1
|
Skrzypczak M, Wolinska E, Adaszek Ł, Ortmann O, Treeck O. Epigenetic Modulation of Estrogen Receptor Signaling in Ovarian Cancer. Int J Mol Sci 2024; 26:166. [PMID: 39796024 PMCID: PMC11720219 DOI: 10.3390/ijms26010166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Ovarian cancer remains one of the leading causes of cancer-related deaths in women. There are several processes that are described to have a causal relationship in ovarian cancer development, progression, and metastasis formation, that occur both at the genetic and epigenetic level. One of the mechanisms involved in its pathogenesis and progression is estrogen signaling. Estrogen receptors (ER) α, ERβ, and G-protein coupled estrogen receptor 1 (GPER1), in concert with various coregulators and pioneer transcription factors, mediate the effects of estrogens primarily by the transcriptional regulation of estrogen responsive genes, thereby exerting pleiotropic effects including the regulation of cellular proliferation and apoptosis. The expression and activity of estrogen receptors and their coregulators have been demonstrated to be regulated by epigenetic mechanisms like histone modifications and DNA methylation. Here, we intend to summarize and to provide an update on the current understanding of epigenetic mechanisms regulating estrogen signaling and their role in ovarian cancer. For this purpose, we reviewed publications on this topic listed in the PubMed database. Finally, we assess to which extent drugs acting on the epigenetic level might be suitable for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Maciej Skrzypczak
- Chair and Department of Gynecology, Medical University of Lublin, 20-954 Lublin, Poland;
| | - Ewa Wolinska
- Department of Pathology, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Łukasz Adaszek
- Clinic of Infectious Diseases, University of Life Sciences Lublin, 20-950 Lublin, Poland;
| | - Olaf Ortmann
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93935 Regensburg, Germany;
| | - Oliver Treeck
- Department of Gynecology and Obstetrics, University Medical Center Regensburg, 93935 Regensburg, Germany;
| |
Collapse
|
2
|
Santarosa M, Baldazzi D, Armellin M, Maestro R. In Silico Identification of a BRCA1:miR-29:DNMT3 Axis Involved in the Control of Hormone Receptors in BRCA1-Associated Breast Cancers. Int J Mol Sci 2023; 24:9916. [PMID: 37373065 DOI: 10.3390/ijms24129916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Germline inactivating mutations in the BRCA1 gene lead to an increased lifetime risk of ovarian and breast cancer (BC). Most BRCA1-associated BC are triple-negative tumors (TNBC), aggressive forms of BC characterized by a lack of expression of estrogen and progesterone hormone receptors (HR) and HER2. How BRCA1 inactivation may favor the development of such a specific BC phenotype remains to be elucidated. To address this question, we focused on the role of miRNAs and their networks in mediating BRCA1 functions. miRNA, mRNA, and methylation data were retrieved from the BRCA cohort of the TCGA project. The cohort was divided into a discovery set (Hi-TCGA) and a validation set (GA-TCGA) based on the platform used for miRNA analyses. The METABRIC, GSE81002, and GSE59248 studies were used as additional validation data sets. BCs were differentiated into BRCA1-like and non-BRCA1-like based on an established signature of BRCA1 pathway inactivation. Differential expression of miRNAs, gene enrichment analysis, functional annotation, and methylation correlation analyses were performed. The miRNAs downregulated in BRCA1-associated BC were identified by comparing the miRNome of BRCA1-like with non-BRCA1-like tumors from the Hi-TCGA discovery cohort. miRNAs:gene-target anticorrelation analyses were then performed. The target genes of miRNAs downregulated in the Hi-TCGA series were enriched in the BRCA1-like tumors from the GA-TCGA and METABRIC validation data sets. Functional annotation of these genes revealed an over-representation of several biological processes ascribable to BRCA1 activity. The enrichment of genes related to DNA methylation was particularly intriguing, as this is an aspect of BRCA1 functions that has been poorly explored. We then focused on the miR-29:DNA methyltransferase network and showed that the miR-29 family, which was downregulated in BRCA1-like tumors, was associated with poor prognosis in these BCs and inversely correlated with the expression of the DNA methyltransferases DNMT3A and DNMT3B. This, in turn, correlated with the methylation extent of the promoter of HR genes. These results suggest that BRCA1 may control the expression of HR via a miR-29:DNMT3:HR axis and that disruption of this network may contribute to the receptor negative phenotype of tumors with dysfunctional BRCA1.
