1
|
Piquet JC, Maestresalas B, López-Darias M. Temperature as an effective biosecurity tool against invasive snakes. J Therm Biol 2024; 125:103978. [PMID: 39368169 DOI: 10.1016/j.jtherbio.2024.103978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/01/2024] [Accepted: 09/16/2024] [Indexed: 10/07/2024]
Abstract
The application of thermal treatments could serve as a biosecurity tool to avert snake introduction, which often leads to irreversible ecological impacts. Here, we tested the applicability of conductive heating and thermal fumigation to prevent the spread of the California kingsnake (Lampropeltis californiae), a damaging species established on the island of Gran Canaria, likely to reach other vulnerable regions, and included among the most concerning invasive species of the European Union. We exposed 24 individuals to a thermal gradient to determine species selected temperatures, range of preferred temperatures and voluntary thermal maximum and used other 24 individuals to analyse their response to conductive heating, thermal fumigation and control (no heat) treatments. Lampropeltis californiae selected temperatures of 27.80 ± 1.05 °C (ranging 26.86 °C ± 1.21 °C to 28.68 °C ± 1.25 °C) and a voluntary thermal maximum of 32.50 ± 3.69 °C. Conductive heating and thermal fumigation performed equally well, inducing the exit of 83.33% and 91.67% of all individuals after 14.36 ± 9.25 min and 11.13 ± 8.60 min of exposition, and at a body temperature of 35.66 ± 3.53 °C and 35.57 ± 2.41 °C, respectively. Control treatments produced the exit of 29.17% of all individuals, which came out of the box in 24.80 ± 8.83 min and at a body temperature of 28.60 ± 1.38 °C. Thermal treatments could serve as an effective tool to prevent the inadvertent transportation of L. californiae and other invasive snakes threatening numerous regions around the globe.
Collapse
Affiliation(s)
- Julien C Piquet
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain
| | - Borja Maestresalas
- Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain
| | - Marta López-Darias
- Delegación del CSIC en Canarias, 38206 San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain.
| |
Collapse
|
2
|
Martín-Cruz B, Cecchetti M, Simbaña-Rivera K, Rial-Berriel C, Acosta-Dacal A, Zumbado-Peña M, Henríquez-Hernández LA, Gallo-Barneto R, Cabrera-Pérez MÁ, Melián-Melián A, Suárez-Pérez A, Luzardo OP. Potential exposure of native wildlife to anticoagulant rodenticides in Gran Canaria (Canary Islands, Spain): Evidence from residue analysis of the invasive California Kingsnake (Lampropeltis californiae). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168761. [PMID: 37996022 DOI: 10.1016/j.scitotenv.2023.168761] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/15/2023] [Accepted: 11/19/2023] [Indexed: 11/25/2023]
Abstract
Anticoagulant rodenticides (ARs), particularly second-generation compounds (SGARs), are extensively used in pest management, impacting non-target wildlife. The California kingsnake (Lampropeltis californiae), an invasive species in Gran Canaria, is under a control plan involving capture and euthanasia. This research aimed to detect 10 different ARs in these snakes, explore geographical and biometrical factors influencing AR exposure, and assess their potential as sentinel species for raptors, sharing similar foraging habits. Liver samples from 360 snakes, euthanized between 2021 and 2022, were analysed for ARs using LC-MS/MS. Results showed all detected rodenticides were SGARs, except for one instance of diphacinone. Remarkably, 90 % of the snakes tested positive for ARs, with over half exposed to multiple compounds. Brodifacoum was predominant, found in over 90 % of AR-positive snakes, while bromadiolone and difenacoum were also frequently detected but at lower levels. The study revealed that larger snakes and those in certain geographic areas had higher AR concentrations. Snakes in less central or more peripheral areas showed lower levels of these compounds. This suggests a correlation between the snakes' size and distribution with the concentration of ARs in their bodies. The findings indicate that the types and prevalence of ARs in California kingsnakes on Gran Canaria mirror those in the island's raptors. This similarity suggests that the kingsnake could serve as a potential sentinel species for monitoring ARs in the ecosystem. However, further research is necessary to confirm their effectiveness in this role.
