1
|
Wu L, Xu H, Jian S, Gong X, Feng X. Geographic factors and climatic fluctuation drive the genetic structure and demographic history of Cycas taiwaniana (Cycadaceae), an endemic endangered species to Hainan Island in China. Ecol Evol 2022; 12:e9508. [PMID: 36415875 PMCID: PMC9674470 DOI: 10.1002/ece3.9508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 10/14/2022] [Accepted: 10/27/2022] [Indexed: 09/08/2024] Open
Abstract
Hainan Island had experienced several cold-warm and dry-humid fluctuations since the Late Pleistocene period, resulting in separating and connecting from the mainland several times with the cyclic rise and fall of sea level. The fluctuations can change the biota and ecological environment in the island. Cycas taiwaniana Carruthers is endemic to Hainan Island and is classified as endangered by the International Union for Conservation of Nature (IUCN). To comprehensively understand the genetic dynamics of C. taiwaniana, we sampled 12 wild populations in Hainan Island and one cultivated population in Fujian province, and analyzed the genetic diversity, genetic structure, and demographic history based on the molecular data. Results revealed that C. taiwaniana had relatively low genetic diversity and high genetic differentiation. Haplotypes of C. taiwaniana diversified during the Pleistocene based on the chloroplast DNA (cpDNA) and the concatenated nuclear DNA (nDNA) data. Genetic cluster analyses based on the microsatellite (SSR) data showed that the 12 wild populations were separated into three clusters which could be three evolutionary significant units (ESUs), indicating three basic units of protection were identified. Moreover, we also confirmed the cultivated population FJ derived from the DLS1-GSL clade. Demographic inference from different data was discordant, but overall, it uncovered that C. taiwaniana had experienced population contraction events twice during the Pleistocene and Holocene, and then expanded recently. Our study elucidated the population genetic characteristics of C. taiwaniana, and guided us to develop targeted conservation and management strategies for this endangered species.
Collapse
Affiliation(s)
- Li‐Xin Wu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
- University of Chinese Academy of ScienceBeijingChina
- Plant Science Institute, School of Life SciencesYunnan UniversityKunmingChina
| | - Hai‐Yan Xu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
- University of Chinese Academy of ScienceBeijingChina
| | - Shu‐Guang Jian
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical GardenChinese Academy of SciencesGuangzhouChina
| | - Xun Gong
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
| | - Xiu‐Yan Feng
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of BotanyChinese Academy of SciencesKunmingChina
| |
Collapse
|
2
|
Liu J, Lindstrom AJ, Gong X. Towards the plastome evolution and phylogeny of Cycas L. (Cycadaceae): molecular-morphology discordance and gene tree space analysis. BMC PLANT BIOLOGY 2022; 22:116. [PMID: 35291941 PMCID: PMC8922756 DOI: 10.1186/s12870-022-03491-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/22/2022] [Indexed: 05/20/2023]
Abstract
BACKGROUND Plastid genomes (plastomes) present great potential in resolving multiscale phylogenetic relationship but few studies have focused on the influence of genetic characteristics of plastid genes, such as genetic variation and phylogenetic discordance, in resolving the phylogeny within a lineage. Here we examine plastome characteristics of Cycas L., the most diverse genus among extant cycads, and investigate the deep phylogenetic relationships within Cycas by sampling 47 plastomes representing all major clades from six sections. RESULTS All Cycas plastomes shared consistent gene content and structure with only one gene loss detected in Philippine species C. wadei. Three novel plastome regions (psbA-matK, trnN-ndhF, chlL-trnN) were identified as containing the highest nucleotide variability. Molecular evolutionary analysis showed most of the plastid protein-coding genes have been under purifying selection except ndhB. Phylogenomic analyses that alternatively included concatenated and coalescent methods, both identified four clades but with conflicting topologies at shallow nodes. Specifically, we found three species-rich Cycas sections, namely Stangerioides, Indosinenses and Cycas, were not or only weakly supported as monophyly based on plastomic phylogeny. Tree space analyses based on different tree-inference methods both revealed three gene clusters, of which the cluster with moderate genetic properties showed the best congruence with the favored phylogeny. CONCLUSIONS Our exploration in plastomic data for Cycas supports the idea that plastid protein-coding genes may exhibit discordance in phylogenetic signals. The incongruence between molecular phylogeny and morphological classification reported here may largely be attributed to the uniparental attribute of plastid, which cannot offer sufficient information to resolve the phylogeny. Contrasting to a previous consensus that genes with longer sequences and a higher proportion of variances are superior for phylogeny reconstruction, our result implies that the most effective phylogenetic signals could come from loci that own moderate variation, GC content, sequence length, and underwent modest selection.