Collapse
Affiliation(s)
- Manuela Santarosa
- Unit of Oncogenetics and Functional Oncogenomics, CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Davide Baldazzi
- Unit of Oncogenetics and Functional Oncogenomics, CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Michela Armellin
- Unit of Oncogenetics and Functional Oncogenomics, CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| | - Roberta Maestro
- Unit of Oncogenetics and Functional Oncogenomics, CRO Aviano, National Cancer Institute, IRCCS, 33081 Aviano, Italy
| |
Collapse
|
3
|
Borges BDN. Epigenetic alterations in canine mammary cancer. Genet Mol Biol 2022; 45:e20220131. [PMID: 36279498 PMCID: PMC9593226 DOI: 10.1590/1678-4685-gmb-2022-0131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/09/2022] [Indexed: 11/04/2022] Open
Abstract
In dogs, mammary cancer is the most common tumor type, especially in unspayed females. As in humans, this type of cancer has spontaneous development and is influenced by several risk factors, such as age and hormonal exposure in addition to genetic and epigenetic factors. Epigenetic mechanisms are responsible for gene expression modulation without alterations in the DNA sequence and include but are not limited to DNA methylation, histone modifications, and noncoding RNAs. Epigenetic patterns are known to influence a variety of biological mechanisms, such as cellular differentiation and development, and dysregulations of those patterns may result in several diseases, such as cancer. In this respect, this review summarizes the main findings concerning epigenetic alterations in canine mammary cancer, their relationship with the carcinogenic process, and their use as diagnostic and prognostic markers.
Collapse
Affiliation(s)
- Bárbara do Nascimento Borges
- Universidade Federal do Pará, Instituto de Ciências Biológicas Laboratório de Biologia Molecular, Belém, PA, Brazil
| |
Collapse
|
4
|
Yang G, Lu T, Weisenberger DJ, Liang G. The Multi-Omic Landscape of Primary Breast Tumors and Their Metastases: Expanding the Efficacy of Actionable Therapeutic Targets. Genes (Basel) 2022; 13:1555. [PMID: 36140723 PMCID: PMC9498783 DOI: 10.3390/genes13091555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/08/2022] [Accepted: 08/23/2022] [Indexed: 12/02/2022] Open
Abstract
Breast cancer (BC) mortality is almost exclusively due to metastasis, which is the least understood aspect of cancer biology and represents a significant clinical challenge. Although we have witnessed tremendous advancements in the treatment for metastatic breast cancer (mBC), treatment resistance inevitably occurs in most patients. Recently, efforts in characterizing mBC revealed distinctive genomic, epigenomic and transcriptomic (multi-omic) landscapes to that of the primary tumor. Understanding of the molecular underpinnings of mBC is key to understanding resistance to therapy and the development of novel treatment options. This review summarizes the differential molecular landscapes of BC and mBC, provides insights into the genomic heterogeneity of mBC and highlights the therapeutically relevant, multi-omic features that may serve as novel therapeutic targets for mBC patients.
Collapse
Affiliation(s)
- Guang Yang
- School of Sciences, China Pharmaceutical University, Nanjing 211121, China
- China Grand Enterprises, Beijing 100101, China
| | - Tao Lu
- School of Sciences, China Pharmaceutical University, Nanjing 211121, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211121, China
| | - Daniel J. Weisenberger
- Department of Biochemistry and Molecular Medicine, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| | - Gangning Liang
- Department of Urology, University of Southern California, Norris Comprehensive Cancer Center, Los Angeles, CA 90033, USA
| |
Collapse
|
5
|
Sukocheva OA, Lukina E, Friedemann M, Menschikowski M, Hagelgans A, Aliev G. The crucial role of epigenetic regulation in breast cancer anti-estrogen resistance: Current findings and future perspectives. Semin Cancer Biol 2022; 82:35-59. [PMID: 33301860 DOI: 10.1016/j.semcancer.2020.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/22/2020] [Accepted: 12/03/2020] [Indexed: 02/07/2023]
Abstract
Breast cancer (BC) cell de-sensitization to Tamoxifen (TAM) or other selective estrogen receptor (ER) modulators (SERM) is a complex process associated with BC heterogeneity and the transformation of ER signalling. The most influential resistance-related mechanisms include modifications in ER expression and gene regulation patterns. During TAM/SERM treatment, epigenetic mechanisms can effectively silence ER expression and facilitate the development of endocrine resistance. ER status is efficiently regulated by specific epigenetic tools including hypermethylation of CpG islands within ER promoters, increased histone deacetylase activity in the ER promoter, and/or translational repression by miRNAs. Over-methylation of the ER α gene (ESR1) promoter by DNA methyltransferases was associated with poor prognosis and indicated the development of resistance. Moreover, BC progression and spreading were marked by transformed chromatin remodelling, post-translational histone modifications, and expression of specific miRNAs and/or long non-coding RNAs. Therefore, targeted inhibition of histone acetyltransferases (e.g. MYST3), deacetylases (e.g. HDAC1), and/or demethylases (e.g. lysine-specific demethylase LSD1) was shown to recover and increase BC sensitivity to anti-estrogens. Indicated as a powerful molecular instrument, the administration of epigenetic drugs can regain ER expression along with the activation of tumour suppressor genes, which can in turn prevent selection of resistant cells and cancer stem cell survival. This review examines recent advances in the epigenetic regulation of endocrine drug resistance and evaluates novel anti-resistance strategies. Underlying molecular mechanisms of epigenetic regulation will be discussed, emphasising the utilization of epigenetic enzymes and their inhibitors to re-program irresponsive BCs.