Collapse
Affiliation(s)
- Beatriz Martín-Cruz
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera "Físico" s/n, 35016 Las Palmas de Gran Canaria, Spain.
| | - Martina Cecchetti
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera "Físico" s/n, 35016 Las Palmas de Gran Canaria, Spain; Environment and Sustainability Institute, University of Exeter. Penryn Campus, Penryn TR10 9FE, United Kingdom
| | - Katherine Simbaña-Rivera
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera "Físico" s/n, 35016 Las Palmas de Gran Canaria, Spain; Centro de Investigación para la Salud en América Latina (CISeAL), Facultad de Medicina, Pontificia Universidad Católica del Ecuador (PUCE), Quito, Ecuador
| | - Cristian Rial-Berriel
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera "Físico" s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Andrea Acosta-Dacal
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera "Físico" s/n, 35016 Las Palmas de Gran Canaria, Spain
| | - Manuel Zumbado-Peña
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera "Físico" s/n, 35016 Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Spain
| | - Luis Alberto Henríquez-Hernández
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera "Físico" s/n, 35016 Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Spain
| | - Ramón Gallo-Barneto
- Gestión y Planeamiento Territorial y Medioambiental, S.A. (GESPLAN). Canary Islands Government, C/León y Castillo 54, bajo, 35003 Las Palmas de Gran Canaria, Spain
| | - Miguel Ángel Cabrera-Pérez
- General Directorate to Combat Climate Change and the Environment, Biodiversity Service, Canary Islands Government, Plaza de los Derechos Humanos, 22, 35071 Las Palmas de Gran Canaria, Spain
| | - Ayose Melián-Melián
- Gestión y Planeamiento Territorial y Medioambiental, S.A. (GESPLAN). Canary Islands Government, C/León y Castillo 54, bajo, 35003 Las Palmas de Gran Canaria, Spain
| | - Alejandro Suárez-Pérez
- Gestión y Planeamiento Territorial y Medioambiental, S.A. (GESPLAN). Canary Islands Government, C/León y Castillo 54, bajo, 35003 Las Palmas de Gran Canaria, Spain
| | - Octavio P Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Paseo Blas Cabrera "Físico" s/n, 35016 Las Palmas de Gran Canaria, Spain; Spanish Biomedical Research Center in Physiopathology of Obesity and Nutrition (CIBERObn), Spain
| |
Collapse
|
3
|
Maestresalas B, Piquet JC, López-Darias M. Spatial ecology to strengthen invasive snake management on islands. Sci Rep 2023; 13:6731. [PMID: 37185934 PMCID: PMC10130030 DOI: 10.1038/s41598-023-32483-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/28/2023] [Indexed: 05/17/2023] Open
Abstract
Knowledge on the spatial ecology of invasive predators positively contributes to optimizing their management, especially when involving cryptic and secretive species, such as snakes. However, this information is lacking for most invasive snakes, particularly on islands, where they are known to cause severe ecological and socio-economic impacts. This research is focused on assessing the spatial ecology of the California kingsnake (Lampropeltis californiae) on Gran Canaria to strengthen management actions. We monitored 15 radio-tagged individuals once per day on 9-11 days per month from July 2020 to June 2021 to calculate the species' home range and describe annual activity patterns in the invaded range. To account for the species' diel activity during the emergence period, we additionally monitored snakes from January to May 2021 during three consecutive days per month in four different time intervals each day. We detected movement (consecutive detections at least 6 m apart) in 31.68% of the 1146 detections during the whole monitoring period. Movements most frequently detected were shorter than 100 m (82.24%), and among them the range 0-20 m was the most recurrent (27.03%). The mean distance of movement was 62.57 ± 62.62 m in 1-2 days. Average home range was 4.27 ± 5.35 ha-calculated with the Autocorrelated Kernel Density Estimator (AKDE) at 95%-and did not significantly vary with SVL nor sex. We detected an extremely low value of motion variance (0.76 ± 2.62 σ2m) compared to other studies, with a general inactivity period from November to February, January being the less active month of the year. Diel activity was higher during central and evening hours than during early morning and night. Our results should be useful to improve control programs for this invasive snake (e.g., trap placement and visual survey guidance) on Gran Canaria. Our research highlights the importance of gathering spatial information on invasive snakes to enhance control actions, which can contribute to the management of secretive invasive snakes worldwide.
