1
|
Marshall IR, Brauer CJ, Wedderburn SD, Whiterod NS, Hammer MP, Barnes TC, Attard CRM, Möller LM, Beheregaray LB. Longitudinal monitoring of neutral and adaptive genomic diversity in a reintroduction. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13889. [PMID: 35023224 DOI: 10.1111/cobi.13889] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
Restoration programs in the form of ex-situ breeding combined with reintroductions are becoming critical to counteract demographic declines and species losses. Such programs are increasingly using genetic management to improve conservation outcomes. However, the lack of long-term monitoring of genetic indicators following reintroduction prevents assessments of the trajectory and persistence of reintroduced populations. We carried out an extensive monitoring program in the wild for a threatened small-bodied fish (southern pygmy perch, Nannoperca australis) to assess the long-term genomic effects of its captive breeding and reintroduction. The species was rescued prior to its extirpation from the terminal lakes of Australia's Murray-Darling Basin, and then used for genetically informed captive breeding and reintroductions. Subsequent annual or biannual monitoring of abundance, fitness, and occupancy over a period of 11 years, combined with postreintroduction genetic sampling, revealed survival and recruitment of reintroduced fish. Genomic analyses based on data from the original wild rescued, captive born, and reintroduced cohorts revealed low inbreeding and strong maintenance of neutral and candidate adaptive genomic diversity across multiple generations. An increasing trend in the effective population size of the reintroduced population was consistent with field monitoring data in demonstrating successful re-establishment of the species. This provides a rare empirical example that the adaptive potential of a locally extinct population can be maintained during genetically informed ex-situ conservation breeding and reintroduction into the wild. Strategies to improve biodiversity restoration via ex-situ conservation should include genetic-based captive breeding and longitudinal monitoring of standing genomic variation in reintroduced populations.
Collapse
Affiliation(s)
- Imogen R Marshall
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Chris J Brauer
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Scotte D Wedderburn
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Nick S Whiterod
- Aquasave-Nature Glenelg Trust, Victor Harbor, South Australia, Australia
| | - Michael P Hammer
- Natural Sciences, Museum and Art Gallery of the Northern Territory, Darwin, Northern Territory, Australia
| | - Thomas C Barnes
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Nelson Bay, New South Wales, Australia
- Institute of Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Catherine R M Attard
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Luciana M Möller
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| | - Luciano B Beheregaray
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
2
|
Buckley SJ, Brauer CJ, Unmack PJ, Hammer MP, Beheregaray LB. Variation in intraspecific demography drives localised concordance but species-wide discordance in response to past climatic change. BMC Ecol Evol 2022; 22:35. [PMID: 35317750 PMCID: PMC8941757 DOI: 10.1186/s12862-022-01990-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 03/11/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Understanding how species biology may facilitate resilience to climate change remains a critical factor in detecting and protecting species at risk of extinction. Many studies have focused on the role of particular ecological traits in driving species responses, but less so on demographic history and levels of standing genetic variation. Additionally, spatial variation in the interaction of demographic and adaptive factors may further complicate prediction of species responses to environmental change. We used environmental and genomic datasets to reconstruct the phylogeographic histories of two ecologically similar and largely co-distributed freshwater fishes, the southern (Nannoperca australis) and Yarra (N. obscura) pygmy perches, to assess the degree of concordance in their responses to Plio-Pleistocene climatic changes. We described contemporary genetic diversity, phylogenetic histories, demographic histories, and historical species distributions across both species, and statistically evaluated the degree of concordance in co-occurring populations. RESULTS Marked differences in contemporary genetic diversity, historical distribution changes and historical migration were observed across the species, with a distinct lack of genetic diversity and historical range expansion suggested for N. obscura. Although several co-occurring populations within a shared climatic refugium demonstrated concordant demographic histories, idiosyncratic population size changes were found at the range edges of the more spatially restricted species. Discordant responses between species were associated with low standing genetic variation in peripheral populations. This might have hindered adaptive potential, as documented in recent demographic declines and population extinctions for the two species. CONCLUSION Our results highlight both the role of spatial scale in the degree of concordance in species responses to climate change, and the importance of standing genetic variation in facilitating range shifts. Even when ecological traits are similar between species, long-term genetic diversity and historical population demography may lead to discordant responses to ongoing and future climate change.