Collapse
Affiliation(s)
- Jian Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China
| | - Anders J Lindstrom
- Global Biodiversity Conservancy, 144/124 Moo3, Soi Bua Thong, 20250, Bangsalae, Sattahip, Chonburi, Thailand.
| | - Xun Gong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, Yunnan, China.
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, 650201, Kunming, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
3
|
Tao Y, Chen B, Kang M, Liu Y, Wang J. Genome-Wide Evidence for Complex Hybridization and Demographic History in a Group of Cycas From China. Front Genet 2021; 12:717200. [PMID: 34527022 PMCID: PMC8435751 DOI: 10.3389/fgene.2021.717200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/10/2021] [Indexed: 11/24/2022] Open
Abstract
Cycads represent one of the most ancestral living seed plants as well as one of the most threatened plant groups in the world. South China is a major center and potential origin of Cycas, the most rapidly diversified lineage of cycads. However, genomic-wide diversity of Cycas remains poorly understood due to the challenge of generating genomic markers associated with their inherent large genomes. Here, we perform a comprehensive conservation genomic study based on restriction-site associated DNA sequencing (RADseq) data in six representative species of Cycas in South China. Consistently low genetic diversity and strong genetic differentiation were detected across species. Both phylogenetic inference and genetic structure analysis via several methods revealed generally congruent groups among the six Cycas species. The analysis with ADMIXTURE showed low mixing of genetic composition among species, while individuals of C. dolichophylla exhibited substantial genetic admixture with C. bifida, C. changjiangensis, and C. balansae. Furthermore, the results from Treemix, f4-statistic, and ABBA-BABA test were generally consistent and revealed the complex patterns of interspecific gene flow. Relatively strong signals of hybridization were detected between C. dolichophylla and C. szechuanensis, and the ancestor of C. taiwaniana and C. changjiangensis. Distinct patterns of demographic history were inferred for these species by Stairway Plot, and our results suggested that both climate fluctuation and frequent geological activities during the late Pleistocene exerted deep impacts on the population dynamics of these species in South China. Finally, we explore the practical implications of our findings for the development of conservation strategies in Cycas. The present study demonstrates the efficiency of RADseq for conservation genomic studies on non-model species with large and complex genomes. Given the great significance of cycads as a radical transition in the evolution of plant biodiversity, our study provides important insights into the mechanisms of diversification in such recently radiated living fossil taxa.
