse
|
8
|
Leal-Egaña A, Balland M, Boccaccini AR. Re-engineering Artificial Neoplastic Milieus: Taking Lessons from Mechano- and Topobiology. Trends Biotechnol 2020; 38:142-153. [DOI: 10.1016/j.tibtech.2019.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 12/30/2022]
|
9
|
The role of PKC and PKD in CXCL12 directed prostate cancer migration. Biochem Biophys Res Commun 2019; 519:86-92. [DOI: 10.1016/j.bbrc.2019.08.134] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 08/23/2019] [Indexed: 12/29/2022]
|
10
|
Ajdžanovic V, Filipovic B, Miljic D, Mijatovic S, Maksimovic-Ivanic D, Miler M, Živanovic J, Miloševic V. Prostate cancer metastasis and soy isoflavones: a dogfight over a bone. EXCLI JOURNAL 2019; 18:106-126. [PMID: 30956643 PMCID: PMC6449674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/12/2019] [Indexed: 11/04/2022]
Abstract
Prostate cancer is a complex, progressive, bone-tropic disease, which is usually associated with skeletal issues, poor mobility and a fatal outcome when it reaches the metastatic phase. Soy isoflavones, steroid-like compounds from soy-based food/dietary supplements, have been found to decrease the risk of prostate cancer in frequent consumers. Herein, we present a systematization of the data on soy isoflavone effects at different stages of metastatic prostate cancer progression, with a particular interest in the context of bone-related molecular events. Specifically, soy isoflavones have been determined to downregulate the prostate cancer cell androgen receptors, reverse the epithelial to mesenchymal transition of these cells, decrease the expressions of prostate-specific antigen, matrix metalloproteinase and serine proteinase, and reduce the superficial membrane fluidity in prostate cancer cells. In addition, soy isoflavones suppress the angiogenesis that follows prostate cancer growth, obstruct prostate cancer cells adhesion to the vascular endothelium and their extravasation in the area of future bone lesions, improve the general bone morphofunctional status, have a beneficial effect on prostate cancer metastasis-caused osteolytic/osteoblastic lesions and possibly affect the pre-metastatic niche formation. The observed, multilevel antimetastatic properties of soy isoflavones imply that they should be considered as promising components of combined therapeutic approaches to advanced prostate cancer.
Collapse
Affiliation(s)
- Vladimir Ajdžanovic
- Department of Cytology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Belgrade, Serbia
| | - Branko Filipovic
- Department of Cytology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Belgrade, Serbia
| | - Dragana Miljic
- Clinic for Endocrinology, Diabetes and Diseases of Metabolism, Clinical Center of Serbia, Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Sanja Mijatovic
- Department of Immunology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Belgrade, Serbia
| | - Danijela Maksimovic-Ivanic
- Department of Immunology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Belgrade, Serbia
| | - Marko Miler
- Department of Cytology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Belgrade, Serbia
| | - Jasmina Živanovic
- Department of Cytology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Belgrade, Serbia
| | - Verica Miloševic
- Department of Cytology, Institute for Biological Research "Siniša Stankovic", University of Belgrade, Belgrade, Serbia
| |
Collapse
|
11
|
Abstract
The published during last few years data concerning communicative role of lectins (proteins and their complexes which recognize carbohydrates, glycoconjugates and their patterns) in on-duty supporting and increasing anticancer status of human immunity are analyzed. Examples of lectin-(glycoconjugate pattern) strategies, approaches and tactic variants in study and development of anticancer treatments, principle variants of therapy, possible vaccines in 35 cases of blood connected tumors (leukemia, lymphomas, others), solid tumors (carcinomas, sarcoma, cancers of vaginal biotopes, prostate, bladder, colon, other intestinal compartments, pancreas, liver, kidneys, others) and cancer cell lines are described and systemized. The list of mostly used communicative lectins (pattern recognition receptors, their soluble forms, other soluble lectins possessing specificities of importance) involving in key intercellular cascades and pathway co-functioning is presented. The regulation of resulting expression of distinct active lectins (available and hetero/di/oligomeric forms) and their interaction to adequate glycoconjugate patterns as well as influence distribution of co-functioning lectins and antigens CD between populations and subpopulations of antigen-presented cells (dendritic cells cDC, mDC, moDC, pDC; macrophages M2 and M1), mucosal M-cells, NK-cells play key role for choice and development of anticancer complex procedures increasing innate and innate-coupled immune responses. Prospects of (receptor lectin)-dependent intercellular communications and targeting glycoconjugate constructions into innate immunity cells for therapy of cancer and development of anticancer vaccines are evaluated and discussed.
