1
|
Mason LLK, Masuda B, Swaisgood RR, Flanagan AM. Nest quality predicts the probability of egg loss in the critically endangered 'Alalā (Corvus hawaiiensis). Zoo Biol 2024; 43:481-490. [PMID: 39172108 DOI: 10.1002/zoo.21849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 08/23/2024]
Abstract
Conservation breeding programs for endangered species face challenges, notably in the development of husbandry techniques, complicated by the impracticality of conducting controlled experiments. To reduce uncertainty regarding what works in conservation breeding programs, it is essential to capture data. In avian breeding programs, the construction of quality nests and appropriate incubation and handling of eggs by the parents are essential prerequisites to the successful production of offspring. Here, we study factors influencing nest-building and parental incubation outcomes in 'alalā (Corvus hawaiiensis), which is extinct in the wild and numbers fewer than 130 individuals in human care. Using parent-incubated egg data from 2018 to 2021 (171 clutches, 55 pairs), we evaluated the role of husbandry factors in determining the quality of nests constructed by 'alalā and the likelihood of nest quality and other social and environmental factors to predict egg loss (breaking, cannibalization, or ejection of an egg from the nest). More than half of all eggs laid failed to reach the hatch date. Nest quality was the most influential predictor of egg loss, with eggs in higher quality nests more likely to reach the hatch date. Male age also influenced egg loss, with very young (3 years old) and older males (⪞12 years old) experiencing more egg loss. Furthermore, the two facilities and two aviary types also differed in the quality of nests 'alalā constructed, indicating that nest-building behavior can be influenced by husbandry practices. These findings reduce uncertainty and provide insights for recommended management interventions to facilitate successful reproduction in human care.
Collapse
Affiliation(s)
| | - Bryce Masuda
- San Diego Zoo Wildlife Alliance, Volcano, Hawaii, USA
| | | | | |
Collapse
|
2
|
Blanchet G, Bellinger MR, Kearns AM, Cortes-Rodriguez N, Masuda B, Campana MG, Rutz C, Fleischer RC, Sutton JT. Reduction of genetic diversity in 'Alalā (Hawaiian crow; Corvus hawaiiensis) between the late 1800s and the late 1900s. J Hered 2024; 115:32-44. [PMID: 37846510 DOI: 10.1093/jhered/esad063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/26/2023] [Accepted: 10/12/2023] [Indexed: 10/18/2023] Open
Abstract
Genetic and genomic data are increasingly used to aid conservation management of endangered species by providing insights into evolutionary histories, factors associated with extinction risks, and potential for future adaptation. For the 'Alalā, or Hawaiian crow (Corvus hawaiiensis), genetic concerns include negative correlations between inbreeding and hatching success. However, it is unclear if low genetic diversity and inbreeding depression are consequences of a historical population bottleneck, or if 'Alalā had historically low genetic diversity that predated human influence, perhaps as a result of earlier declines or founding events. In this study, we applied a hybridization-based sequence capture to generate a genome-wide single nucleotide polymorphism (SNP) dataset for comparing historical specimens collected in the 1890s, when 'Alalā were more numerous, to samples taken between 1973 and 1998, when 'Alalā population densities were near the lowest documented levels in the wild, prior to all individuals being collected for captive rearing. We found low genome-wide diversity in both sample groups, however, the modern sample group (1973 to 1998 cohort) exhibited relatively fewer polymorphic alleles, a lower proportion of polymorphic loci, and lower observed heterozygosity, consistent with a population decline and potential bottleneck effects. These results combined with a current low population size highlight the importance of continued efforts by conservation managers to mitigate inbreeding and maintain founder representation to preserve what genetic diversity remains.