Collapse
Affiliation(s)
- Yueqi Tao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bin Chen
- Shanghai Chenshan Botanical Garden, Shanghai, China.,Eastern China Conservation Center for Wild Endangered Plant Resources, Shanghai, China
| | - Ming Kang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| | - Yongbo Liu
- State Environment Protection Key Laboratory of Regional Ecological Process and Functional Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Jing Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China.,Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
4
|
Pecundo MH, Chang ACG, Chen T, dela Cruz TEE, Ren H, Li N. Full-Length 16S rRNA and ITS Gene Sequencing Revealed Rich Microbial Flora in Roots of Cycas spp. in China. Evol Bioinform Online 2021; 17:1176934321989713. [PMID: 33613025 PMCID: PMC7868495 DOI: 10.1177/1176934321989713] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 12/30/2020] [Indexed: 11/30/2022] Open
Abstract
Cycads have developed a complex root system categorized either as normal or coralloid roots. Past literatures revealed that a great diversity of key microbes is associated with these roots. This recent study aims to comprehensively determine the diversity and community structure of bacteria and fungi associated with the roots of two Cycas spp. endemic to China, Cycas debaoensis Zhong & Chen and Cycas fairylakea D.Y. Wang using high-throughput amplicon sequencing of the full-length 16S rRNA (V1-V9 hypervariable) and short fragment ITS region. The total DNA from 12 root samples were extracted, amplified, sequenced, and analyzed. Resulting sequences were clustered into 61 bacteria and 2128 fungal OTUs. Analysis of community structure revealed that the coralloid roots were dominated mostly by the nitrogen-fixer Nostocaceae but also contain other non-diazotrophic bacteria. The sequencing of entire 16S rRNA gene identified four different strains of cyanobacteria under the heterocystous genera Nostoc and Desmonostoc. Meanwhile, the top bacterial families in normal roots were Xanthobacteraceae, Burkholderiaceae, and Bacillaceae. Moreover, a diverse fungal community was also found in the roots of cycads and the predominating families were Ophiocordycipitaceae, Nectriaceae, Bionectriaceae, and Trichocomaceae. Our results demonstrated that bacterial diversity in normal roots of C. fairylakea is higher in richness and abundance than C. debaoensis. On the other hand, a slight difference, albeit insignificant, was noted for the diversity of fungi among root types and host species as the number of shared taxa is relatively high (67%). Our results suggested that diverse microbes are present in roots of cycads which potentially interact together to support cycads survival. Our study provided additional knowledge on the microbial diversity and composition in cycads and thus expanding our current knowledge on cycad-microbe association. Our study also considered the possible impact of ex situ conservation on cyanobiont community of cycads.
Collapse
Affiliation(s)
- Melissa H Pecundo
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Aimee Caye G Chang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| | - Tao Chen
- Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Thomas Edison E dela Cruz
- Department of Biological Sciences, College of Science, University of Santo Tomas, Manila, Philippines
| | - Hai Ren
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Nan Li
- Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Wang XH, Li J, Zhang LM, He ZW, Mei QM, Gong X, Jian SG. Population Differentiation and Demographic History of the Cycas taiwaniana Complex (Cycadaceae) Endemic to South China as Indicated by DNA Sequences and Microsatellite Markers. Front Genet 2019; 10:1238. [PMID: 31921292 PMCID: PMC6935862 DOI: 10.3389/fgene.2019.01238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 11/08/2019] [Indexed: 11/13/2022] Open
Abstract
Historical geology, climatic oscillations, and seed dispersal capabilities are thought to influence the population dynamics and genetics of plants, especially for distribution-restricted and threatened species. Investigating the genetic resources within and among taxa is a prerequisite for conservation management. The Cycas taiwaniana complex consists of six endangered species that are endemic to South China. In this study, we investigated the relationship between phylogeographic history and the genetic structure of the C. taiwaniana complex. To estimate the phylogeographic history of the complex, we assessed the genetic structure and divergence time, and performed phylogenetic and demographic historical analyses. Two chloroplast DNA intergenic regions (cpDNA), two single-copy nuclear genes (SCNGs), and six microsatellite loci (SSR) were sequenced for 18 populations. The SCNG data indicated a high genetic diversity within populations, a low genetic diversity among populations, and significant genetic differentiation among populations. Significant phylogeographical structure was detected. Structure and phylogenetic analyses both revealed that the 18 populations of the C. taiwaniana complex have two main lineages, which were estimated to diverge in the Middle Pleistocene. We propose that Cycas fairylakea was incorporated into Cycas szechuanensis and that the other populations, which are mainly located on Hainan Island, merged into one lineage. Bayesian skyline plot analyses revealed that the C. taiwaniana complex experienced a recent decline, suggesting that the complex probably experienced a bottleneck event. We infer that the genetic structure of the C. taiwaniana complex has been affected by Pleistocene climate shifts, sea-level oscillations, and human activities. In addition to providing new insights into the evolutionary legacy of the genus, the genetic characterizations will be useful for the conservation of Cycas species.