Collapse
Affiliation(s)
- Olga A Sukocheva
- Discipline of Health Sciences, College of Nursing and Health Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia.
| | - Elena Lukina
- Discipline of Biology, College of Sciences, Flinders University, Bedford Park, South Australia, 5042, Australia
| | - Markus Friedemann
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Mario Menschikowski
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Albert Hagelgans
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital `Carl Gustav Carus`, Technical University of Dresden, Dresden 01307, Germany
| | - Gjumrakch Aliev
- Sechenov First Moscow State Medical University (Sechenov University), Moscow, 119991, Russia; Institute of Physiologically Active Compounds, Russian Academy of Sciences, Chernogolovka, 142432, Russia; Federal State Budgetary Institution «Research Institute of Human Morphology», 3, Tsyurupy Str., Moscow, 117418, Russian Federation; GALLY International Research Institute, San Antonio, TX, 78229, USA.
| |
Collapse
|
6
|
Epigenetic Regulation of Estrogen Receptor Genes' Expressions in Adipose Tissue in the Course of Obesity. Int J Mol Sci 2022; 23:ijms23115989. [PMID: 35682668 PMCID: PMC9181405 DOI: 10.3390/ijms23115989] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 11/16/2022] Open
Abstract
Estrogen affects adipose tissue function. Therefore, this study aimed at assessing changes in the transcriptional activity of estrogen receptor (ER) α and β genes (ESR1 and ESR2, respectively) in the adipose tissues of obese individuals before and after weight loss and verifying whether epigenetic mechanisms were involved in this phenomenon. ESR1 and ESR2 mRNA and miRNA levels were evaluated using real-time PCR in visceral (VAT) and subcutaneous adipose tissue (SAT) of 78 obese (BMI > 40 kg/m2) and 31 normal-weight (BMI = 20−24.9 kg/m2) individuals and in 19 SAT samples from post-bariatric patients. ESR1 and ESR2 methylation status was studied using the methylation-sensitive digestion/real-time PCR method. Obesity was associated with a decrease in mRNA levels of both ERs in SAT (p < 0.0001) and ESR2 in VAT (p = 0.0001), while weight loss increased ESR transcription (p < 0.0001). Methylation levels of ESR1 and ESR2 promoters were unaffected. However, ESR1 mRNA in the AT of obese subjects correlated negatively with the expression of hsa-miR-18a-5p (rs = −0.444), hsa-miR-18b-5p (rs = −0.329), hsa-miR-22-3p (rs = −0.413), hsa-miR-100-5p (rs = −0.371), and hsa-miR-143-5p (rs = −0.289), while the expression of ESR2 in VAT correlated negatively with hsa-miR-576-5p (rs = −0.353) and in SAT with hsa-miR-495-3p (rs = −0.308). In conclusion, obesity-associated downregulation of ER mRNA levels in adipose tissue may result from miRNA interference.
Collapse
|
7
|
Bos MK, Deger T, Sleijfer S, Martens JWM, Wilting SM. ESR1 Methylation Measured in Cell-Free DNA to Evaluate Endocrine Resistance in Metastatic Breast Cancer Patients. Int J Mol Sci 2022; 23:5631. [PMID: 35628441 PMCID: PMC9142900 DOI: 10.3390/ijms23105631] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 11/24/2022] Open
Abstract
ESR1 methylation was proposed as mechanism for endocrine resistance in metastatic breast cancer patients. To evaluate its potential as a minimally invasive biomarker, we investigated the feasibility of measuring ESR1 methylation in cell-free DNA (cfDNA) and its association with endocrine resistance. First, we provided evidence that demethylation in vitro restores ER expression. Subsequently, we found that ESR1 methylation in cfDNA was not enriched in endocrine-resistant versus endocrine-sensitive patients. Interestingly, we found a correlation between ESR1 methylation and age. Publicly available data confirm an age-related increase in ESR1 methylation in leukocytes, confounding the determination of the ESR1 methylation status of tumors using cfDNA.
