1
|
Sampaio MCPD, Santos RVC, Albuquerque APDB, Soares AKDA, Cordeiro MF, da Rosa MM, Pereira MC, da Rocha Pitta MG, Rêgo MJBDM. Induction of SK-MEL-28 Invasion by Brain Cortical Cell-Conditioned Medium Through CXCL10 Signaling. J Interferon Cytokine Res 2024; 44:198-207. [PMID: 38512222 DOI: 10.1089/jir.2023.0158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Melanoma, an infrequent yet significant variant of skin cancer, emerges as a primary cause of brain metastasis among various malignancies. Despite recognizing the involvement of inflammatory molecules, particularly chemokines, in shaping the metastatic microenvironment, the intricate cellular signaling mechanisms underlying cerebral metastasis remain elusive. In our pursuit to unravel the role of cytokines in melanoma metastasis, we devised a protocol utilizing mixed cerebral cortical cells and SK-MEL-28 melanoma cell lines. Contrary to expectations, we observed no discernible morphological change in melanoma cells exposed to a cerebral conditioned medium (CM). However, a substantial increase in both migration and proliferation was quantitatively noted. Profiling the chemokine secretion by melanoma in response to the cerebral CM unveiled the pivotal role of interferon gamma-induced protein 10 (CXCL10), inhibiting the secretion of interleukin 8 (CXCL8). Furthermore, through a transwell assay, we demonstrated that knockdown CXCL10 led to a significant decrease in the migration of the SK-MEL-28 cell line. In conclusion, our findings suggest that a cerebral CM induces melanoma cell migration, while modulating the secretion of CXCL10 and CXCL8 in the context of brain metastases. These insights advance our understanding of the underlying mechanisms in melanoma cerebral metastasis, paving the way for further exploration and targeted therapeutic interventions.
Collapse
Affiliation(s)
- Maria Clara Pinheiro Duarte Sampaio
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, Brazil
| | - Renata Virgínia Cavalcanti Santos
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, Brazil
| | - Amanda Pinheiro de Barros Albuquerque
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, Brazil
| | | | - Marina Ferraz Cordeiro
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, Brazil
| | - Michelle Melgarejo da Rosa
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, Brazil
| | - Michelly Cristiny Pereira
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, Brazil
| | - Maira Galdino da Rocha Pitta
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, Brazil
| | - Moacyr Jesus Barreto de Melo Rêgo
- Laboratory of Immunomodulation and New Therapeutical Approaches, Research Centre for Therapeutic Innovation Suely Galdino (NUPIT-SG), Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
2
|
Catalano M, Limatola C, Trettel F. Non-neoplastic astrocytes: key players for brain tumor progression. Front Cell Neurosci 2024; 17:1352130. [PMID: 38293652 PMCID: PMC10825036 DOI: 10.3389/fncel.2023.1352130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Astrocytes are highly plastic cells whose activity is essential to maintain the cerebral homeostasis, regulating synaptogenesis and synaptic transmission, vascular and metabolic functions, ions, neuro- and gliotransmitters concentrations. In pathological conditions, astrocytes may undergo transient or long-lasting molecular and functional changes that contribute to disease resolution or exacerbation. In recent years, many studies demonstrated that non-neoplastic astrocytes are key cells of the tumor microenvironment that contribute to the pathogenesis of glioblastoma, the most common primary malignant brain tumor and of secondary metastatic brain tumors. This Mini Review covers the recent development of research on non-neoplastic astrocytes as tumor-modulators. Their double-edged capability to promote cancer progression or to represent potential tools to counteract brain tumors will be discussed.
Collapse
Affiliation(s)
- Myriam Catalano
- Laboratory of Neuroimmunology, Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Cristina Limatola
- Laboratory of Neuroimmunology, Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Flavia Trettel
- Laboratory of Neuroimmunology, Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
3
|
Osaid Z, Haider M, Hamoudi R, Harati R. Exosomes Interactions with the Blood-Brain Barrier: Implications for Cerebral Disorders and Therapeutics. Int J Mol Sci 2023; 24:15635. [PMID: 37958619 PMCID: PMC10648512 DOI: 10.3390/ijms242115635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
The Blood-Brain Barrier (BBB) is a selective structural and functional barrier between the circulatory system and the cerebral environment, playing an essential role in maintaining cerebral homeostasis by limiting the passage of harmful molecules. Exosomes, nanovesicles secreted by virtually all cell types into body fluids, have emerged as a major mediator of intercellular communication. Notably, these vesicles can cross the BBB and regulate its physiological functions. However, the precise molecular mechanisms by which exosomes regulate the BBB remain unclear. Recent research studies focused on the effect of exosomes on the BBB, particularly in the context of their involvement in the onset and progression of various cerebral disorders, including solid and metastatic brain tumors, stroke, neurodegenerative, and neuroinflammatory diseases. This review focuses on discussing and summarizing the current knowledge about the role of exosomes in the physiological and pathological modulation of the BBB. A better understanding of this regulation will improve our understanding of the pathogenesis of cerebral diseases and will enable the design of effective treatment strategies.