Collapse
Affiliation(s)
- Geneviève Blanchet
- Department of Biology, University of Hawai'i at Hilo, 200 W Kāwili St, Hilo, Hawai'i 96720, United States
| | - M Renee Bellinger
- Department of Biology, University of Hawai'i at Hilo, 200 W Kāwili St, Hilo, Hawai'i 96720, United States
- U.S. Geological Survey, Pacific Island Ecosystems Research Center, PO Box 44, Hawai'i National Park, Hawai'i 96718, United States
| | - Anna M Kearns
- Center for Conservation Genomics, National Zoo and Conservation Biology Institute, Smithsonian Institution, Washington DC 20008, United States
| | - Nandadevi Cortes-Rodriguez
- Center for Conservation Genomics, National Zoo and Conservation Biology Institute, Smithsonian Institution, Washington DC 20008, United States
| | - Bryce Masuda
- San Diego Zoo Wildlife Alliance, P.O. Box 39, Volcano, HI 96785, United States
| | - Michael G Campana
- Center for Conservation Genomics, National Zoo and Conservation Biology Institute, Smithsonian Institution, Washington DC 20008, United States
| | - Christian Rutz
- Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews KY16 9TH, United Kingdom
| | - Robert C Fleischer
- Center for Conservation Genomics, National Zoo and Conservation Biology Institute, Smithsonian Institution, Washington DC 20008, United States
| | - Jolene T Sutton
- Department of Biology, University of Hawai'i at Hilo, 200 W Kāwili St, Hilo, Hawai'i 96720, United States
| |
Collapse
|
3
|
Foster Y, Dutoit L, Grosser S, Dussex N, Foster BJ, Dodds KG, Brauning R, Van Stijn T, Robertson F, McEwan JC, Jacobs JME, Robertson BC. Genomic signatures of inbreeding in a critically endangered parrot, the kākāpō. G3 (BETHESDA, MD.) 2021; 11:jkab307. [PMID: 34542587 PMCID: PMC8527487 DOI: 10.1093/g3journal/jkab307] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023]
Abstract
Events of inbreeding are inevitable in critically endangered species. Reduced population sizes and unique life-history traits can increase the severity of inbreeding, leading to declines in fitness and increased risk of extinction. Here, we investigate levels of inbreeding in a critically endangered flightless parrot, the kākāpō (Strigops habroptilus), wherein a highly inbred island population and one individual from the mainland of New Zealand founded the entire extant population. Genotyping-by-sequencing (GBS), and a genotype calling approach using a chromosome-level genome assembly, identified a filtered set of 12,241 single-nucleotide polymorphisms (SNPs) among 161 kākāpō, which together encompass the total genetic potential of the extant population. Multiple molecular-based estimates of inbreeding were compared, including genome-wide estimates of heterozygosity (FH), the diagonal elements of a genomic-relatedness matrix (FGRM), and runs of homozygosity (RoH, FRoH). In addition, we compared levels of inbreeding in chicks from a recent breeding season to examine if inbreeding is associated with offspring survival. The density of SNPs generated with GBS was sufficient to identify chromosomes that were largely homozygous with RoH distributed in similar patterns to other inbred species. Measures of inbreeding were largely correlated and differed significantly between descendants of the two founding populations. However, neither inbreeding nor ancestry was found to be associated with reduced survivorship in chicks, owing to unexpected mortality in chicks exhibiting low levels of inbreeding. Our study highlights important considerations for estimating inbreeding in critically endangered species, such as the impacts of small population sizes and admixture between diverse lineages.
Collapse
Affiliation(s)
- Yasmin Foster
- Department of Zoology, University of Otago, Dunedin 9054, New Zealand
| | - Ludovic Dutoit
- Department of Zoology, University of Otago, Dunedin 9054, New Zealand
| | - Stefanie Grosser
- Department of Zoology, University of Otago, Dunedin 9054, New Zealand
| | - Nicolas Dussex
- Centre for Palaeogenetics, SE-106 91 Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, SE-104 05 Stockholm, Sweden
- Department of Zoology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Brodie J Foster
- Department of Zoology, University of Otago, Dunedin 9054, New Zealand
| | - Ken G Dodds
- AgResearch Invermay Agricultural Centre, Mosgiel 9053, New Zealand
| | - Rudiger Brauning
- AgResearch Invermay Agricultural Centre, Mosgiel 9053, New Zealand
| | - Tracey Van Stijn
- AgResearch Invermay Agricultural Centre, Mosgiel 9053, New Zealand
| | - Fiona Robertson
- Department of Zoology, University of Otago, Dunedin 9054, New Zealand
| | - John C McEwan
- AgResearch Invermay Agricultural Centre, Mosgiel 9053, New Zealand
| | | | - Bruce C Robertson
- Department of Zoology, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
4
|
Population Genomics and Structure of the Critically Endangered Mariana Crow ( Corvus kubaryi). Genes (Basel) 2019; 10:genes10030187. [PMID: 30832245 PMCID: PMC6471520 DOI: 10.3390/genes10030187] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/16/2019] [Accepted: 02/19/2019] [Indexed: 11/29/2022] Open
Abstract
The Mariana Crow, or Åga (Corvus kubaryi), is a critically endangered species (IUCN -International Union for Conservation of Nature), endemic to the islands of Guam and Rota in the Mariana Archipelago. It is locally extinct on Guam, and numbers have declined dramatically on Rota to a historical low of less than 55 breeding pairs throughout the island in 2013. Because of its extirpation on Guam and population decline on Rota, it is of critical importance to assess the genetic variation among individuals to assist ongoing recovery efforts. We conducted a population genomics analysis comparing the Guam and Rota populations and studied the genetic structure of the Rota population. We used blood samples from five birds from Guam and 78 birds from Rota. We identified 145,552 candidate single nucleotide variants (SNVs) from a genome sequence of an individual from Rota and selected a subset of these to develop an oligonucleotide in-solution capture assay. The Guam and Rota populations were genetically differentiated from each other. Crow populations sampled broadly across their range on Rota showed significant genetic structuring – a surprising result given the small size of this island and the good flight capabilities of the species. Knowledge of its genetic structure will help improve management strategies to help with its recovery.