Collapse
Affiliation(s)
| | | | | | | | - Saskia M. Wilting
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center, Dr. Molewaterplein 40, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands; (T.D.); (S.S.); (J.W.M.M.)
| |
Collapse
|
8
|
Disciglio V, Sanese P, Fasano C, Lotesoriere C, Valentini AM, Forte G, Lepore Signorile M, De Marco K, Grossi V, Lolli I, Cariola F, Simone C. Identification and Somatic Characterization of the Germline PTEN Promoter Variant rs34149102 in a Family with Gastrointestinal and Breast Tumors. Genes (Basel) 2022; 13:644. [PMID: 35456450 PMCID: PMC9025445 DOI: 10.3390/genes13040644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023] Open
Abstract
Genetic variants located in non-coding regions can affect processes that regulate protein expression, functionally contributing to human disease. Germline heterozygous mutations in the non-coding region of the PTEN gene have been previously identified in patients with PTEN hamartoma tumor syndrome (PHTS) diagnosed with breast, thyroid, and/or endometrial cancer. In this study, we report a PTEN promoter variant (rs34149102 A allele) that was identified by direct sequencing in an Italian family with a history of gastroesophageal junction (GEJ) adenocarcinoma and breast cancer. In order to investigate the putative functional role of the rs34149102 A allele variant, we evaluated the status of PTEN alterations at the somatic level. We found that PTEN protein expression was absent in the GEJ adenocarcinoma tissue of the index case. Moreover, we detected the occurrence of copy number loss involving the PTEN rs34149102 major C allele in tumor tissue, revealing that the second allele was somatically inactivated. This variant is located within an active regulatory region of the PTEN core promoter, and in silico analysis suggests that it may affect the binding of the nuclear transcription factor MAZ and hence PTEN expression. Overall, these results reveal the functional role of the PTEN promoter rs34149102 A allele variant in the modulation of PTEN protein expression and highlight its contribution to hereditary cancer risk.
Collapse
Affiliation(s)
- Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology—IRCCS “S. de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (V.D.); (P.S.); (C.F.); (G.F.); (M.L.S.); (K.D.M.); (V.G.); (F.C.)
| | - Paola Sanese
- Medical Genetics, National Institute of Gastroenterology—IRCCS “S. de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (V.D.); (P.S.); (C.F.); (G.F.); (M.L.S.); (K.D.M.); (V.G.); (F.C.)
| | - Candida Fasano
- Medical Genetics, National Institute of Gastroenterology—IRCCS “S. de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (V.D.); (P.S.); (C.F.); (G.F.); (M.L.S.); (K.D.M.); (V.G.); (F.C.)
| | - Claudio Lotesoriere
- Oncology Unit, National Institute of Gastroenterology—IRCCS “S. de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (C.L.); (I.L.)
| | - Anna Maria Valentini
- Department of Pathology, National Institute of Gastroenterology—IRCCS “S. de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy;
| | - Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology—IRCCS “S. de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (V.D.); (P.S.); (C.F.); (G.F.); (M.L.S.); (K.D.M.); (V.G.); (F.C.)
| | - Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology—IRCCS “S. de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (V.D.); (P.S.); (C.F.); (G.F.); (M.L.S.); (K.D.M.); (V.G.); (F.C.)
| | - Katia De Marco
- Medical Genetics, National Institute of Gastroenterology—IRCCS “S. de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (V.D.); (P.S.); (C.F.); (G.F.); (M.L.S.); (K.D.M.); (V.G.); (F.C.)
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology—IRCCS “S. de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (V.D.); (P.S.); (C.F.); (G.F.); (M.L.S.); (K.D.M.); (V.G.); (F.C.)
| | - Ivan Lolli
- Oncology Unit, National Institute of Gastroenterology—IRCCS “S. de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (C.L.); (I.L.)
| | - Filomena Cariola
- Medical Genetics, National Institute of Gastroenterology—IRCCS “S. de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (V.D.); (P.S.); (C.F.); (G.F.); (M.L.S.); (K.D.M.); (V.G.); (F.C.)
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology—IRCCS “S. de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy; (V.D.); (P.S.); (C.F.); (G.F.); (M.L.S.); (K.D.M.); (V.G.); (F.C.)
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
9
|
Sharma V, Joshi J, Yeh IJ, Doughman Y, Blankenberg D, Wald D, Montano MM. Re-Expression of ERα and AR in Receptor Negative Endocrine Cancers via GSK3 Inhibition. Front Oncol 2022; 12:824594. [PMID: 35402240 PMCID: PMC8988137 DOI: 10.3389/fonc.2022.824594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/28/2022] [Indexed: 01/04/2023] Open
Abstract
DNA methylation, catalyzed by DNA methyltransferase (DNMT), is a well-characterized epigenetic modification in cancer cells. In particular, promoter hypermethylation of AR and ESR1 results in loss of expression on Androgen Receptor (AR) and Estrogen Receptor (ER), respectively, and is associated with a hormone refractory state. We now report that Glycogen Synthase Kinase 3 (GSK3) phosphorylates DNMT1 at S714, which is localized to a 62 amino acid region referred to as auto-inhibitory linker, which functions to occlude the DNA from the active site of DNMT1 to prevent the methylation of unmethylated DNA. Molecular Dynamics simulation indicates that phosphorylation at S714 resulted in conformational rearrangement of the autoinhibitory domain that inactivated its ability to block the methylation of unmethylated DNA and resulted in enhanced DNA binding. Treatment with a novel and more selective inhibitor of GSK3 resulted in decreased methylation of the promoter region of genes encoding the Androgen Receptor (AR) and Estrogen Receptor alpha (ERa) and re-expression of the AR and ERa in AR negative prostate cancer and ER negative breast cancer cells, respectively. As a result, concurrent treatment with the GSK3 inhibitor resulted in responsiveness of AR negative prostate cancer and ER negative breast cancer cells to inhibitors of the AR or ER, respectively, in in vitro and in vivo experimental models.