Collapse
Affiliation(s)
- Zaynab Osaid
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
| | - Mohamed Haider
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Rifat Hamoudi
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Division of Surgery and Interventional Science, University College London, London W1W 7EJ, UK
| | - Rania Harati
- Department of Pharmacy Practice and Pharmacotherapeutics, College of Pharmacy, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates;
| |
Collapse
|
4
|
Von Roemeling CA, Doonan BP, Klippel K, Schultz D, Hoang-Minh L, Trivedi V, Li C, Russell RA, Kanumuri RS, Sharma A, Tun HW, Mitchell DA. Oral IRAK-4 Inhibitor CA-4948 Is Blood-Brain Barrier Penetrant and Has Single-Agent Activity against CNS Lymphoma and Melanoma Brain Metastases. Clin Cancer Res 2023; 29:1751-1762. [PMID: 36749885 PMCID: PMC10150246 DOI: 10.1158/1078-0432.ccr-22-1682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 12/19/2022] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
PURPOSE An ongoing challenge in cancer is the management of primary and metastatic brain malignancies. This is partly due to restrictions of the blood-brain barrier and their unique microenvironment. These challenges are most evident in cancers such as lymphoma and melanoma, which are typically responsive to treatment in systemic locations but resistant when established in the brain. We propose interleukin-1 receptor-associated kinase-4 (IRAK-4) as a potential target across these diseases and describe the activity and mechanism of oral IRAK-4 inhibitor CA-4948. EXPERIMENTAL DESIGN Human primary central nervous system lymphoma (PCNSL) and melanoma brain metastases (MBM) samples were analyzed for expression of IRAK-4 and downstream transcription pathways. We next determined the central nervous system (CNS) applicability of CA-4948 in naïve and tumor-bearing mice using models of PCNSL and MBM. The mechanistic effect on tumors and the tumor microenvironment was then analyzed. RESULTS Human PCNSL and MBM have high expression of IRAK-4, IRAK-1, and nuclear factor kappa B (NF-κB). This increase in inflammation results in reflexive inhibitory signaling. Similar profiles are observed in immunocompetent murine models. Treatment of tumor-bearing animals with CA-4948 results in the downregulation of mitogen-activated protein kinase (MAPK) signaling in addition to decreased NF-κB. These intracellular changes are associated with a survival advantage. CONCLUSIONS IRAK-4 is an attractive target in PCNSL and MBM. The inhibition of IRAK-4 with CA-4948 downregulates the expression of important transcription factors involved in tumor growth and proliferation. CA-4948 is currently being investigated in clinical trials for relapsed and refractory lymphoma and warrants further translation into PCNSL and MBM.
Collapse
Affiliation(s)
- Christina A. Von Roemeling
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, Florida
| | - Bently P. Doonan
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, Florida
- Department of Medicine, Hematology and Oncology, University of Florida, Gainesville, Florida
| | - Kelena Klippel
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, Florida
| | - Daniel Schultz
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Lan Hoang-Minh
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, Florida
| | - Vrunda Trivedi
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, Florida
| | - Chenglong Li
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, Florida
| | - Rylynn A. Russell
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, Florida
| | - Raju S. Kanumuri
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, Florida
| | - Abhisheak Sharma
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, Florida
- Translational Drug Development Core, Clinical and Translational Science Institute, University of Florida, Gainesville, Florida
| | - Han W. Tun
- Department of Hematology and Oncology, Mayo Clinic, Jacksonville, Florida
| | - Duane A. Mitchell
- Lillian S. Wells Department of Neurosurgery, Preston A. Wells, Jr. Center for Brain Tumor Therapy, University of Florida, Gainesville, Florida
| |
Collapse
|
5
|
Genomic and Epigenomic Features of Glioblastoma Multiforme and its Biomarkers. JOURNAL OF ONCOLOGY 2022; 2022:4022960. [PMID: 36185622 PMCID: PMC9519330 DOI: 10.1155/2022/4022960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/14/2022] [Accepted: 09/10/2022] [Indexed: 11/22/2022]
Abstract
Glioblastoma multiforme is a serious and life-threatening tumor of central nervous system, characterized by aggressive behavior, poor prognosis, and low survival rate. Despite of the availability of aggressive antitumor therapeutic regimen for glioblastoma (radiotherapy followed by chemotherapeutic dose), recovery rate, and patients' survival ratio is attributed to the lack of selectivity of therapeutic drugs and less advancement in cancer therapeutics over last decade. Moreover, tools employed in conventional diagnosis of glioblastoma are more invasive and painful, making the process excruciating for the patients. These challenges urge for the need of novel biomarkers for diagnosis, prognosis, and prediction purpose with less invasiveness and more patient compliance. This article will explore the genetic biomarkers isocitrate dehydrogenase mutation, MGMT mutations, and EGFR that can be deployed as an analytical tool in diagnosis of disease and prognosis of a therapeutic course. The review also highlights the importance of employing novel microRNAs as prognostic biomarkers. Recent clinical advancements to treat GBM and to prevent relapse of the disease are also discussed in this article in the hope of finding a robust and effective method to treat GBM.