Collapse
|
5
|
Sutton JT, Helmkampf M, Steiner CC, Bellinger MR, Korlach J, Hall R, Baybayan P, Muehling J, Gu J, Kingan S, Masuda BM, Ryder OA. A High-Quality, Long-Read De Novo Genome Assembly to Aid Conservation of Hawaii's Last Remaining Crow Species. Genes (Basel) 2018; 9:genes9080393. [PMID: 30071683 PMCID: PMC6115840 DOI: 10.3390/genes9080393] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 07/23/2018] [Accepted: 07/27/2018] [Indexed: 11/16/2022] Open
Abstract
Genome-level data can provide researchers with unprecedented precision to examine the causes and genetic consequences of population declines, which can inform conservation management. Here, we present a high-quality, long-read, de novo genome assembly for one of the world’s most endangered bird species, the ʻAlalā (Corvus hawaiiensis; Hawaiian crow). As the only remaining native crow species in Hawaiʻi, the ʻAlalā survived solely in a captive-breeding program from 2002 until 2016, at which point a long-term reintroduction program was initiated. The high-quality genome assembly was generated to lay the foundation for both comparative genomics studies and the development of population-level genomic tools that will aid conservation and recovery efforts. We illustrate how the quality of this assembly places it amongst the very best avian genomes assembled to date, comparable to intensively studied model systems. We describe the genome architecture in terms of repetitive elements and runs of homozygosity, and we show that compared with more outbred species, the ʻAlalā genome is substantially more homozygous. We also provide annotations for a subset of immunity genes that are likely to be important in conservation management, and we discuss how this genome is currently being used as a roadmap for downstream conservation applications.
Collapse
Affiliation(s)
- Jolene T Sutton
- Department of Biology, University of Hawaii at Hilo, Hilo, HI 96720, USA.
| | - Martin Helmkampf
- Department of Biology, University of Hawaii at Hilo, Hilo, HI 96720, USA.
| | - Cynthia C Steiner
- Institute for Conservation Research, San Diego Zoo, Escondido, CA 92027, USA.
| | - M Renee Bellinger
- Department of Biology, University of Hawaii at Hilo, Hilo, HI 96720, USA.
| | | | | | | | | | - Jenny Gu
- Pacific Biosciences, Menlo Park, CA 94025, USA.
| | | | - Bryce M Masuda
- Institute for Conservation Research, San Diego Zoo Global, Volcano, HI 96785, USA.
| | - Oliver A Ryder
- Institute for Conservation Research, San Diego Zoo, Escondido, CA 92027, USA.
| |
Collapse
|
6
|
Kardos M, Taylor HR, Ellegren H, Luikart G, Allendorf FW. Genomics advances the study of inbreeding depression in the wild. Evol Appl 2016; 9:1205-1218. [PMID: 27877200 PMCID: PMC5108213 DOI: 10.1111/eva.12414] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/05/2016] [Indexed: 12/12/2022] Open
Abstract
Inbreeding depression (reduced fitness of individuals with related parents) has long been a major focus of ecology, evolution, and conservation biology. Despite decades of research, we still have a limited understanding of the strength, underlying genetic mechanisms, and demographic consequences of inbreeding depression in the wild. Studying inbreeding depression in natural populations has been hampered by the inability to precisely measure individual inbreeding. Fortunately, the rapidly increasing availability of high-throughput sequencing data means it is now feasible to measure the inbreeding of any individual with high precision. Here, we review how genomic data are advancing our understanding of inbreeding depression in the wild. Recent results show that individual inbreeding and inbreeding depression can be measured more precisely with genomic data than via traditional pedigree analysis. Additionally, the availability of genomic data has made it possible to pinpoint loci with large effects contributing to inbreeding depression in wild populations, although this will continue to be a challenging task in many study systems due to low statistical power. Now that reliably measuring individual inbreeding is no longer a limitation, a major focus of future studies should be to more accurately quantify effects of inbreeding depression on population growth and viability.
Collapse
Affiliation(s)
- Marty Kardos
- Department of Evolutionary BiologyEvolutionary Biology CentreUppsala UniversityUppsalaSweden
| | | | - Hans Ellegren
- Department of Evolutionary BiologyEvolutionary Biology CentreUppsala UniversityUppsalaSweden
| | - Gordon Luikart
- Division of Biological SciencesUniversity of MontanaMissoulaMTUSA
- Flathead Lake Biological StationDivision of Biological SciencesUniversity of MontanaPolsonMTUSA
| | | |
Collapse
|
7
|
Rutz C, Klump BC, Komarczyk L, Leighton R, Kramer J, Wischnewski S, Sugasawa S, Morrissey MB, James R, St Clair JJH, Switzer RA, Masuda BM. Discovery of species-wide tool use in the Hawaiian crow. Nature 2016; 537:403-7. [DOI: 10.1038/nature19103] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 07/12/2016] [Indexed: 11/09/2022]
|