Collapse
Affiliation(s)
- Vikas Sharma
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Jayadev Joshi
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - I-Ju Yeh
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - YongQiu Doughman
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Daniel Blankenberg
- Genomic Medicine Institute, Cleveland Clinic Lerner Research Institute, Cleveland, OH, United States
| | - David Wald
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Monica M. Montano
- Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, OH, United States
- *Correspondence: Monica M. Montano,
| |
Collapse
|
10
|
Li Y, Wang K, Chen Y, Cai J, Qin X, Lu A, Guan D, Qin G, Chen W. A System Pharmacology Model for Decoding the Synergistic Mechanisms of Compound Kushen Injection in Treating Breast Cancer. Front Pharmacol 2021; 12:723147. [PMID: 34899291 PMCID: PMC8660088 DOI: 10.3389/fphar.2021.723147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/15/2021] [Indexed: 11/29/2022] Open
Abstract
Breast cancer (BC) is one of the most common malignant tumors among women worldwide and can be treated using various methods; however, side effects of these treatments cannot be ignored. Increasing evidence indicates that compound kushen injection (CKI) can be used to treat BC. However, traditional Chinese medicine (TCM) is characterized by “multi-components” and “multi-targets”, which make it challenging to clarify the potential therapeutic mechanisms of CKI on BC. Herein, we designed a novel system pharmacology strategy using differentially expressed gene analysis, pharmacokinetics synthesis screening, target identification, network analysis, and docking validation to construct the synergy contribution degree (SCD) and therapeutic response index (TRI) model to capture the critical components responding to synergistic mechanisms of CKI in BC. Through our designed mathematical models, we defined 24 components as a high contribution group of synergistic components (HCGSC) from 113 potentially active components of CKI based on ADME parameters. Pathway enrichment analysis of HCGSC targets indicated that Rhizoma Heterosmilacis and Radix Sophorae Flavescentis could synergistically target the PI3K-Akt signaling pathway and the cAMP signaling pathway to treat BC. Additionally, TRI analysis showed that the average affinity of HCGSC and targets involved in the key pathways reached -6.47 kcal/mmol, while in vitro experiments proved that two of the three high TRI-scored components in the HCGSC showed significant inhibitory effects on breast cancer cell proliferation and migration. These results demonstrate the accuracy and reliability of the proposed strategy.
Collapse
Affiliation(s)
- Yi Li
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kexin Wang
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong SAR, China.,Neurosurgery Center, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Department of Cerebrovascular Surgery, Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yupeng Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, China
| | - Jieqi Cai
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, China
| | - Xuemei Qin
- Modern Research Center for Traditional Chinese Medicine, Shanxi University, Taiyuan, China
| | - Aiping Lu
- Institute of Integrated Bioinformedicine and Translational Science, Hong Kong Baptist University, Hong Kong SAR, China
| | - Daogang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Key Laboratory of Biochip Technology, Southern Medical University, Guangzhou, China
| | - Genggeng Qin
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiguo Chen
- Department of Radiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Chequin A, Costa LE, de Campos FF, Moncada ADB, de Lima LTF, Sledz LR, Picheth GF, Adami ER, Acco A, Gonçalves MB, Manica GCM, Valdameri G, de Noronha L, Telles JEQ, Jandrey EHF, Costa ET, Costa FF, de Souza EM, Ramos EAS, Klassen G. Antitumoral activity of liraglutide, a new DNMT inhibitor in breast cancer cells in vitro and in vivo. Chem Biol Interact 2021; 349:109641. [PMID: 34534549 DOI: 10.1016/j.cbi.2021.109641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/17/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Breast cancer (BC) is the most frequently diagnosed female cancer and second leading cause of death. Despite the discovery of many antineoplastic drugs for BC, the current therapy is not totally efficient. In this study, we investigated the potential of repurposing the well-known diabetes type II drug liraglutide to modulate epigenetic modifications in BC cells lines in vitro and in vivo via Ehrlich mice tumors models. The in vitro results revealed a significant reduction on cell viability, migration, DNMT activity and displayed lower levels of global DNA methylation in BC cell lines after liraglutide treatment. The interaction between liraglutide and the DNMT enzymes resulted in a decrease profile of DNA methylation for the CDH1, ESR1 and ADAM33 gene promoter regions and, consequently, increased their gene and protein expression levels. To elucidate the possible interaction between liraglutide and the DNMT1 protein, we performed an in silico study that indicates liraglutide binding in the catalytic cleft via hydrogen bonds and salt bridges with the interdomain contacts and disturbs the overall enzyme conformation. The in vivo study was also able to reveal that liraglutide and the combined treatment of liraglutide and paclitaxel or methotrexate were effective in reducing tumor growth. Moreover, the modulation of CDH1 and ADAM33 mouse gene expression by DNA demethylation suggests a role for liraglutide in DNMT activity in vivo. Altogether, these results indicate that liraglutide may be further analysed as a new adjuvant treatment for BC.