Collapse
Affiliation(s)
- Sean James Buckley
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Chris J Brauer
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia
| | - Peter J Unmack
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, Canberra, ACT, 2601, Australia
| | - Michael P Hammer
- Natural Sciences, Museum and Art Gallery of the Northern Territory, Darwin, NT, 0801, Australia
| | - Luciano B Beheregaray
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, 5001, Australia.
| |
Collapse
|
3
|
Zheng Y, Zhang S, Lu Q, Zhang S, Wang L, Hong M, Nguyen T, Zhao J, Yao M. Population genetic patterns of a mangrove‐associated frog reveal its colonization history and habitat connectivity. DIVERS DISTRIB 2021. [DOI: 10.1111/ddi.13304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Affiliation(s)
- Yitao Zheng
- School of Life Sciences Peking University Beijing China
- Institute of Ecology College of Urban and Environmental Sciences Peking University Beijing China
| | - Shan Zhang
- School of Life Sciences Peking University Beijing China
- Institute of Ecology College of Urban and Environmental Sciences Peking University Beijing China
| | - Qi Lu
- School of Life Sciences Peking University Beijing China
- Institute of Ecology College of Urban and Environmental Sciences Peking University Beijing China
| | - Siyu Zhang
- School of Life Sciences Peking University Beijing China
- Institute of Ecology College of Urban and Environmental Sciences Peking University Beijing China
| | - Lijun Wang
- College of Life Sciences Hainan Normal University Haikou China
| | - Meiling Hong
- College of Life Sciences Hainan Normal University Haikou China
| | - Truong Nguyen
- Institute of Ecology and Biological Resources Academy of Science and Technology Hanoi Vietnam
- Vietnam Academy of Science and Technology Graduate University of Science and Technology Hanoi Vietnam
| | - Jindong Zhao
- School of Life Sciences Peking University Beijing China
- Institute of Ecology College of Urban and Environmental Sciences Peking University Beijing China
| | - Meng Yao
- School of Life Sciences Peking University Beijing China
- Institute of Ecology College of Urban and Environmental Sciences Peking University Beijing China
| |
Collapse
|
4
|
Buckley SJ, Brauer C, Unmack PJ, Hammer MP, Beheregaray LB. The roles of aridification and sea level changes in the diversification and persistence of freshwater fish lineages. Mol Ecol 2021; 30:4866-4883. [PMID: 34265125 DOI: 10.1111/mec.16082] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 11/29/2022]
Abstract
While the influence of Pleistocene climatic changes on divergence and speciation has been well-documented across the globe, complex spatial interactions between hydrology and eustatics over longer timeframes may also determine species evolutionary trajectories. Within the Australian continent, glacial cycles were not associated with changes in ice cover and instead largely resulted in fluctuations from moist to arid conditions across the landscape. We investigated the role of hydrological and coastal topographic changes brought about by Plio-Pleistocene climatic changes on the biogeographic history of a small Australian freshwater fish, the southern pygmy perch Nannoperca australis. Using 7958 ddRAD-seq (double digest restriction-site associated DNA) loci and 45,104 filtered SNPs, we combined phylogenetic, coalescent and species distribution analyses to assess the various roles of aridification, sea level and tectonics and associated biogeographic changes across southeast Australia. Sea-level changes since the Pliocene and reduction or disappearance of large waterbodies throughout the Pleistocene were determining factors in strong divergence across the clade, including the initial formation and maintenance of a cryptic species, N. 'flindersi'. Isolated climatic refugia and fragmentation due to lack of connected waterways maintained the identity and divergence of inter- and intraspecific lineages. Our historical findings suggest that predicted increases in aridification and sea level due to anthropogenic climate change might result in markedly different demographic impacts, both spatially and across different landscape types.
Collapse
Affiliation(s)
- Sean James Buckley
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Chris Brauer
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Peter J Unmack
- Centre for Applied Water Science, Institute for Applied Ecology, University of Canberra, ACT, Australia
| | - Michael P Hammer
- Natural Sciences, Museum and Art Gallery of the Northern Territory, Darwin, NT, Australia
| | - Luciano B Beheregaray
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
5
|
Brauer CJ, Beheregaray LB. Recent and rapid anthropogenic habitat fragmentation increases extinction risk for freshwater biodiversity. Evol Appl 2020; 13:2857-2869. [PMID: 33294027 PMCID: PMC7691462 DOI: 10.1111/eva.13128] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 08/31/2020] [Accepted: 09/01/2020] [Indexed: 12/16/2022] Open
Abstract
Anthropogenic habitat fragmentation is often implicated as driving the current global extinction crisis, particularly in freshwater ecosystems. The genetic signal of recent population isolation can be confounded by the complex spatial arrangement of dendritic river systems. Consequently, many populations may presently be managed separately based on an incorrect assumption that they have evolved in isolation. Integrating landscape genomics data with models of connectivity that account for landscape structure, we show that the cumulative effects of multiple in-stream barriers have contributed to the recent decline of a freshwater fish from the Murray-Darling Basin, Australia. In addition, individual-based eco-evolutionary simulations further demonstrate that contemporary inferences about population isolation are consistent with the 160-year time frame since construction of in-stream barriers began in the region. Our findings suggest that the impact of very recent fragmentation may be often underestimated for freshwater biodiversity. We argue that proactive conservation measures to reconnect many riverine populations are urgently needed.