Collapse
|
6
|
Kim H, Sa JK, Kim J, Cho HJ, Oh HJ, Choi D, Kang S, Jeong DE, Nam D, Lee H, Lee HW, Chung S. Recapitulated Crosstalk between Cerebral Metastatic Lung Cancer Cells and Brain Perivascular Tumor Microenvironment in a Microfluidic Co-Culture Chip. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201785. [PMID: 35657027 PMCID: PMC9353479 DOI: 10.1002/advs.202201785] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Indexed: 05/14/2023]
Abstract
Non-small cell lung carcinoma (NSCLC), which affects the brain, is fatal and resistant to anti-cancer therapies. Despite innate, distinct characteristics of the brain from other organs, the underlying delicate crosstalk between brain metastatic NSCLC (BM-NSCLC) cells and brain tumor microenvironment (bTME) associated with tumor evolution remains elusive. Here, a novel 3D microfluidic tri-culture platform is proposed for recapitulating positive feedback from BM-NSCLC and astrocytes and brain-specific endothelial cells, two major players in bTME. Advanced imaging and quantitative functional assessment of the 3D tri-culture model enable real-time live imaging of cell viability and separate analyses of genomic/molecular/secretome from each subset. Susceptibility of multiple patient-derived BM-NSCLCs to representative targeted agents is altered and secretion of serpin E1, interleukin-8, and secreted phosphoprotein 1, which are associated with tumor aggressiveness and poor clinical outcome, is increased in tri-culture. Notably, multiple signaling pathways involved in inflammatory responses, nuclear factor kappa-light-chain-enhancer of activated B cells, and cancer metastasis are activated in BM-NSCLC through interaction with two bTME cell types. This novel platform offers a tool to elucidate potential molecular targets and for effective anti-cancer therapy targeting the crosstalk between metastatic cancer cells and adjacent components of bTME.
Collapse
Affiliation(s)
- Hyunho Kim
- School of Mechanical Engineering, College of EngineeringKorea UniversitySeoul02841Republic of Korea
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
| | - Jason K. Sa
- Department of Biomedical SciencesKorea University College of MedicineSeoul02841Republic of Korea
| | - Jaehoon Kim
- School of Mechanical Engineering, College of EngineeringKorea UniversitySeoul02841Republic of Korea
- George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaGA30332USA
| | - Hee Jin Cho
- Department of Biomedical Convergence Science and TechnologyKyungpook National UniversityDaegu41566Republic of Korea
- Cell and Matrix Research InstituteKyungpook National UniversityDaegu41944Republic of Korea
| | - Hyun Jeong Oh
- School of Mechanical Engineering, College of EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Dong‐Hee Choi
- School of Mechanical Engineering, College of EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Seok‐Hyeon Kang
- School of Mechanical Engineering, College of EngineeringKorea UniversitySeoul02841Republic of Korea
| | - Da Eun Jeong
- Bioscience division, Life Sciences and Laboratory Products GroupThermo Fisher Scientific SolutionsSeoul06349Republic of Korea
| | - Do‐Hyun Nam
- Institute for Refractory Cancer ResearchSamsung Medical CenterSeoul06351Republic of Korea
- Department of Health Science & Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST)Sungkyunkwan UniversitySeoul06351Republic of Korea
- Department of Neurosurgery, Samsung Medical CenterSungkyunkwan University School of MedicineSeoul06351Republic of Korea
| | - Hakho Lee
- Center for Systems BiologyMassachusetts General HospitalBostonMA02114USA
| | - Hye Won Lee
- Department of Urology, Center for Urologic CancerNational Cancer CenterGoyang10408Republic of Korea
| | - Seok Chung
- School of Mechanical Engineering, College of EngineeringKorea UniversitySeoul02841Republic of Korea
- KU‐KIST Graduate School of Converging Science and TechnologyKorea UniversitySeoul02841Republic of Korea
| |
Collapse
|
7
|
Chen B, Li R, Zhang J, Xu L, Jiang F. Genomic Landscape of Metastatic Lymph Nodes and Primary Tumors in Non-Small-Cell Lung Cancer. Pathol Oncol Res 2022; 28:1610020. [PMID: 35783357 PMCID: PMC9243222 DOI: 10.3389/pore.2022.1610020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 04/25/2022] [Indexed: 11/13/2022]
Abstract
Objective: To investigate the genetic mutation characteristics of non-small cell lung cancers (NSCLC) with and without lymph node metastasis.Methods: Primary lesions and metastatic lymph node lesions of 36 Chinese NSCLC patients were tested for somatic mutations, tumor mutation burden, phylogenetic and clonal evolutional analysis using a 1021-gene panel by next-generation sequencing (NGS) with an average sequencing depth of 671X.Results: In this study, eighteen patients with lung adenocarcinoma (LUAD) and 18 with lung squamous cell carcinoma (LUSC) were included. Different groups had distinct characteristics of gene mutations. CTNNB1 gene mutations were only present in Nome_LC LUAD patients (p < 0.05). ARID1A mutation was however the only gene with significant alterations (p < 0.05) in Nome_LC in LUSC. Phylogenetic trees of mutated genes were also constructed. Linear and parallel evolutions of metastatic lymph nodes were observed both in LUAD and LUSC.Conclusion: LUSC exhibited more genetic mutations than LUAD. Intriguingly, there was significant difference in gene mutations between Meta_LC and Nome_LC. CTNNB1 gene alteration was the key mutation in LUAD that seems to promote proliferation of the tumor and then determine T stage. On the other hand, proliferation of the tumor was characterized by ARID1A missense mutation in LUSC, thus influencing the T stage as well. Lymph node metastasis could display both linear and parallel evolutionary characteristics in NSCLC. Different metastatic lymph nodes might have exactly the same or different mutated genes, underlining the heterogeneous genomic characteristics of these cancer types.