Collapse
Affiliation(s)
- Borja Maestresalas
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206, La Laguna, Tenerife, Canary Islands, Spain
| | - Julien C Piquet
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206, La Laguna, Tenerife, Canary Islands, Spain
| | - Marta López-Darias
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206, La Laguna, Tenerife, Canary Islands, Spain.
| |
Collapse
|
4
|
Coupling phenotypic changes to extinction and survival in an endemic prey community threatened by an invasive snake. Sci Rep 2022; 12:18249. [PMID: 36309562 PMCID: PMC9617863 DOI: 10.1038/s41598-022-22583-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 10/17/2022] [Indexed: 12/31/2022] Open
Abstract
When facing novel invasive predators, native prey can either go extinct or survive through exaptation or phenotypic shifts (either plastic or adaptive). Native prey can also reflect stress-mediated responses against invasive predators, affecting their body condition. Although multiple native prey are likely to present both types of responses against a single invader, community-level studies are infrequent. The invasive California kingsnake (Lampropeltis californiae) a good example to explore invasive predators' effects on morphology and body condition at a community level, as this invader is known to locally extinct the Gran Canaria giant lizard (Gallotia stehlini) and to notably reduce the numbers of the Gran Canaria skink (Chalcides sexlineatus) and the Boettger's gecko (Tarentola boettgeri). By comparing a set of morphological traits and body condition (i.e. body index and ectoparasite load) between invaded and uninvaded areas for the three squamates, we found clear evidence of a link between a lack of phenotypic change and extinction, as G. stehlini was the single native prey that did not show morphological shifts. On the other side, surviving C. sexlineatus and T. boettgeri exhibited phenotypic differences in several morphological traits that could reflect plastic responses that contribute to their capacity to cope with the snake. Body condition responses varied among species, indicating the potential existence of simultaneous consumptive and non-consumptive effects at a community level. Our study further highlights the importance addressing the impact of invasive predators from a community perspective in order to gain a deeper understanding of their effect in native ecosystems.
Collapse
|
5
|
Padrón DF, Mebert K, Pareja-Mejía D, Bauer A, Fernandes Vasconcelos LD, Correia D, Fernandez Giné GA, Solé M. Living in a mosaic of Brazilian Atlantic Forest and plantations: spatial ecology of five bushmaster Lachesis muta (Viperidae Crotalinae). ETHOL ECOL EVOL 2022. [DOI: 10.1080/03949370.2022.2123860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Affiliation(s)
- Diego F. Padrón
- Department of Biological Sciences, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, 45662-900 Salobrinho, Ilhéus, Brazil
| | - Konrad Mebert
- Department of Biological Sciences, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, 45662-900 Salobrinho, Ilhéus, Brazil
- IDECC, Institute of Development, Ecology, Conservation and Cooperation, Via G. Tomasi di Lampedusa 33, Rome 00144, Italy
| | - Daniela Pareja-Mejía
- Department of Biological Sciences, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, 45662-900 Salobrinho, Ilhéus, Brazil
| | - Arthur Bauer
- Department of Biological Sciences, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, 45662-900 Salobrinho, Ilhéus, Brazil
| | - Laise D. Fernandes Vasconcelos
- Department of Agricultural and Environmental Sciences, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, 45662-900 Salobrinho, Ilhéus, Brazil
| | - Diego Correia
- Department of Agricultural and Environmental Sciences, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, 45662-900 Salobrinho, Ilhéus, Brazil
| | - Gastón A. Fernandez Giné
- Department of Biological Sciences, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, 45662-900 Salobrinho, Ilhéus, Brazil
| | - Mirco Solé
- Department of Biological Sciences, Universidade Estadual de Santa Cruz, Rodovia Jorge Amado, km 16, 45662-900 Salobrinho, Ilhéus, Brazil
- Herpetology Section, Zoologisches Forschungsmuseum Alexander Koenig, Adenauerallee 160, Bonn 53113, Germany
| |
Collapse
|
6
|
Sarcocystis sp. infection (Apicomplexa: Sarcocystidae) in invasive California kingsnake Lampropeltis californiae (Serpentes: Colubridae) in Gran Canaria. Parasitology 2022; 149:1419-1424. [PMID: 35801291 PMCID: PMC10090764 DOI: 10.1017/s0031182022000841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Invasive species pose a threat not only to biodiversity because they displace or compete with native fauna, but also because of the pathogens they can host. The Canary Islands are an Atlantic biodiversity hotspot threatened by increasing numbers of invasive species, including the California kingsnake Lampropeltis californiae, which was recently introduced to Gran Canaria. Seventy-seven snakes were examined for gastrointestinal parasites in 2019–2020. Sporocysts of Sarcocystis sp. were detected in 10 of them; detection of gamogonia stages in histological sections of 3 snakes confirmed the snake as a definitive host. Partial ssrDNA was amplified using SarcoFext/SarcoRext primers; an additional sequence of Sarcocystis was obtained from the tail muscle of the endemic Gran Canaria giant lizard Gallotia stehlini for a comparison. Identical ssrDNA sequences of unknown Sarcocystis sp. were obtained from 5 different snakes. Phylogenetic analysis showed that Sarcocystis sp. isolated from invasive California kingsnakes is unrelated to Sarcocystis provisionally considered S. stehlini from the endemic lizard. The dixenous coccidia are rarely reported to invade new predator–prey systems. However, the present data suggest that previously unknown Sarcocystis sp. is circulating among invasive snakes and as yet unknown vertebrate intermediate hosts, with undetermined consequences for the Gran Canaria ecosystem.