Collapse
Affiliation(s)
- Andressa Chequin
- Department of Basic Pathology, Laboratory of Epigenetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Luiz E Costa
- Department of Basic Pathology, Laboratory of Epigenetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Felipe F de Campos
- Department of Basic Pathology, Laboratory of Epigenetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Angie D B Moncada
- Department of Basic Pathology, Laboratory of Epigenetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Lucas T F de Lima
- Department of Basic Pathology, Laboratory of Epigenetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Lucas R Sledz
- Department of Basic Pathology, Laboratory of Epigenetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Guilherme F Picheth
- Department of Basic Pathology, Laboratory of Epigenetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Eliana R Adami
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Alexandra Acco
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Marcos B Gonçalves
- Department of Physics, Federal Technological University of Paraná, Curitiba, Parana, Brazil
| | - Graciele C M Manica
- Department of Clinical Analysis, Federal University of Paraná, Curitiba, PR, Brazil
| | - Gláucio Valdameri
- Department of Clinical Analysis, Federal University of Paraná, Curitiba, PR, Brazil
| | - Lucia de Noronha
- Department of Clinical Pathology, Pontifical Catholic University of Paraná, Curitiba, PR, Brazil
| | - José E Q Telles
- Department of Medical Pathology, Federal University of Paraná, Brazil
| | - Elisa H F Jandrey
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Erico T Costa
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | | | - Emanuel M de Souza
- Department of Biochemistry and Molecular Biology, Federal University of Paraná, Curitiba, PR, Brazil
| | - Edneia A S Ramos
- Department of Basic Pathology, Laboratory of Epigenetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Giseli Klassen
- Department of Basic Pathology, Laboratory of Epigenetics, Federal University of Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
12
|
Clinical application of circulating tumor DNA in breast cancer. J Cancer Res Clin Oncol 2021; 147:1431-1442. [PMID: 33760943 DOI: 10.1007/s00432-021-03588-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/07/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND The recent advancement in massively parallel sequencing technologies has empowered liquid biopsies, in particular circulating tumor DNA (ctDNA) analysis, to be the new paradigm in personalized cancer management. Plasma ctDNA detection overcomes the current limitations in tumor tissue procurement and serves as a convenient and non-invasive method to capture tumor heterogeneity and genetic evolution along patients' cancer journey. In breast cancer, the current clinical application of ctDNA includes real-time monitoring of tumor response, detection of drug-resistant clones, assessing dynamic variations in tumor mutational landscape, identifying actionable mutations, detecting minimal residual disease and screening of early tumor. PURPOSE This review aims to summarize the current clinical evidence of ctDNA application in the management of breast cancer.
Collapse
|
13
|
Gerratana L, Basile D, Franzoni A, Allegri L, Viotto D, Corvaja C, Bortot L, Bertoli E, Buriolla S, Targato G, Da Ros L, Russo S, Bonotto M, Belletti B, Baldassarre G, Damante G, Puglisi F. Plasma-Based Longitudinal Evaluation of ESR1 Epigenetic Status in Hormone Receptor-Positive HER2-Negative Metastatic Breast Cancer. Front Oncol 2020; 10:550185. [PMID: 33072577 PMCID: PMC7531252 DOI: 10.3389/fonc.2020.550185] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/20/2020] [Indexed: 12/30/2022] Open
Abstract
Background Endocrine therapy (ET) is the mainstay of treatment for hormone receptor-positive human epidermal growth factor receptor 2 (HER2)-negative metastatic breast cancer; however, adaptive mechanisms emerge in about 25–30% of cases through alterations in the estrogen receptor ligand-binding domain, with a consequent ligand-independent estrogen receptor activity. Epigenetic-mediated events are less known and potentially involved in alternative mechanisms of resistance. The aim of this study was to test the feasibility of estrogen receptor 1 (ESR1) epigenetic characterization through liquid biopsy and to show its potential longitudinal application for an early ET sensitivity assessment. Methods A cohort of 49 women with hormone receptor-positive HER2-negative MBC was prospectively enrolled and characterized through circulating tumor DNA using methylation-specific droplet digital PCR (MS-ddPCR) before treatment start (BL) and after 3 months concomitantly with computed tomography (CT) scan restaging (EV1). ESR1 epigenetic status was defined by assessing the methylation of its main promoters (promA and promB). The most established cell-free tumor DNA (ctDNA) factors associated with ET resistance [ESR1 and phosphatidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha (PIK3CA) mutations] were assessed through next-generation sequencing. Associations were tested through Mann–Whitney U test, matched pairs variations through Wilcoxon signed rank test, and survival was analyzed by log-rank test. Results The ET backbone was mainly based on aromatase inhibitors (AIs) (70.83%) in association with CDK4/6 inhibitors (93.75%). Significantly lower promA levels at baseline were observed in patients with liver metastases (P = 0.0212) and in patients with ESR1 mutations (P = 0.0091). No significant impact on PFS was observed for promA (P = 0.3777) and promB (P = 0.7455) dichotomized at the median while a ≥2-fold increase in promB or in either promA or promB at EV1 resulted in a significantly worse prognosis (respectively P = 0.0189, P = 0.0294). A significant increase at EV1 was observed for promB among patients with PIK3CA mutation (P = 0.0173). A trend was observed for promB in ESR1 wild-type patients and for promA in the ESR1 mutant subgroup. Conclusion The study proofed the concept of an epigenetic characterization strategy based on ctDNA and is capable of being integrated in the current clinical workflow to give useful insights on treatment sensitivity.