Collapse
Affiliation(s)
- Bing Chen
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Nanjing, China
| | - Rutao Li
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Nanjing, China
| | - Junling Zhang
- The Medical Department, 3D Medicines Inc., Shanghai, China
| | - Lin Xu
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Nanjing, China
- *Correspondence: Lin Xu, ; Feng Jiang,
| | - Feng Jiang
- The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
- Department of Thoracic Surgery, Jiangsu Cancer Hospital, Nanjing, China
- *Correspondence: Lin Xu, ; Feng Jiang,
| |
Collapse
|
8
|
Pshennikova ES, Voronina AS. Dormancy: There and Back Again. Mol Biol 2022; 56:735-755. [PMID: 36217335 PMCID: PMC9534470 DOI: 10.1134/s0026893322050119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/27/2022] [Accepted: 03/27/2022] [Indexed: 11/04/2022]
Abstract
Many cells are capable of maintaining viability in a non-dividing state with minimal metabolism under unfavorable conditions. These are germ cells, adult stem cells, and microorganisms. Unfortunately, a resting state, or dormancy, is possible for tuberculosis bacilli in a latent form of the disease and cancer cells, which may later form secondary tumors (metastases) in different parts of the body. These cells are resistant to therapy that can destroy intensely dividing cells and to the host immune system. A cascade of reactions that allows cells to enter and exit dormancy is triggered by regulatory factors from the microenvironment in niches that harbor the cells. A ratio of forbidding and permitting signals dictates whether the cells become dormant or start proliferation. The only difference between the cell dormancy regulation in normal and pathological conditions is that pathogens, mycobacteria, and cancer cells can influence their own fate by changing their microenvironment. Certain mechanisms of these processes are considered in the review.
Collapse
Affiliation(s)
- E. S. Pshennikova
- Bakh Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| | - A. S. Voronina
- Bakh Institute of Biochemistry, Federal Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
9
|
Oliveira FD, Castanho MARB, Neves V. Exosomes and Brain Metastases: A Review on Their Role and Potential Applications. Int J Mol Sci 2021; 22:10899. [PMID: 34639239 PMCID: PMC8509735 DOI: 10.3390/ijms221910899] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/26/2021] [Accepted: 09/28/2021] [Indexed: 12/21/2022] Open
Abstract
Brain metastases (BM) are a frequent complication in patients with advanced stages of cancer, associated with impairment of the neurological function, quality of life, prognosis, and survival. BM treatment consists of a combination of the available cancer therapies, such as surgery, radiotherapy, chemotherapy, immunotherapy and targeted therapies. Even so, cancer patients with BM are still linked to poor prognosis, with overall survival being reported as 12 months or less. Intercellular communication has a pivotal role in the development of metastases, therefore, it has been extensively studied not only to better understand the metastization process, but also to further develop new therapeutic strategies. Exosomes have emerged as key players in intercellular communication being potential therapeutic targets, drug delivery systems (DDS) or biomarkers. In this Review, we focus on the role of these extracellular vesicles (EVs) in BM formation and their promising application in the development of new BM therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Vera Neves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Professor Egas Moniz, 1649-028 Lisboa, Portugal; (F.D.O.); (M.A.R.B.C.)
| |
Collapse
|
10
|
Gan DX, Wang YB, He MY, Chen ZY, Qin XX, Miao ZW, Chen YH, Li B. Lung Cancer Cells-Controlled Dkk-1 Production in Brain Metastatic Cascade Drive Microglia to Acquire a Pro-tumorigenic Phenotype. Front Cell Dev Biol 2021; 8:591405. [PMID: 33384994 PMCID: PMC7769850 DOI: 10.3389/fcell.2020.591405] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/25/2020] [Indexed: 12/24/2022] Open
Abstract
Objectives Organotropism is primarily determined by tumor-derived exosomes. To date, the role of lung cancer cells-derived exosomes underlying the pre-metastatic niche formation is unclear. Materials and Methods The animal models of retro-orbital and intra-ventricular injection were constructed to administrate lung cancer cells-derived exosomes. Cytokine array was used to screen the cytokines released from brain endothelium after internalization of lung cancer cells-derived exosomes. The cellular co-culture system was established to mimic microglia-vascular niche contained lung cancer cells-derived exosomes. The levels of Dkk-1 and the activities of microglia were analyzed by qRT-PCR, western blot and immunofluorescence. In vivo selections of highly brain metastatic cells were performed to analyze the direct interaction of lung cancer cells with microglia. Results Animal studies demonstrated that there was a suppressive signal transferred from brain endothelium to microglia after internalization of lung cancer cells-derived exosomes into brain endothelium, which caused an absolutely less M1 phenotypic microglia and a relatively more M2 phenotypic microglia. Further results indicated that lung cancer cells-derived exosomes induced a release of endogenous Dkk-1 from brain endothelium, which rendered microglia to acquire a pro-tumorigenic feature in pre-metastatic niche. Subsequently, the declines of Dkk-1 in metastatic lung cancer cells removed the suppression on microglia and enhanced microglial activation in metastatic niche. Conclusion Our findings shed a new light on the synergistic reaction of the different cells in “neurovascular units” toward the metastatic messages from lung cancer cells and provided a potential therapeutic pathway for lung cancer metastasis to brain.