Collapse
|
7
|
Piquet JC, López-Darias M. Invasive snake causes massive reduction of all endemic herpetofauna on Gran Canaria. Proc Biol Sci 2021; 288:20211939. [PMID: 34875190 PMCID: PMC8651408 DOI: 10.1098/rspb.2021.1939] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/11/2021] [Indexed: 11/12/2022] Open
Abstract
Invasive snakes represent a serious threat to island biodiversity, being responsible for far-reaching impacts that are noticeably understudied, particularly regarding native reptiles. We analysed the impact of the invasive California kingsnake, Lampropeltis californiae-recently introduced in the Canary Islands-on the abundance of all endemic herpetofauna of the island of Gran Canaria. We quantified the density in invaded and uninvaded sites for the Gran Canaria giant lizard, Gallotia stehlini, the Gran Canaria skink, Chalcides sexlineatus, and Boettger's wall gecko, Tarentola boettgeri. We used spatially explicit capture-recapture and distance-sampling methods for G. stehlini and active searches under rocks for the abundance of the other two reptiles. The abundance of all species was lower in invaded sites, with a reduction in the number of individuals greater than 90% for G. stehlini, greater than 80% for C. sexlineatus and greater than 50% for T. boettgeri in invaded sites. Our results illustrate the severe impact of L. californiae on the endemic herpetofauna of Gran Canaria and highlight the need for strengthened measures to manage this invasion. We also provide further evidence of the negative consequences of invasive snakes on island reptiles and emphasize the need for further research on this matter on islands worldwide.
Collapse
Affiliation(s)
- Julien C. Piquet
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 La Laguna, Tenerife, Canary Islands, Spain
| | - Marta López-Darias
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206 La Laguna, Tenerife, Canary Islands, Spain
| |
Collapse
|
8
|
Fisher S, Fisher RN, Alcaraz SE, Gallo‐Barneto R, Patino‐Martinez C, López‐Jurado LF, Cabrera‐Pérez MÁ, Grismer JL. Reproductive plasticity as an advantage of snakes during island invasion. CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Samuel Fisher
- Department of Biology La Sierra University 4500 Riverwalk Parkway Riverside California USA
- Western Ecological Research Center U.S. Geological Survey 4615 Spruance Road San Diego California USA
| | - Robert N. Fisher
- Western Ecological Research Center U.S. Geological Survey 4615 Spruance Road San Diego California USA
| | - Sophie E. Alcaraz
- Western Ecological Research Center U.S. Geological Survey 4615 Spruance Road San Diego California USA
| | - Ramón Gallo‐Barneto
- Área de Medio Ambiente Gestión y Planeamiento Territorial y Ambiental (GesPlan S. A.) C/Francisco Gourie, 107‐30 Las Palmas Spain
| | - Clara Patino‐Martinez
- Asociación para el Desarrollo Sostenible y Conservación de la Biodiversidad (ADS) C/Blas de Lezo 55 Aguimes Las Palmas Spain
| | - Luis Felipe López‐Jurado
- Department of Biology, Faculty of Marine Sciences Universidad de Las Palmas de Gran Canaria Las Palmas Spain
| | - Miguel Ángel Cabrera‐Pérez
- Servicio de Biodiversidad, Dirección General de Protección de la Naturaleza Gobierno de Canarias C/Profesor Agustín Millares Carló, 18, 5a planta, Edificio Servicios Múltiples II Las Palmas Spain
| | - Jesse L. Grismer
- Department of Biology La Sierra University 4500 Riverwalk Parkway Riverside California USA
| |
Collapse
|
9
|
Dispersion of adeleid oocysts by vertebrates in Gran Canaria, Spain: report and literature review. Parasitology 2021; 148:1588-1594. [PMID: 35060472 PMCID: PMC8564802 DOI: 10.1017/s0031182021001244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Within the family Adeleidae, Adelina spp. belong to a group of arthropod pathogens. These parasites have been reported to have a wide geographic distribution, however, there are no reports of these protists in the Canary Islands, Spain. One of the peculiarities of the life cycle of Adelina spp. is the participation of a predator, because fecundation and sporulation occur inside the body cavity, and so necessitate destruction of the definitive host. The involvement therefore of a ‘dispersion host’, which eats the