Collapse
|
12
|
Biomarker microRNAs for prostate cancer metastasis: screened with a network vulnerability analysis model. J Transl Med 2018; 16:134. [PMID: 29784056 PMCID: PMC5963164 DOI: 10.1186/s12967-018-1506-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/05/2018] [Indexed: 02/05/2023] Open
Abstract
Background Prostate cancer (PCa) is a fatal malignant tumor among males in the world and the metastasis is a leading cause for PCa death. Biomarkers are therefore urgently needed to detect PCa metastatic signature at the early time. MicroRNAs are small non-coding RNAs with the potential to be biomarkers for disease prediction. In addition, computer-aided biomarker discovery is now becoming an attractive paradigm for precision diagnosis and prognosis of complex diseases. Methods In this study, we identified key microRNAs as biomarkers for predicting PCa metastasis based on network vulnerability analysis. We first extracted microRNAs and mRNAs that were differentially expressed between primary PCa and metastatic PCa (MPCa) samples. Then we constructed the MPCa-specific microRNA-mRNA network and screened microRNA biomarkers by a novel bioinformatics model. The model emphasized the characterization of systems stability changes and the network vulnerability with three measurements, i.e. the structurally single-line regulation, the functional importance of microRNA targets and the percentage of transcription factor genes in microRNA unique targets. Results With this model, we identified five microRNAs as putative biomarkers for PCa metastasis. Among them, miR-101-3p and miR-145-5p have been previously reported as biomarkers for PCa metastasis and the remaining three, i.e. miR-204-5p, miR-198 and miR-152, were screened as novel biomarkers for PCa metastasis. The results were further confirmed by the assessment of their predictive power and biological function analysis. Conclusions Five microRNAs were identified as candidate biomarkers for predicting PCa metastasis based on our network vulnerability analysis model. The prediction performance, literature exploration and functional enrichment analysis convinced our findings. This novel bioinformatics model could be applied to biomarker discovery for other complex diseases. Electronic supplementary material The online version of this article (10.1186/s12967-018-1506-7) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Rogerson C, Gissen P. VPS33B and VIPAR are essential for epidermal lamellar body biogenesis and function. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1609-1621. [PMID: 29409756 PMCID: PMC5906731 DOI: 10.1016/j.bbadis.2018.01.028] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/09/2018] [Accepted: 01/29/2018] [Indexed: 02/06/2023]
Abstract
Mutations in VPS33B and VIPAS39 cause the severe multisystem disorder Arthrogryposis, Renal dysfunction and Cholestasis (ARC) syndrome. Amongst other symptoms, patients with ARC syndrome suffer from severe ichthyosis. Roles for VPS33B and VIPAR have been reported in lysosome-related organelle biogenesis, integrin recycling, collagen homeostasis and maintenance of cell polarity. Mouse knockouts of Vps33b or Vipas39 are good models of ARC syndrome and develop an ichthyotic phenotype. We demonstrate that the skin manifestations in Vps33b and Vipar deficient mice are histologically similar to those of patients with ARC syndrome. Histological, immunofluorescent and electron microscopic analysis of Vps33b and Vipar deficient mouse skin biopsies and isolated primary cells showed that epidermal lamellar bodies, which are essential for skin barrier function, had abnormal morphology and the localisation of lamellar body cargo was disrupted. Stratum corneum formation was affected, with increased corneocyte thickness, decreased thickness of the cornified envelope and reduced deposition of lipids. These defects impact epidermal homeostasis and lead to abnormal barrier formation causing the skin phenotype in Vps33b and Vipar deficient mice and patients with ARC syndrome.