Collapse
Affiliation(s)
- Dong-Xue Gan
- Key Laboratory of Medical Cell Biology, Ministry of Education, Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang, China
| | - Yi-Bei Wang
- Key Laboratory of Medical Cell Biology, Ministry of Education, Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang, China
| | - Ming-Yang He
- Key Laboratory of Medical Cell Biology, Ministry of Education, Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang, China
| | - Zi-Yang Chen
- Key Laboratory of Medical Cell Biology, Ministry of Education, Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang, China
| | - Xiao-Xue Qin
- Key Laboratory of Medical Cell Biology, Ministry of Education, Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang, China
| | - Zi-Wei Miao
- Key Laboratory of Medical Cell Biology, Ministry of Education, Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang, China
| | - Yu-Hua Chen
- Key Laboratory of Medical Cell Biology, Ministry of Education, Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang, China
| | - Bo Li
- Key Laboratory of Medical Cell Biology, Ministry of Education, Department of Developmental Cell Biology, School of Life Sciences, China Medical University, Shenyang, China
| |
Collapse
|
11
|
Linke F, Aldighieri M, Lourdusamy A, Grabowska AM, Stolnik S, Kerr ID, Merry CL, Coyle B. 3D hydrogels reveal medulloblastoma subgroup differences and identify extracellular matrix subtypes that predict patient outcome. J Pathol 2020; 253:326-338. [PMID: 33206391 PMCID: PMC7986745 DOI: 10.1002/path.5591] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 10/19/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022]
Abstract
Medulloblastoma (MB) is the most common malignant brain tumour in children and is subdivided into four subgroups: WNT, SHH, Group 3, and Group 4. These molecular subgroups differ in their metastasis patterns and related prognosis rates. Conventional 2D cell culture methods fail to recapitulate these clinical differences. Realistic 3D models of the cerebellum are therefore necessary to investigate subgroup‐specific functional differences and their role in metastasis and chemoresistance. A major component of the brain extracellular matrix (ECM) is the glycosaminoglycan hyaluronan. MB cell lines encapsulated in hyaluronan hydrogels grew as tumour nodules, with Group 3 and Group 4 cell lines displaying clinically characteristic laminar metastatic patterns and levels of chemoresistance. The glycoproteins, laminin and vitronectin, were identified as subgroup‐specific, tumour‐secreted ECM factors. Gels of higher complexity, formed by incorporation of laminin or vitronectin, revealed subgroup‐specific adhesion and growth patterns closely mimicking clinical phenotypes. ECM subtypes, defined by relative levels of laminin and vitronectin expression in patient tissue microarrays and gene expression data sets, were able to identify novel high‐risk MB patient subgroups and predict overall survival. Our hyaluronan model system has therefore allowed us to functionally characterize the interaction between different MB subtypes and their environment. It highlights the prognostic and pathological role of specific ECM factors and enables preclinical development of subgroup‐specific therapies. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Franziska Linke
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Macha Aldighieri
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Anbarasu Lourdusamy
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Anna M Grabowska
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Snow Stolnik
- Division of Molecular Therapeutics and Formulation, School of Pharmacy, University of Nottingham, Nottingham, UK
| | - Ian D Kerr
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Catherine Lr Merry
- Division of Cancer and Stem Cells, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Beth Coyle
- Children's Brain Tumour Research Centre, School of Medicine, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| |
Collapse
|
12
|
Vilariño N, Bruna J, Bosch-Barrera J, Valiente M, Nadal E. Immunotherapy in NSCLC patients with brain metastases. Understanding brain tumor microenvironment and dissecting outcomes from immune checkpoint blockade in the clinic. Cancer Treat Rev 2020; 89:102067. [PMID: 32682248 DOI: 10.1016/j.ctrv.2020.102067] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 06/01/2020] [Accepted: 06/26/2020] [Indexed: 12/25/2022]
Abstract
BACKGROUND Brain metastases are frequent complications in patients with non-small-cell lung cancer (NSCLC) associated with significant morbidity and poor prognosis. Our goal is to give a global overlook on clinical efficacy from immune checkpoint inhibitors in this setting and to review the role of biomarkers and molecular interactions in brain metastases from patients with NSCLC. METHODS We reviewed clinical trials reporting clinical outcomes of patients with NSCLC with brain metastases as well as publications assessing the tumor microenvironment and the complex molecular interactions of tumor cells with immune and resident cells in brain metastases from NSCLC biopsies or preclinical models. RESULTS Although limited data are available on immunotherapy in patients with brain metastases, immune checkpoint inhibitors alone or in combination with chemotherapy have shown promising intracranial efficacy and safety results. The underlying mechanism of action of immune checkpoint inhibitors in the brain niche and their influence on tumor microenvironment are still not known. Lower PD-L1 expression and less T CD8+ infiltration were found in brain metastases compared with matched NSCLC primary tumors, suggesting an immunosuppressive microenvironment in the brain. Reactive astrocytes and tumor associated macrophages are paramount in NSCLC brain metastases and play a role in promoting tumor progression and immune evasion. CONCLUSIONS Discordances in the immune profile between primary tumours and brain metastases underscore differences in the tumour microenvironment and immune system interactions within the lung and brain niche. The characterization of immune phenotype of brain metastases and dissecting the interplay among immune cells and resident stromal cells along with cancer cells is crucial to unravel effective immunotherapeutic approaches in patients with NSCLC and brain metastases.