Collapse
Affiliation(s)
- Xin-Hui Wang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Jie Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Li-Min Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Zi-Wen He
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Qi-Ming Mei
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xun Gong
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Shu-Guang Jian
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
6
|
Shi X, Gong C, Zhang L, Hu J, Ouyang Z, Xiao Y. Which Species Should We Focus On? Umbrella Species Assessment in Southwest China. BIOLOGY 2019; 8:biology8020042. [PMID: 31126137 PMCID: PMC6628075 DOI: 10.3390/biology8020042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/09/2019] [Accepted: 05/17/2019] [Indexed: 11/16/2022]
Abstract
In conservation biology, umbrella species are often used as agents for a broader set of species, or as representatives of an ecosystem, and their conservation is expected to benefit a large number of naturally co-occurring species. Southwest China is home to not only global biodiversity hotspots, but also rapid economic and population growth and extensive changes in land use. However, because of the large regional span, the diverse species distributions, and the difficulty of field investigations, traditional methods used to assess umbrella species are not suitable for implementation in Southwest China. In the current study, we assessed 810 key protected species from seven taxa by indicator value analysis, correlation analysis, and factor analysis. We selected 32 species as umbrella species, whose habitats overlapped the habitats of 97% of the total species. Furthermore, the selected species were significantly correlated with 70% of all species in the study area. A total of 16 out of 19 selected animal species have been previously mentioned as umbrella species, compared with only 3 out of 13 plants species; this is despite plants accounting for a large proportion of the total species in Southwest China. We discuss the roles of indicator species and co-occurring species, and provide suggestions for species protection in Southwest China based on the current results. Our research provides valuable scientific information for research on umbrella conservation species over large geographical scales, and related fields of biodiversity conservation.
Collapse
Affiliation(s)
- Xuewei Shi
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Science, Chinese Academy of Sciences, Beijing 100085, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Cheng Gong
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China.
| | - Lu Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Science, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jian Hu
- Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610041, China.
| | - Zhiyun Ouyang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Science, Chinese Academy of Sciences, Beijing 100085, China.
| | - Yi Xiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-environmental Science, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
7
|
Considering evolutionary processes in cycad conservation: identification of evolutionarily significant units within Dioon sonorense (Zamiaceae) in northwestern Mexico. CONSERV GENET 2018. [DOI: 10.1007/s10592-018-1079-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
8
|
Feng X, Liu J, Chiang YC, Gong X. Investigating the Genetic Diversity, Population Differentiation and Population Dynamics of Cycas segmentifida (Cycadaceae) Endemic to Southwest China by Multiple Molecular Markers. FRONTIERS IN PLANT SCIENCE 2017; 8:839. [PMID: 28580005 PMCID: PMC5437697 DOI: 10.3389/fpls.2017.00839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/04/2017] [Indexed: 06/07/2023]
Abstract
Climate change, species dispersal ability and habitat fragmentation are major factors influencing species distribution and genetic diversity, especially for the range-restricted and threatened taxa. Here, using four sequences of chloroplast DNAs (cpDNAs), three nuclear genes (nDNAs) and 12 nuclear microsatellites (SSRs), we investigated the genetic diversity, genetic structure, divergence time and population dynamics of Cycas segmentifida D. Y. Wang and C. Y. Deng, a threatened cycad species endemic to Southwest China. High levels of genetic diversity and genetic differentiation were revealed in C. segmentifida. Haplotypes of networks showed two evolutionary units in C. segmentifida, with the exception of the nuclear gene GTP network. Meanwhile, the UPGMA tree, structure and PCoA analyses suggested that 14 populations of C. segmentifida were divided into two clades. There was significant effect of isolation by distance (IBD) in this species. However, this species did not display a significant phylogeographic structure. The divergence time estimation suggested that its haplotypes diverged during the Middle Pleistocene. Additionally, the population dynamics inferred from different DNA sequences analyses were discordant. Bottleneck analysis showed that populations of C. segmentifida did not experience any recent bottleneck effect, but rather pointed to a contraction of its effective population size over time. Furthermore, our results suggested that the population BM which held an intact population structure and occupied undisturbed habitat was at the Hardy-Weinberg equilibrium, implying that this population is a free-mating system. These genetic features provide important information for the sustainable management of C. segmentifida.