Collapse
Affiliation(s)
- Lorenzo Gerratana
- Department of Medicine (DAME), University of Udine, Udine, Italy.,Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Debora Basile
- Department of Medicine (DAME), University of Udine, Udine, Italy.,Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | | | - Lorenzo Allegri
- Department of Medicine (DAME), University of Udine, Udine, Italy
| | - Davide Viotto
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Carla Corvaja
- Department of Medicine (DAME), University of Udine, Udine, Italy.,Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Lucia Bortot
- Department of Medicine (DAME), University of Udine, Udine, Italy.,Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Elisa Bertoli
- Department of Medicine (DAME), University of Udine, Udine, Italy.,Department of Oncology, ASUFC University Hospital, Udine, Italy
| | - Silvia Buriolla
- Department of Medicine (DAME), University of Udine, Udine, Italy.,Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Giada Targato
- Department of Medicine (DAME), University of Udine, Udine, Italy.,Department of Oncology, ASUFC University Hospital, Udine, Italy
| | - Lucia Da Ros
- Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Stefania Russo
- Department of Oncology, ASUFC University Hospital, Udine, Italy
| | - Marta Bonotto
- Department of Oncology, ASUFC University Hospital, Udine, Italy
| | - Barbara Belletti
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Gustavo Baldassarre
- Unit of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | - Giuseppe Damante
- Institute of Human Genetics, ASUFC University Hospital, Udine, Italy
| | - Fabio Puglisi
- Department of Medicine (DAME), University of Udine, Udine, Italy.,Department of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| |
Collapse
|
14
|
Gardini ES, Chen GG, Fiacco S, Mernone L, Willi J, Turecki G, Ehlert U. Differential ESR1 Promoter Methylation in the Peripheral Blood-Findings from the Women 40+ Healthy Aging Study. Int J Mol Sci 2020; 21:E3654. [PMID: 32455834 PMCID: PMC7279168 DOI: 10.3390/ijms21103654] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/16/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
Background Estrogen receptor α (ERα) contributes to maintaining biological processes preserving health during aging. DNA methylation changes of ERα gene (ESR1) were established as playing a direct role in the regulation of ERα levels. In this study, we hypothesized decreased DNA methylation of ESR1 associated with postmenopause, lower estradiol (E2) levels, and increased age among healthy middle-aged and older women. Methods We assessed DNA methylation of ESR1 promoter region from dried blood spots (DBSs) and E2 from saliva samples in 130 healthy women aged 40-73 years. Results We found that postmenopause and lower E2 levels were associated with lower DNA methylation of a distal regulatory region, but not with DNA methylation of proximal promoters. Conclusion Our results indicate that decreased methylation of ESR1 cytosine-phosphate-guanine island (CpGI) shore may be associated with conditions of lower E2 in older healthy women.
Collapse
Affiliation(s)
- Elena S. Gardini
- Clinical Psychology and Psychotherapy, Department of Psychology, University of Zurich, 8050 Zurich, Switzerland; (E.S.G.); (S.F.); (L.M.); (J.W.)
- University Research Priority Program (URPP) Dynamics of Healthy Aging, University of Zurich, 8050 Zurich, Switzerland
| | - Gary G. Chen
- Douglas Hospital Research Center, McGill University, Montreal, QC H4H 1R3, Canada; (G.G.C.); (G.T.)
| | - Serena Fiacco
- Clinical Psychology and Psychotherapy, Department of Psychology, University of Zurich, 8050 Zurich, Switzerland; (E.S.G.); (S.F.); (L.M.); (J.W.)
- University Research Priority Program (URPP) Dynamics of Healthy Aging, University of Zurich, 8050 Zurich, Switzerland
| | - Laura Mernone
- Clinical Psychology and Psychotherapy, Department of Psychology, University of Zurich, 8050 Zurich, Switzerland; (E.S.G.); (S.F.); (L.M.); (J.W.)