Collapse
Affiliation(s)
- N Vilariño
- Department of Medical Oncology, Catalan Institute of Oncology, Hospital Duran i Reynals, Avinguda de la Gran Via de l'Hospitalet, 199-203, L'Hospitalet de Llobregat, Barcelona, Spain; Clinical Research in Solid Tumors (CReST) Group, Molecular Mechanisms and Experimental Therapeutics in Cancer (Oncobell). IDIBELL, Avinguda de la Gran Via de l'Hospitalet, 199-203, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - J Bruna
- Neuro-Oncology Unit, Bellvitge University Hospital-ICO (IDIBELL), Avinguda de la Gran Via de l'Hospitalet, 199-203, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - J Bosch-Barrera
- Department of Medical Oncology, Catalan Institute of Oncology, Doctor Josep Trueta University Hospital, Avinguda França-Sant Ponç, 0, 17007 Girona, Spain.
| | - M Valiente
- Brain Metastases Group, Spanish National Cancer Research Centre (CNIO), Calle Melchor Fernández Almagro, 3, 28029 Madrid, Spain.
| | - E Nadal
- Department of Medical Oncology, Catalan Institute of Oncology, Hospital Duran i Reynals, Avinguda de la Gran Via de l'Hospitalet, 199-203, L'Hospitalet de Llobregat, Barcelona, Spain; Clinical Research in Solid Tumors (CReST) Group, Molecular Mechanisms and Experimental Therapeutics in Cancer (Oncobell). IDIBELL, Avinguda de la Gran Via de l'Hospitalet, 199-203, L'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
13
|
Cacho-Díaz B, García-Botello DR, Wegman-Ostrosky T, Reyes-Soto G, Ortiz-Sánchez E, Herrera-Montalvo LA. Tumor microenvironment differences between primary tumor and brain metastases. J Transl Med 2020; 18:1. [PMID: 31900168 PMCID: PMC6941297 DOI: 10.1186/s12967-019-02189-8] [Citation(s) in RCA: 274] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
The present review aimed to discuss contemporary scientific literature involving differences between the tumor microenvironment (TME) in melanoma, lung cancer, and breast cancer in their primary site and TME in brain metastases (BM). TME plays a fundamental role in the behavior of cancer. In the process of carcinogenesis, cells such as fibroblasts, macrophages, endothelial cells, natural killer cells, and other cells can perpetuate and progress carcinogenesis via the secretion of molecules. Oxygen concentration, growth factors, and receptors in TME initiate angiogenesis and are examples of the importance of microenvironmental conditions in the performance of neoplastic cells. The most frequent malignant brain tumors are metastatic in origin and primarily originate from lung cancer, breast cancer, and melanoma. Metastatic cancer cells have to adhere to and penetrate the blood-brain barrier (BBB). After traversing BBB, these cells have to survive by producing various cytokines, chemokines, and mediators to modify their new TME. The microenvironment of these metastases is currently being studied owing to the discovery of new therapeutic targets. In these three types of tumors, treatment is more effective in the primary tumor than in BM due to several factors, including BBB. Understanding the differences in the characteristics of the microenvironment surrounding the primary tumor and their respective metastasis might help improve strategies to comprehend cancer.