definitive host and spreads the oocysts through its faeces, is critical for the maintenance of certain Adelina spp. On the island of Gran Canaria, adeleid oocysts have been found in stool samples from four animals, three California kingsnakes (Lampropeltis californiae), and one feral cat. These animals were part of a larger coprological study of vertebrate parasites (117 snakes, 298 cats), where pseudoparasitic elements were also recorded. L. californiae and feral cats are invasive species which are widespread across the island and this novel finding of Adelina spp. oocysts in their faeces suggests that they could also serve as potential sentinel species for arthropod parasites.
Collapse
|
10
|
Piquet JC, Warren DL, Saavedra Bolaños JF, Sánchez Rivero JM, Gallo-Barneto R, Cabrera-Pérez MÁ, Fisher RN, Fisher SR, Rochester CJ, Hinds B, Nogales M, López-Darias M. Could climate change benefit invasive snakes? Modelling the potential distribution of the California Kingsnake in the Canary Islands. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 294:112917. [PMID: 34119983 DOI: 10.1016/j.jenvman.2021.112917] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/20/2021] [Accepted: 05/28/2021] [Indexed: 06/12/2023]
Abstract
The interaction between climate change and biological invasions is a global conservation challenge with major consequences for invasive species management. However, our understanding of this interaction has substantial knowledge gaps; this is particularly relevant for invasive snakes on islands because they can be a serious threat to island ecosystems. Here we evaluated the potential influence of climate change on the distribution of invasive snakes on islands, using the invasion of the California kingsnake (Lampropeltis californiae) in Gran Canaria. We analysed the potential distribution of L. californiae under current and future climatic conditions in the Canary Islands, with the underlying hypothesis that the archipelago might be suitable for the species under these climate scenarios. Our results indicate that the Canary Islands are currently highly suitable for the invasive snake, with increased suitability under the climate change scenarios tested here. This study supports the idea that invasive reptiles represent a substantial threat to near-tropical regions, and builds on previous studies suggesting that the menace of invasive reptiles may persist or even be exacerbated by climate change. We suggest future research should continue to fill the knowledge gap regarding invasive reptiles, in particular snakes, to clarify their potential future impacts on global biodiversity.
Collapse
Affiliation(s)
- Julien C Piquet
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206, La Laguna, Tenerife, Canary Islands, Spain
| | - Dan L Warren
- Senckenberg Biodiversity and Climate Research Centre (BiK-F), Frankfurt, Germany; Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jorge Fernando Saavedra Bolaños
- Área de Medio Ambiente. Gestión y Planeamiento Territorial y Ambiental (GESPLAN S. A.), 35002, Las Palmas, Gran Canaria, Canary Islands, Spain
| | - José Miguel Sánchez Rivero
- Área de Medio Ambiente. Gestión y Planeamiento Territorial y Ambiental (GESPLAN S. A.), 35002, Las Palmas, Gran Canaria, Canary Islands, Spain
| | - Ramón Gallo-Barneto
- Área de Medio Ambiente. Gestión y Planeamiento Territorial y Ambiental (GESPLAN S. A.), 35002, Las Palmas, Gran Canaria, Canary Islands, Spain
| | - Miguel Ángel Cabrera-Pérez
- Servicio de Biodiversidad, Dirección General de Protección de la Naturaleza, Gobierno de Canarias, Las Palmas, Gran Canaria, Canary Islands, Spain
| | - Robert N Fisher
- U.S. Geological Survey, Western Ecological Research Center, San Diego, CA, USA
| | | | - Carlton J Rochester
- U.S. Geological Survey, Western Ecological Research Center, San Diego, CA, USA
| | - Brian Hinds
- Herpetological Education and Research Project, Whittier, CA, USA
| | - Manuel Nogales
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206, La Laguna, Tenerife, Canary Islands, Spain
| | - Marta López-Darias
- Island Ecology and Evolution Research Group, Instituto de Productos Naturales y Agrobiología (IPNA-CSIC), 38206, La Laguna, Tenerife, Canary Islands, Spain.