Collapse
Affiliation(s)
- Xiuyan Feng
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- University of Chinese Academy of SciencesBeijing, China
| | - Jian Liu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- University of Chinese Academy of SciencesBeijing, China
| | - Yu-Chung Chiang
- Department of Biological Sciences, National Sun Yat-sen UniversityKaohsiung, Taiwan
| | - Xun Gong
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
| |
Collapse
|
9
|
Zheng Y, Liu J, Feng X, Gong X. The distribution, diversity, and conservation status of Cycas in China. Ecol Evol 2017; 7:3212-3224. [PMID: 28480020 PMCID: PMC5415521 DOI: 10.1002/ece3.2910] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/15/2017] [Accepted: 02/17/2017] [Indexed: 11/10/2022] Open
Abstract
As ancient gymnosperm and woody plants, cycads have survived through dramatic tectonic activities, climate fluctuation, and environmental variations making them of great significance in studying the origin and evolution of flora biodiversity. However, they are among the most threatened plant groups in the world. The principal aim of this review is to outline the distribution, diversity, and conservation status of Cycas in China and provide suggestions for conservation practices. In this review, we describe the taxonomy, distribution, and conservation status of Cycas in China. By comparing Chinese Cycas species with its relatives worldwide, we then discuss the current genetic diversity, genetic differentiation of Cycas, and try to disentangle the potential effects of Quaternary climate changes and topographical events on Cycas. We review conservation practices from both researchers and practitioners for these rare and endangered species. High genetic diversity at the species level and strong genetic differentiation within Cycas have been observed. Most Cycas species in southwest China have experienced population retreats in contrast to the coastal Cycas's expansion during the Quaternary glaciation. Additionally, human activities and habitat fragmentation have pushed these endangered taxa to the brink of extinction. Although numerous efforts have been made to mitigate threats to Cycas survival, implementation and compliance monitoring in protection zones are currently inadequate. We outline six proposals to strengthen conservation measures for Cycas in China and anticipate that these measures will provide guidelines for further research on population genetics as well as conservation biology of not only cycads but also other endangered species worldwide.
Collapse
Affiliation(s)
- Ying Zheng
- Key Laboratory for Plant Diversity and Biogeography of East Asia Kunming Institute of Botany Chinese Academy of Sciences Kunming Yunnan China.,Key Laboratory of Economic Plants and Biotechnology Kunming Institute of Botany Chinese Academy of Sciences Kunming Yunnan China.,University of Chinese Academy of Sciences Beijing China
| | - Jian Liu
- Key Laboratory for Plant Diversity and Biogeography of East Asia Kunming Institute of Botany Chinese Academy of Sciences Kunming Yunnan China.,Key Laboratory of Economic Plants and Biotechnology Kunming Institute of Botany Chinese Academy of Sciences Kunming Yunnan China.,University of Chinese Academy of Sciences Beijing China
| | - Xiuyan Feng
- Key Laboratory for Plant Diversity and Biogeography of East Asia Kunming Institute of Botany Chinese Academy of Sciences Kunming Yunnan China.,Key Laboratory of Economic Plants and Biotechnology Kunming Institute of Botany Chinese Academy of Sciences Kunming Yunnan China.,University of Chinese Academy of Sciences Beijing China
| | - Xun Gong
- Key Laboratory for Plant Diversity and Biogeography of East Asia Kunming Institute of Botany Chinese Academy of Sciences Kunming Yunnan China.,Key Laboratory of Economic Plants and Biotechnology Kunming Institute of Botany Chinese Academy of Sciences Kunming Yunnan China
| |
Collapse
|
10
|
Yang R, Feng X, Gong X. Genetic structure and demographic history of Cycas chenii (Cycadaceae), an endangered species with extremely small populations. PLANT DIVERSITY 2017; 39:44-51. [PMID: 30159490 PMCID: PMC6112254 DOI: 10.1016/j.pld.2016.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 11/14/2016] [Accepted: 11/14/2016] [Indexed: 06/08/2023]
Abstract
Geological activities and climate oscillations during the Quaternary period profoundly impacted the distribution of species in Southwest China. Some plant species may be harbored in refugia, such as the dry-hot valleys of Southwest China. Cycas chenii X. Gong & W. Zhou, a critically endangered cycad species, which grows under the canopy in subtropical evergreen broad-leaved forests along the upstream drainage area of the Red River, is endemic to this refugium. In this study, 60 individuals of C. chenii collected from six populations were analyzed by sequencing two chloroplast intergenic spacers (cpDNA: psbA-trnH and trnL-trnF) and two nuclear genes (PHYP and RBP-1). Results showed high genetic diversity at the species level, but low within-population genetic diversity and high interpopulation genetic differentiation. A Bayesian phylogenetic tree based on cpDNA showed that five chloroplast haplotypes were clustered into two clades, which corresponds to the division of the western and eastern bank of the Red River. These data indicate a possible role for the Red River as a geographic barrier to gene flow in C. chenii. Based on our findings, we propose appropriate in situ and ex situ conservation strategies for C. chenii.