Collapse
Affiliation(s)
- Bernardo Cacho-Díaz
- Neuro-oncology Unit, Instituto Nacional de Cancerología, Av. San Fernando 22. Col. Sección XVI. Tlalpan, 14080, Mexico City, ZC, Mexico.
| | - Donovan R García-Botello
- Neuro-oncology Unit, Instituto Nacional de Cancerología, Av. San Fernando 22. Col. Sección XVI. Tlalpan, 14080, Mexico City, ZC, Mexico
| | - Talia Wegman-Ostrosky
- Research Unit, Instituto Nacional de Cancerología, Av. San Fernando 22. Col. Sección XVI. Tlalpan, 14080, Mexico City, ZC, Mexico
| | - Gervith Reyes-Soto
- Neuro-oncology Unit, Instituto Nacional de Cancerología, Av. San Fernando 22. Col. Sección XVI. Tlalpan, 14080, Mexico City, ZC, Mexico
| | - Elizabeth Ortiz-Sánchez
- Research Unit, Instituto Nacional de Cancerología, Av. San Fernando 22. Col. Sección XVI. Tlalpan, 14080, Mexico City, ZC, Mexico
| | - Luis Alonso Herrera-Montalvo
- Research Unit, Instituto Nacional de Cancerología, Av. San Fernando 22. Col. Sección XVI. Tlalpan, 14080, Mexico City, ZC, Mexico.
| |
Collapse
|
14
|
Perspectives on the role of brain cellular players in cancer-associated brain metastasis: translational approach to understand molecular mechanism of tumor progression. Cancer Metastasis Rev 2019; 37:791-804. [PMID: 30284650 DOI: 10.1007/s10555-018-9766-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Brain metastasis is one of the leading causes of death among cancer patients. Cancer cells migrate to various sites and harbor different niche in the body which help cancer cells in their survival. The brain is one of the safest place where cancer cells are protected from immune cells. Breast, lung, and melanoma cancer cells have high propensity to migrate towards the brain. To enter the brain, cancer cells have to cross the blood brain barrier. Survival and finding new niche in the brain are directed by several mechanisms in which different cellular players take part such as astrocytes, microglia, Schwann cells, satellite cells, oligodendrocytes, and ependymal cells. Usually, cancer cells highjack the machinery of brain cellular players to survive in the brain environment. It has been shown that co-culture of M2 macrophage with cancer cells leads to increased proliferation and survival of cancer cells. One of the challenges of understanding brain metastasis is appropriate model system to understand dynamic interaction of cancer cells and brain cellular players. To meet this challenge, microfluidic-based devices are employed which can mimic the dynamic conditions as well as can be used for culturing human cells for personalized therapy. In this review, we have systematically reviewed the current status of the role of cellular players in brain metastasis along with explaining how translational approach of microfluidics can be employed for finding new drug target as well as biomarker for brain metastasis. Finally, we have also commented on the mechanism of action of drugs against brain metastasis.
Collapse
|
15
|
Innovative Therapeutic Strategies for Effective Treatment of Brain Metastases. Int J Mol Sci 2019; 20:ijms20061280. [PMID: 30875730 PMCID: PMC6471202 DOI: 10.3390/ijms20061280] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 12/21/2022] Open
Abstract
Brain metastases are the most prevalent of intracranial malignancies. They are associated with a very poor prognosis and near 100% mortality. This has been the case for decades, largely because we lack effective therapeutics to augment surgery and radiotherapy. Notwithstanding improvements in the precision and efficacy of these life-prolonging treatments, with no reliable options for adjunct systemic therapy, brain recurrences are virtually inevitable. The factors limiting intracranial efficacy of existing agents are both physiological and molecular in nature. For example, heterogeneous permeability, abnormal perfusion and high interstitial pressure oppose the conventional convective delivery of circulating drugs, thus new delivery strategies are needed to achieve uniform drug uptake at therapeutic concentrations. Brain metastases are also highly adapted to their microenvironment, with complex cross-talk between the tumor, the stroma and the neural compartments driving speciation and drug resistance. New strategies must account for resistance mechanisms that are frequently engaged in this milieu, such as HER3 and other receptor tyrosine kinases that become induced and activated in the brain microenvironment. Here, we discuss molecular and physiological factors that contribute to the recalcitrance of these tumors, and review emerging therapeutic strategies, including agents targeting the PI3K axis, immunotherapies, nanomedicines and MRI-guided focused ultrasound for externally controlling drug delivery.