| |
Collapse
|
11
|
Parasitological findings in the invasive California kingsnake ( Lampropeltis californiae) in Gran Canaria, Spain. Parasitology 2021; 148:1345-1352. [PMID: 34096484 PMCID: PMC8383276 DOI: 10.1017/s0031182021000871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The California kingsnake (Lampropeltis californiae), native to North America, is a significant threat to the conservation of endemic species in the Spanish Macaronesian island of Gran Canaria. However, its role disseminating potential invasive parasites, such as zoonotic pentastomids, has not been proven. Among its parasitic fauna, only protistans have been documented, in contrast to other Lampropeltis spp., which are known to carry pentastomids. Thus, a parasitological study is urgently required. Between 2016 and 2018, a total of 108 snakes were necropsied and stool samples examined. A single snake was infested with Ophionyssus natricis, and another individual with Serpentirhabdias sp. Only this latter snake presented gross lesions, characterized by granulomatous pneumonia. No Pentastomida were found. By contrast, almost the entire population (98.5%) was infested with larval helminths (three different nematode and two cestode species), characterized by granulomatous gastrointestinal serositis. This suggests the snake poses a ‘dead end’ host for local parasites. Based on these findings, snakes in Gran Canaria carry potential zoonotic mites, which along with Serpentirhabdias sp. could represent a threat to endemic lizards. The presence of metazoan parasites and their lesions are reported for the first time in the California kingsnake.
Collapse
|
12
|
Salles‐Oliveira I, Machado T, Banci KRDS, Almeida‐Santos SM, Silva MJDJ. Genetic variability, management, and conservation implications of the critically endangered Brazilian pitviper Bothrops insularis. Ecol Evol 2020; 10:12870-12882. [PMID: 33304500 PMCID: PMC7713924 DOI: 10.1002/ece3.6838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 08/24/2020] [Accepted: 08/26/2020] [Indexed: 12/23/2022] Open
Abstract
Information on demographic, genetic, and environmental parameters of wild and captive animal populations has proven to be crucial to conservation programs and strategies. Genetic approaches in conservation programs of Brazilian snakes remain scarce despite their importance for critically endangered species, such as Bothrops insularis, the golden lancehead, which is endemic to Ilha da Queimada Grande, coast of São Paulo State, Brazil. This study aims to (a) characterize the genetic diversity of ex situ and in situ populations of B. insularis using heterologous microsatellites; (b) investigate genetic structure among and within these populations; and (c) provide data for the conservation program of the species. Twelve informative microsatellites obtained from three species of the B. neuwiedi group were used to access genetic diversity indexes of ex situ and in situ populations. Low-to-medium genetic diversity parameters were found. Both populations showed low-albeit significant-values of system of mating inbreeding coefficient, whereas only the in situ population showed a significant value of pedigree inbreeding coefficient. Significant values of genetic differentiation indexes suggest a small differentiation between the two populations. Discriminant analysis of principal components (DAPC) recovered five clusters. No geographic relationship was found in the island, suggesting the occurrence of gene flow. Also, our data allowed the establishment of six preferential breeding couples, aiming to minimize inbreeding and elucidate uncertain parental relationships in the captive population. In a conservation perspective, continuous monitoring of both populations is demanded: it involves the incorporation of new individuals from the island into the captive population to avoid inbreeding and to achieve the recommended allelic similarity between the two populations. At last, we recommend that the genetic data support researches as a base to maintain a viable and healthy captive population, highly genetically similar to the in situ one, which is crucial for considering a reintroduction process into the island.