Collapse
Affiliation(s)
- Rui Yang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiuyan Feng
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xun Gong
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Yunnan Key Laboratory for Wild Plant Resources, Kunming 650201, China
| |
Collapse
|
11
|
Jiang GF, Hinsinger DD, Strijk JS. Comparison of intraspecific, interspecific and intergeneric chloroplast diversity in Cycads. Sci Rep 2016; 6:31473. [PMID: 27558458 PMCID: PMC4997344 DOI: 10.1038/srep31473] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/20/2016] [Indexed: 11/18/2022] Open
Abstract
Cycads are among the most threatened plant species. Increasing the availability of genomic information by adding whole chloroplast data is a fundamental step in supporting phylogenetic studies and conservation efforts. Here, we assemble a dataset encompassing three taxonomic levels in cycads, including ten genera, three species in the genus Cycas and two individuals of C. debaoensis. Repeated sequences, SSRs and variations of the chloroplast were analyzed at the intraspecific, interspecific and intergeneric scale, and using our sequence data, we reconstruct a phylogenomic tree for cycads. The chloroplast was 162,094 bp in length, with 133 genes annotated, including 87 protein-coding, 37 tRNA and 8 rRNA genes. We found 7 repeated sequences and 39 SSRs. Seven loci showed promising levels of variations for application in DNA-barcoding. The chloroplast phylogeny confirmed the division of Cycadales in two suborders, each of them being monophyletic, revealing a contradiction with the current family circumscription and its evolution. Finally, 10 intraspecific SNPs were found. Our results showed that despite the extremely restricted distribution range of C. debaoensis, using complete chloroplast data is useful not only in intraspecific studies, but also to improve our understanding of cycad evolution and in defining conservation strategies for this emblematic group.
Collapse
Affiliation(s)
- Guo-Feng Jiang
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and College of Forestry, Guangxi University, Nanning, Guangxi 530004, China
| | - Damien Daniel Hinsinger
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and College of Forestry, Guangxi University, Nanning, Guangxi 530004, China
| | - Joeri Sergej Strijk
- Plant Ecophysiology and Evolution Group, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources and College of Forestry, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
12
|
Middle-Upper Pleistocene climate changes shaped the divergence and demography of Cycas guizhouensis (Cycadaceae): Evidence from DNA sequences and microsatellite markers. Sci Rep 2016; 6:27368. [PMID: 27270859 PMCID: PMC4895228 DOI: 10.1038/srep27368] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 05/16/2016] [Indexed: 11/24/2022] Open
Abstract
Climatic oscillations in the Pleistocene have had profound effects on the demography and genetic diversity of many extant species. Cycas guizhouensis Lan & R.F. Zou is an endemic and endangered species in Southwest China that is primarily distributed along the valleys of the Nanpan River. In this study, we used four chloroplast DNAs (cpDNA), three nuclear genes (nDNA) and 13 microsatellite (SSR) loci to investigate the genetic structure, divergence time and demographic history of 11 populations of C. guizhouensis. High genetic diversity and high levels of genetic differentiation among the populations were observed. Two evolutionary units were revealed based on network and Structure analysis. The divergence time estimations suggested that haplotypes of C. guizhouensis were diverged during the Middle-Upper Pleistocene. Additionally, the demographic histories deduced from different DNA sequences were discordant, but overall indicated that C. guizhouensis had experienced a recent population expansion during the post-glacial period. Microsatellite data revealed that there was a contraction in effective population size in the past. These genetic features allow conservation measures to be taken to ensure the protection of this endangered species from extinction.