Collapse
|
16
|
Xu ZH, Miao ZW, Jiang QZ, Gan DX, Wei XG, Xue XZ, Li JQ, Zheng F, Qin XX, Fang WG, Chen YH, Li B. Brain microvascular endothelial cell exosome–mediated S100A16 up‐regulation confers small‐cell lung cancer cell survival in brain. FASEB J 2018; 33:1742-1757. [DOI: 10.1096/fj.201800428r] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhi-Hua Xu
- Department of Developmental BiologyKey Laboratory of Cell BiologyMinistry of Public HealthKey Laboratory of Medical Cell BiologyMinistry of EducationChina Medical UniversityShenyangChina
| | - Zi-Wei Miao
- Department of Developmental BiologyKey Laboratory of Cell BiologyMinistry of Public HealthKey Laboratory of Medical Cell BiologyMinistry of EducationChina Medical UniversityShenyangChina
| | - Qian-Zhu Jiang
- Department of Developmental BiologyKey Laboratory of Cell BiologyMinistry of Public HealthKey Laboratory of Medical Cell BiologyMinistry of EducationChina Medical UniversityShenyangChina
| | - Dong-Xue Gan
- Department of Developmental BiologyKey Laboratory of Cell BiologyMinistry of Public HealthKey Laboratory of Medical Cell BiologyMinistry of EducationChina Medical UniversityShenyangChina
| | - Xu-Ge Wei
- Department of Developmental BiologyKey Laboratory of Cell BiologyMinistry of Public HealthKey Laboratory of Medical Cell BiologyMinistry of EducationChina Medical UniversityShenyangChina
| | - Xiao-Zhi Xue
- Department of Clinical MedicineChina Medical UniversityShenyangChina
| | - Jue-Qi Li
- Department of Clinical MedicineChina Medical UniversityShenyangChina
| | - Fei Zheng
- Department of Clinical MedicineChina Medical UniversityShenyangChina
| | - Xiao-Xue Qin
- Department of Developmental BiologyKey Laboratory of Cell BiologyMinistry of Public HealthKey Laboratory of Medical Cell BiologyMinistry of EducationChina Medical UniversityShenyangChina
| | - Wen-Gang Fang
- Department of Developmental BiologyKey Laboratory of Cell BiologyMinistry of Public HealthKey Laboratory of Medical Cell BiologyMinistry of EducationChina Medical UniversityShenyangChina
| | - Yu-Hua Chen
- Department of Developmental BiologyKey Laboratory of Cell BiologyMinistry of Public HealthKey Laboratory of Medical Cell BiologyMinistry of EducationChina Medical UniversityShenyangChina
| | - Bo Li
- Department of Developmental BiologyKey Laboratory of Cell BiologyMinistry of Public HealthKey Laboratory of Medical Cell BiologyMinistry of EducationChina Medical UniversityShenyangChina
| |
Collapse
|
17
|
Franchino F, Rudà R, Soffietti R. Mechanisms and Therapy for Cancer Metastasis to the Brain. Front Oncol 2018; 8:161. [PMID: 29881714 PMCID: PMC5976742 DOI: 10.3389/fonc.2018.00161] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/30/2018] [Indexed: 12/12/2022] Open
Abstract
Advances in chemotherapy and targeted therapies have improved survival in cancer patients with an increase of the incidence of newly diagnosed brain metastases (BMs). Intracranial metastases are symptomatic in 60–70% of patients. Magnetic resonance imaging (MRI) with gadolinium is more sensitive than computed tomography and advanced neuroimaging techniques have been increasingly used in the detection, treatment planning, and follow-up of BM. Apart from the morphological analysis, the most effective tool for characterizing BM is immunohistochemistry. Molecular alterations not always reflect those of the primary tumor. More sophisticated methods of tumor analysis detecting circulating biomarkers in fluids (liquid biopsy), including circulating DNA, circulating tumor cells, and extracellular vesicles, containing tumor DNA and macromolecules (microRNA), have shown promise regarding tumor treatment response and progression. The choice of therapeutic approaches is guided by prognostic scores (Recursive Partitioning Analysis and diagnostic-specific Graded Prognostic Assessment-DS-GPA). The survival benefit of surgical resection seems limited to the subgroup of patients with controlled systemic disease and good performance status. Leptomeningeal disease (LMD) can be a complication, especially in posterior fossa metastases undergoing a “piecemeal” resection. Radiosurgery of the resection cavity may offer comparable survival and local control as postoperative whole-brain radiotherapy (WBRT). WBRT alone is now the treatment of choice only for patients with single or multiple BMs not amenable to surgery or radiosurgery, or with poor prognostic factors. To reduce the neurocognitive sequelae of WBRT intensity modulated radiotherapy with hippocampal sparing, and pharmacological approaches (memantine and donepezil) have been investigated. In the last decade, a multitude of molecular abnormalities have been discovered. Approximately 33% of patients with non-small cell lung cancer (NSCLC) tumors and epidermal growth factor receptor mutations develop BMs, which are targetable with different generations of tyrosine kinase inhibitors (TKIs: gefitinib, erlotinib, afatinib, icotinib, and osimertinib). Other “druggable” alterations seen in up to 5% of NSCLC patients are the rearrangements of the “anaplastic lymphoma kinase” gene TKI (crizotinib, ceritinib, alectinib, brigatinib, and lorlatinib). In human epidermal growth factor receptor 2-positive, breast cancer targeted therapies have been widely used (trastuzumab, trastuzumab-emtansine, lapatinib-capecitabine, and neratinib). Novel targeted and immunotherapeutic agents have also revolutionized the systemic management of melanoma (ipilimumab, nivolumab, pembrolizumab, and BRAF inhibitors dabrafenib and vemurafenib).
Collapse
Affiliation(s)
- Federica Franchino
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| | - Roberta Rudà
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and City of Health and Science Hospital, Turin, Italy
| |
Collapse
|
18
|
Jandial R. Curing brain metastases. Clin Exp Metastasis 2017; 34:363-364. [PMID: 29139011 DOI: 10.1007/s10585-017-9866-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Rahul Jandial
- Division of Neurosurgery, City of Hope, Duarte, CA, USA.
| |
Collapse
|