Collapse
Affiliation(s)
- Clare Rogerson
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Institute of Child Health, University College London, London WC1N 1EH, UK.
| | - Paul Gissen
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, UK; Institute of Child Health, University College London, London WC1N 1EH, UK; Inherited Metabolic Diseases Unit, Great Ormond Street Hospital, London WC1N 3JH, UK.
| |
Collapse
|
14
|
Peng C, Liu J, Yang G, Li Y. Lysyl oxidase activates cancer stromal cells and promotes gastric cancer progression: quantum dot-based identification of biomarkers in cancer stromal cells. Int J Nanomedicine 2017; 13:161-174. [PMID: 29343955 PMCID: PMC5747962 DOI: 10.2147/ijn.s143871] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Purpose Semiconductor quantum dots (QDs) are a promising alternative to organic fluorescent dyes for multiplexed molecular imaging of cancer stroma, which have great advantages in holistically analyzing the complex interactions among cancer stromal components in situ. Patients and methods A QD probe-based multiplexed spectral molecular imaging method was established for simultaneous imaging. Three tissue microarrays (TMAs) including 184 gastric cancer (GC) tissues were constructed for the study. Multispectral analyses were performed for quantifying stromal biomarkers, such as lysyl oxidase (LOX). The stromal status including infiltrating of immune cells (high density of macrophages), angiogenesis (high density of microvessel density [MVD], low neovessel maturation) and extracellular matrix (ECM) remodeling (low density of type IV collagen, intense expression of matrix metalloproteinase 9 [MMP-9]) was evaluated. Results This study compared the imaging features of the QD probe-based single molecular imaging method, immunohistochemistry, and organic dye-based immunofluorescent methods, and showed the advantages of the QD probe-based multiple molecular imaging method for simultaneously visualizing complex components of cancer stroma. The risk of macrophages in high density, high MVD, low neomicrovessel maturation, MMP-9 expression and low type IV collagen was significantly increased for the expression of LOX. With the advantages of the established QD probe-based multiplexed molecular imaging method, the spatial relationship between LOX and stromal essential events could be simultaneously evaluated histologically. Stromal activation was defined and then evaluated. Survival analysis showed that the stromal activation was correlated with overall survival and disease-free survival (P<0.001 for all). The expression of LOX was significantly increased in the intense activation subgroup (P<0.001). Conclusion Quantifying assessment of the stroma indicates that the LOX may be a stromal marker for GC and stromal activation, which is not only responsible for the ECM remodeling morphologically, but also for the formation of invasive properties and recurrence. These results support the possibility to integrate morphological and molecular biomarker information for cancer research by the biomedical application of QDs.
Collapse
Affiliation(s)
- Chunwei Peng
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center
| | - Jiuyang Liu
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center
| | - Guifang Yang
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuchang District, Wuhan
| | - Yan Li
- Department of Peritoneal Cancer Surgery, Cancer Center of Beijing Shijitan Hospital Affiliated to the Capital Medical University, Yangfangdian, Beijing, People's Republic of China
| |
Collapse
|
15
|
Rodriguez-Teja M, Breit C, Clarke M, Talar K, Wang K, Mohammad MA, Pickwell S, Etchandy G, Stasiuk GJ, Sturge J. How to Study Basement Membrane Stiffness as a Biophysical Trigger in Prostate Cancer and Other Age-related Pathologies or Metabolic Diseases. J Vis Exp 2016. [PMID: 27684203 PMCID: PMC5092048 DOI: 10.3791/54230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Here we describe a protocol that can be used to study the biophysical microenvironment related to increased thickness and stiffness of the basement membrane (BM) during age-related pathologies and metabolic disorders (e.g. cancer, diabetes, microvascular disease, retinopathy, nephropathy and neuropathy). The premise of the model is non-enzymatic crosslinking of reconstituted BM (rBM) matrix by treatment with glycolaldehyde (GLA) to promote advanced glycation endproduct (AGE) generation via the Maillard reaction. Examples of laboratory techniques that can be used to confirm AGE generation, non-enzymatic crosslinking and increased stiffness in GLA treated rBM are outlined. These include preparation of native rBM (treated with phosphate-buffered saline, PBS) and stiff rBM (treated with GLA) for determination of: its AGE content by photometric analysis and immunofluorescent microscopy, its non-enzymatic crosslinking by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS PAGE) as well as confocal microscopy, and its increased stiffness using rheometry. The procedure described here can be used to increase the rigidity (elastic moduli, E) of rBM up to 3.2-fold, consistent with measurements made in healthy versus diseased human prostate tissue. To recreate the biophysical microenvironment associated with the aging and diseased prostate gland three prostate cell types were introduced on to native rBM and stiff rBM: RWPE-1, prostate epithelial cells (PECs) derived from a normal prostate gland; BPH-1, PECs derived from a prostate gland affected by benign prostatic hyperplasia (BPH); and PC3, metastatic cells derived from a secondary bone tumor originating from prostate cancer. Multiple parameters can be measured, including the size, shape and invasive characteristics of the 3D glandular acini formed by RWPE-1 and BPH-1 on native versus stiff rBM, and average cell length, migratory velocity and persistence of cell movement of 3D spheroids formed by PC3 cells under the same conditions. Cell signaling pathways and the subcellular localization of proteins can also be assessed.