Collapse
|
13
|
Medina-Villarreal A, González-Astorga J. Morphometric and geographical variation in theCeratozamia mexicanaBrongn. (Zamiaceae) complex: evolutionary and taxonomic implications. Biol J Linn Soc Lond 2016. [DOI: 10.1111/bij.12806] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Anwar Medina-Villarreal
- Laboratorio de Genética de Poblaciones, Red de Biología Evolutiva; Instituto de Ecología, A. C.; km 2.5 Antigua Carretera a Coatepec No. 351 Xalapa 91070 Veracruz México
| | - Jorge González-Astorga
- Laboratorio de Genética de Poblaciones, Red de Biología Evolutiva; Instituto de Ecología, A. C.; km 2.5 Antigua Carretera a Coatepec No. 351 Xalapa 91070 Veracruz México
| |
Collapse
|
14
|
Liu J, Zhou W, Gong X. Species delimitation, genetic diversity and population historical dynamics of Cycas diannanensis (Cycadaceae) occurring sympatrically in the Red River region of China. FRONTIERS IN PLANT SCIENCE 2015; 6:696. [PMID: 26442013 PMCID: PMC4562272 DOI: 10.3389/fpls.2015.00696] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/21/2015] [Indexed: 06/02/2023]
Abstract
Delimitating species boundaries could be of critical importance when evaluating the species' evolving process and providing guidelines for conservation genetics. Here, species delimitation was carried out on three endemic and endangered Cycas species with resembling morphology and overlapped distribution range along the Red River (Yuanjiang) in China: Cycas diananensis Z. T. Guan et G. D. Tao, Cycas parvula S. L. Yang and Cycas multiovula D. Y. Wang. A total of 137 individuals from 15 populations were genotyped by using three chloroplastic (psbA-trnH, atpI-atpH, and trnL-rps4) and two single copy nuclear (RPB1 and SmHP) DNA sequences. Basing on the carefully morphological comparison and cladistic haplotype aggregation (CHA) analysis, we propose all the populations as one species, with the rest two incorporated into C. diannanensis. Genetic diversity and structure analysis of the conflated C. diannanensis revealed this species possessed a relative lower genetic diversity than estimates of other Cycas species. The higher genetic diversity among populations and relative lower genetic diversity within populations, as well as obvious genetic differentiation among populations inferred from chloroplastic DNA (cpDNA) suggested a recent genetic loss within this protected species. Additionally, a clear genetic structure of C. diannanensis corresponding with geography was detected based on cpDNA, dividing its population ranges into "Yuanjiang-Nanhun" basin and "Ejia-Jiepai" basin groups. Demographical history analyses based on combined cpDNA and one nuclear DNA (nDNA) SmHP both showed the population size of C. diannanensis began to decrease in Quaternary glaciation with no subsequent expansion, while another nDNA RPB1 revealed a more recent sudden expansion after long-term population size contraction, suggesting its probable bottleneck events in history. Our findings offer grounded views for clarifying species boundaries of C. diannanensis when determining the conservation objectives. For operational guidelines, the downstream populations which occupy high and peculiar haplotypes should be given prior in-situ conservation. In addition, ex-situ conservation and reintroduction measures for decades of generations are supplemented for improving the population size and genetic diversity of the endemic and endangered species.