Collapse
Affiliation(s)
| | - Taís Machado
- Laboratório de Ecologia e EvoluçãoInstituto ButantanSão PauloBrazil
| | | | | | | |
Collapse
|
13
|
Suárez-Atilano M, Cuarón AD, Vázquez-Domínguez E. Deciphering Geographical Affinity and Reconstructing Invasion Scenarios of Boa imperator on the Caribbean Island of Cozumel. COPEIA 2019. [DOI: 10.1643/cg-18-102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Marco Suárez-Atilano
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ap. Postal 70-275, Ciudad Universitaria, Ciudad de México, 04510, México; (MSA) ; and (EVD)
| | - Alfredo D. Cuarón
- SACBÉ—Servicios Ambientales, Conservación Biológica y Educación A.C., Casa del General 1er piso, Rancho Chichihualco, km 4.5 Carretera Costera Zona Hotelera Norte, Cozumel, Quintana Roo 77613, México;
| | - Ella Vázquez-Domínguez
- Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ap. Postal 70-275, Ciudad Universitaria, Ciudad de México, 04510, México; (MSA) ; and (EVD)
| |
Collapse
|
14
|
Kierepka EM, Juarez R, Turner K, Smith J, Hamilton M, Lyons P, Hall MA, Beasley JC, Rhodes OE. Population Genetics of Invasive Brown Tree Snakes (Boiga irregularis) on Guam, USA. HERPETOLOGICA 2019. [DOI: 10.1655/d-18-00057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Elizabeth M. Kierepka
- Savannah River Ecology Laboratory, University of Georgia, PO Drawer E, Aiken, SC 29802, USA
| | - Rebeca Juarez
- Savannah River Ecology Laboratory, University of Georgia, PO Drawer E, Aiken, SC 29802, USA
| | - Kelsey Turner
- Savannah River Ecology Laboratory, University of Georgia, PO Drawer E, Aiken, SC 29802, USA
| | - Joshua Smith
- Savannah River Ecology Laboratory, University of Georgia, PO Drawer E, Aiken, SC 29802, USA
| | - Matthew Hamilton
- Savannah River Ecology Laboratory, University of Georgia, PO Drawer E, Aiken, SC 29802, USA
| | - Phillip Lyons
- Savannah River Ecology Laboratory, University of Georgia, PO Drawer E, Aiken, SC 29802, USA
| | - Marc A. Hall
- NAVFAC MAR, PSC 455, Box 195, Honolulu, HI 96540-2937, USA
| | - James C. Beasley
- Savannah River Ecology Laboratory, University of Georgia, PO Drawer E, Aiken, SC 29802, USA
| | - Olin E. Rhodes
- Savannah River Ecology Laboratory, University of Georgia, PO Drawer E, Aiken, SC 29802, USA
| |
Collapse
|
15
|
Horizon scanning for invasive alien species with the potential to threaten biodiversity and human health on a Mediterranean island. Biol Invasions 2019. [DOI: 10.1007/s10530-019-01961-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
16
|
Masson L, Masson G, Beisel JN, Gutowsky LFG, Fox MG. Consistent life history shifts along invasion routes? An examination of round goby populations invading on two continents. DIVERS DISTRIB 2018. [DOI: 10.1111/ddi.12726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- L. Masson
- Environmental and Life Sciences Graduate Program; Trent University; Peterborough ON Canada
| | - G. Masson
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC); UMR 7360 CNRS Université de Lorraine; UFR Sci. F.A.; Metz France
| | - J. N. Beisel
- Ecole Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES); Strasbourg France
- CNRS, ENGEES, LIVE UMR 7362; Université de Strasbourg; Strasbourg France
| | - L. F. G. Gutowsky
- Ontario Ministry of Natural Resources and Forestry; Peterborough ON Canada
| | - M. G. Fox
- School of the Environment and Department of Biology; Trent University; Peterborough ON Canada
| |
Collapse
|
17
|
The fall of a symbol? A high predation rate by the introduced horseshoe whip snake Hemorrhois hippocrepis paints a bleak future for the endemic Ibiza wall lizard Podarcis pityusensis. EUR J WILDLIFE RES 2016. [DOI: 10.1007/s10344-016-1068-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|