Collapse
Affiliation(s)
| | - Claudia Breit
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology
| | - Mitchell Clarke
- School of Biological, Biomedical & Environmental Sciences, University of Hull
| | - Kamil Talar
- School of Biological, Biomedical & Environmental Sciences, University of Hull
| | - Kai Wang
- School of Biological, Biomedical & Environmental Sciences, University of Hull
| | - Mohammad A Mohammad
- School of Biological, Biomedical & Environmental Sciences, University of Hull
| | - Sage Pickwell
- School of Biological, Biomedical & Environmental Sciences, University of Hull
| | - Guillermina Etchandy
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR)
| | - Graeme J Stasiuk
- School of Biological, Biomedical & Environmental Sciences, University of Hull
| | - Justin Sturge
- School of Biological, Biomedical & Environmental Sciences, University of Hull;
| |
Collapse
|
16
|
Gartland A, Erler JT, Cox TR. The role of lysyl oxidase, the extracellular matrix and the pre-metastatic niche in bone metastasis. J Bone Oncol 2016; 5:100-103. [PMID: 27761366 PMCID: PMC5063254 DOI: 10.1016/j.jbo.2016.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/09/2016] [Accepted: 04/13/2016] [Indexed: 02/07/2023] Open
Abstract
Most deaths from solid cancers occur as a result of secondary metastasis to distant sites. Bone is the most frequent metastatic site for many cancer types and can account for up to 80% of cancer-related deaths in certain tumours. The progression from a discrete solid primary tumour to devastating and painful bone metastases is a complex process involving multiple cell types and steps. There is increasing evidence that modulation of the extracellular matrix plays an important role in the lethal transition from a primary to disseminated metastatic bone tumour. This review provides an overview of the current understanding on the role of role of lysyl oxidase, the extracellular matrix and the pre-metastatic niche in bone metastasis.
Collapse
Affiliation(s)
- Alison Gartland
- Department of Oncology and Metabolism, The University of Sheffield, Sheffield S10 2RX, UK
| | - Janine T. Erler
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Ole Maaløes Vej 5, Copenhagen 2200, Denmark
| | - Thomas R. Cox
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen (UCPH), Ole Maaløes Vej 5, Copenhagen 2200, Denmark
| |
Collapse
|
17
|
Sturge J. Endo180 at the cutting edge of bone cancer treatment and beyond. J Pathol 2016; 238:485-8. [PMID: 26576691 PMCID: PMC4819699 DOI: 10.1002/path.4673] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 11/14/2015] [Indexed: 12/21/2022]
Abstract
Skeletal bone is an attractive site for secondary tumour growth and is also home to spontaneous primary cancer. Treatment of bone metastasis is focused on limiting the vicious cycle of bone destruction with bisphosphonates or inhibition of receptor activator of nuclear factor‐κB ligand (RANKL) with the fully human monoclonal antibody denosumab. The estimated 1 million deaths/year where bone metastasis is present, and the high healthcare costs required for its management, have ignited intensive research into the cellular and molecular pathology of osteolysis, involving interplay between tumour cells, bone‐forming osteoblasts and bone‐degrading osteoclasts. Compared to bone metastasis, knowledge about the pathology of primary bone cancers is limited. In recent work published in this journal, Engelholm et al provide a unique insight into how this poorly understood disease manifests and destroys bone. For the first time they have demonstrated that a mouse monoclonal antibody targeting the collagen receptor Endo180 (CD280, MRC2 uPARAP) can prevent osteolysis and bone destruction in a syngeneic model of advanced osteosarcoma. Their convincing findings make an important contribution towards Endo180‐based therapy being developed as an option for the treatment of bone cancer amongst other malignancies. © 2015 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Justin Sturge
- School of Biological, Biomedical and Environmental Sciences, University of Hull, UK
| |
Collapse
|