Collapse
Affiliation(s)
- Jian Liu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- University of Chinese Academy of SciencesBeijing, China
| | - Wei Zhou
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
| | - Xun Gong
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of SciencesKunming, China
- Yunnan Key Laboratory for Wild Plant ResourcesKunming, China
| |
Collapse
|
15
|
Gong YQ, Zhan QQ, Nguyen KS, Nguyen HT, Wang YH, Gong X. The historical demography and genetic variation of the endangered Cycas multipinnata (Cycadaceae) in the red river region, examined by chloroplast DNA sequences and microsatellite markers. PLoS One 2015; 10:e0117719. [PMID: 25689828 PMCID: PMC4331093 DOI: 10.1371/journal.pone.0117719] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/26/2014] [Indexed: 11/18/2022] Open
Abstract
Cycas multipinnata C.J. Chen & S.Y. Yang is a cycad endemic to the Red River drainage region that occurs under evergreen forest on steep limestone slopes in Southwest China and northern Vietnam. It is listed as endangered due to habitat loss and over-collecting for the ornamental plant trade, and only several populations remain. In this study, we assess the genetic variation, population structure, and phylogeography of C. multipinnata populations to help develop strategies for the conservation of the species. 60 individuals from six populations were used for chloroplast DNA (cpDNA) sequencing and 100 individuals from five populations were genotyped using 17 nuclear microsatellites. High genetic differentiation among populations was detected, suggesting that pollen or seed dispersal was restricted within populations. Two main genetic clusters were observed in both the cpDNA and microsatellite loci, corresponding to Yunnan China and northern Vietnam. These clusters indicated low levels of gene flow between the regions since their divergence in the late Pleistocene, which was inferred from both Bayesian and coalescent analysis. In addition, the result of a Bayesian skyline plot based on cpDNA portrayed a long history of constant population size followed by a decline in the last 50,000 years of C. multipinnata that was perhaps affected by the Quaternary glaciations, a finding that was also supported by the Garza-Williamson index calculated from the microsatellite data. The genetic consequences produced by climatic oscillations and anthropogenic disturbances are considered key pressures on C. multipinnata. To establish a conservation management plan, each population of C. multipinnata should be recognized as a Management Unit (MU). In situ and ex situ actions, such as controlling overexploitation and creating a germplasm bank with high genetic diversity, should be urgently implemented to preserve this species.
Collapse
Affiliation(s)
- Yi-Qing Gong
- Plant Science Institute, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qing-Qing Zhan
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Khang Sinh Nguyen
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Cau Giay District, Ha Noi, Vietnam
| | - Hiep Tien Nguyen
- Center for Plant Conservation, Cau Giay District, Ha Noi, Vietnam
| | - Yue-Hua Wang
- Plant Science Institute, School of Life Sciences, Yunnan University, Kunming, Yunnan, China
| | - Xun Gong
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| |
Collapse
|
16
|
Feng X, Wang Y, Gong X. Genetic diversity, genetic structure and demographic history of Cycas simplicipinna (Cycadaceae) assessed by DNA sequences and SSR markers. BMC PLANT BIOLOGY 2014; 14:187. [PMID: 25016306 PMCID: PMC4114127 DOI: 10.1186/1471-2229-14-187] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 07/03/2014] [Indexed: 06/02/2023]
Abstract
BACKGROUND Cycas simplicipinna (T. Smitinand) K. Hill. (Cycadaceae) is an endangered species in China. There were seven populations and 118 individuals that we could collect were genotyped in this study. Here, we assessed the genetic diversity, genetic structure and demographic history of this species. RESULTS Analyses of data of DNA sequences (two maternally inherited intergenic spacers of chloroplast, cpDNA and one biparentally inherited internal transcribed spacer region ITS4-ITS5, nrDNA) and sixteen microsatellite loci (SSR) were conducted in the species. Of the 118 samples, 86 individuals from the seven populations were used for DNA sequencing and 115 individuals from six populations were used for the microsatellite study. We found high genetic diversity at the species level, low genetic diversity within each of the seven populations and high genetic differentiation among the populations. There was a clear genetic structure within populations of C. simplicipinna. A demographic history inferred from DNA sequencing data indicates that C. simplicipinna experienced a recent population contraction without retreating to a common refugium during the last glacial period. The results derived from SSR data also showed that C. simplicipinna underwent past effective population contraction, likely during the Pleistocene. CONCLUSIONS Some genetic features of C. simplicipinna such as having high genetic differentiation among the populations, a clear genetic structure and a recent population contraction could provide guidelines for protecting this endangered species from extinction. Furthermore, the genetic features with population dynamics of the species in our study would help provide insights and guidelines for protecting other endangered species effectively.
Collapse
Affiliation(s)
- Xiuyan Feng
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuehua Wang
- Plant Science Institute, School of Life Sciences, Yunnan University, Kunming, China
| | - Xun Gong
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| |
Collapse
|