- University Research Priority Program (URPP) Dynamics of Healthy Aging, University of Zurich, 8050 Zurich, Switzerland
| | - Jasmine Willi
- Clinical Psychology and Psychotherapy, Department of Psychology, University of Zurich, 8050 Zurich, Switzerland; (E.S.G.); (S.F.); (L.M.); (J.W.)
- University Research Priority Program (URPP) Dynamics of Healthy Aging, University of Zurich, 8050 Zurich, Switzerland
| | - Gustavo Turecki
- Douglas Hospital Research Center, McGill University, Montreal, QC H4H 1R3, Canada; (G.G.C.); (G.T.)
| | - Ulrike Ehlert
- Clinical Psychology and Psychotherapy, Department of Psychology, University of Zurich, 8050 Zurich, Switzerland; (E.S.G.); (S.F.); (L.M.); (J.W.)
- University Research Priority Program (URPP) Dynamics of Healthy Aging, University of Zurich, 8050 Zurich, Switzerland
| |
Collapse
|
15
|
Stastny I, Zubor P, Kajo K, Kubatka P, Golubnitschaja O, Dankova Z. Aberrantly Methylated cfDNA in Body Fluids as a Promising Diagnostic Tool for Early Detection of Breast Cancer. Clin Breast Cancer 2020; 20:e711-e722. [PMID: 32792225 DOI: 10.1016/j.clbc.2020.05.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/29/2020] [Accepted: 05/11/2020] [Indexed: 12/24/2022]
Abstract
Breast malignancies are the leading type of cancer among women. Its prevention and early detection, particularly in young women, remains challenging. To this end, cell-free DNA (cfDNA) detected in body fluids demonstrates great potential for early detection of tissue transformation and altered molecular setup, such as epigenetic profiles. Aberrantly methylated cfDNA in body fluids could therefore serve as a potential diagnostic and prognostic tool in breast cancer management. Abnormal methylation may lead to both an activation of oncogenes via hypomethylation and an inactivation of tumor suppressor genes by hypermethylation. We update the state of the art in the area of aberrant cfDNA methylation analyses as a diagnostic and prognostic tool in breast cancer, report on the main technological challenges, and provide an outlook for advancing the overall management of breast malignancies based on cfDNA as a target for diagnosis and tailored therapies.
Collapse
Affiliation(s)
- Igor Stastny
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic; Department of Obstetrics and Gynaecology, Martin University Hospital and Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic.
| | - Pavol Zubor
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic; Department of Gynecologic Oncology, The Norwegian Radium Hospital, Oslo University Hospital, 0379 Oslo, Norway
| | - Karol Kajo
- Department of Pathology, St Elizabeth Cancer Institute Hospital, Bratislava, Slovak Republic; Biomedical Research Centre, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Peter Kubatka
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic; Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, Martin, Slovak Republic
| | - Olga Golubnitschaja
- Radiological Hospital, Rheinische, Excellence University of Bonn, Bonn, Germany; Breast Cancer Research Centre, Rheinische, Excellence University of Bonn, Bonn, Germany; Centre for Integrated Oncology, Cologne-Bonn, Excellence University of Bonn, Bonn, Germany
| | - Zuzana Dankova
- Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovak Republic
| |
Collapse
|
16
|
Interplay between BRCA1 and GADD45A and Its Potential for Nucleotide Excision Repair in Breast Cancer Pathogenesis. Int J Mol Sci 2020; 21:ijms21030870. [PMID: 32013256 PMCID: PMC7037490 DOI: 10.3390/ijms21030870] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
A fraction of breast cancer cases are associated with mutations in the BRCA1 (BRCA1 DNA repair associated, breast cancer type 1 susceptibility protein) gene, whose mutated product may disrupt the repair of DNA double-strand breaks as BRCA1 is directly involved in the homologous recombination repair of such DNA damage. However, BRCA1 can stimulate nucleotide excision repair (NER), the most versatile system of DNA repair processing a broad spectrum of substrates and playing an important role in the maintenance of genome stability. NER removes carcinogenic adducts of diol-epoxy derivatives of benzo[α]pyrene that may play a role in breast cancer pathogenesis as their accumulation is observed in breast cancer patients. NER deficiency was postulated to be intrinsic in stage I of sporadic breast cancer. BRCA1 also interacts with GADD45A (growth arrest and DNA damage-inducible protein GADD45 alpha) that may target NER machinery to actively demethylate genome sites in order to change the expression of genes that may be important in breast cancer. Therefore, the interaction between BRCA1 and GADD45 may play a role in breast cancer pathogenesis through the stimulation of NER, increasing the genomic stability, removing carcinogenic adducts, and the local active demethylation of genes important for cancer transformation.
Collapse
|