Collapse
Affiliation(s)
- Chris J. Brauer
- Molecular Ecology Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSAAustralia
| | - Luciano B. Beheregaray
- Molecular Ecology Laboratory, College of Science and EngineeringFlinders UniversityAdelaideSAAustralia
| |
Collapse
|
6
|
Encinas‐Viso F, McDonald‐Spicer C, Knerr N, Thrall PH, Broadhurst L. Different landscape effects on the genetic structure of two broadly distributed woody legumes, Acacia salicina and A. stenophylla (Fabaceae). Ecol Evol 2020; 10:13476-13487. [PMID: 33304553 PMCID: PMC7713966 DOI: 10.1002/ece3.6952] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 09/14/2020] [Accepted: 10/07/2020] [Indexed: 11/06/2022] Open
Abstract
Restoring degraded landscapes has primarily focused on re-establishing native plant communities. However, little is known with respect to the diversity and distribution of most key revegetation species or the environmental and anthropogenic factors that may affect their demography and genetic structure. In this study, we investigated the genetic structure of two widespread Australian legume species (Acacia salicina and Acacia stenophylla) in the Murray-Darling Basin (MDB), a large agriculturally utilized region in Australia, and assessed the impact of landscape structure on genetic differentiation. We used AFLP genetic data and sampled a total of 28 A. salicina and 30 A. stenophylla sampling locations across southeastern Australia. We specifically evaluated the importance of four landscape features: forest cover, land cover, water stream cover, and elevation. We found that both species had high genetic diversity (mean percentage of polymorphic loci, 55.1% for A. salicina versus. 64.3% for A. stenophylla) and differentiation among local sampling locations (A. salicina: ΦPT = 0.301, 30%; A. stenophylla: ΦPT = 0.235, 23%). Population structure analysis showed that both species had high levels of structure (6 clusters each) and admixture in some sampling locations, particularly A. stenophylla. Although both species have a similar geographic range, the drivers of genetic connectivity for each species were very different. Genetic variation in A. salicina seems to be mainly driven by geographic distance, while for A. stenophylla, land cover appears to be the most important factor. This suggests that for the latter species, gene flow among populations is affected by habitat fragmentation. We conclude that these largely co-occurring species require different management actions to maintain population connectivity. We recommend active management of A. stenophylla in the MDB to improve gene flow in the adversity of increasing disturbances (e.g., droughts) driven by climate change and anthropogenic factors.
Collapse
Affiliation(s)
| | - Christiana McDonald‐Spicer
- Centre for Australian National Biodiversity ResearchCSIROCanberraACTAustralia
- The Australian National UniversityCanberraACTAustralia
| | - Nunzio Knerr
- Centre for Australian National Biodiversity ResearchCSIROCanberraACTAustralia
| | | | - Linda Broadhurst
- Centre for Australian National Biodiversity ResearchCSIROCanberraACTAustralia
| |
Collapse
|
7
|
Brauer CJ, Unmack PJ, Smith S, Bernatchez L, Beheregaray LB. On the roles of landscape heterogeneity and environmental variation in determining population genomic structure in a dendritic system. Mol Ecol 2018; 27:3484-3497. [DOI: 10.1111/mec.14808] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 06/29/2018] [Accepted: 07/03/2018] [Indexed: 12/25/2022]
Affiliation(s)
- Chris J. Brauer
- Molecular Ecology Laboratory College of Science and Engineering Flinders University Adelaide South Australia Australia
| | - Peter J. Unmack
- Institute for Applied Ecology University of Canberra Canberra Australian Capital Territory Australia
| | - Steve Smith
- Molecular Ecology Laboratory College of Science and Engineering Flinders University Adelaide South Australia Australia
- Department of Integrative Biology and Evolution University of Veterinary Medicine Vienna Austria
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes Université Laval Québec Québec Quebec Canada
| | - Luciano B. Beheregaray
- Molecular Ecology Laboratory College of Science and Engineering Flinders University Adelaide South Australia Australia
| |
Collapse
|
8
|
Buckley SJ, Domingos FMCB, Attard CRM, Brauer CJ, Sandoval-Castillo J, Lodge R, Unmack PJ, Beheregaray LB. Phylogenomic history of enigmatic pygmy perches: implications for biogeography, taxonomy and conservation. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172125. [PMID: 30110415 PMCID: PMC6030323 DOI: 10.1098/rsos.172125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
Pygmy perches (Percichthyidae) are a group of poorly dispersing freshwater fishes that have a puzzling biogeographic disjunction across southern Australia. Current understanding of pygmy perch phylogenetic relationships suggests past east-west migrations across a vast expanse of now arid habitat in central southern Australia, a region lacking contemporary rivers. Pygmy perches also represent a threatened group with confusing taxonomy and potentially cryptic species diversity. Here, we present the first study of the evolutionary history of pygmy perches based on genome-wide information. Data from 13 991 ddRAD loci and a concatenated sequence of 1 075 734 bp were generated for all currently described and potentially cryptic species. Phylogenetic relationships, biogeographic history and cryptic diversification were inferred using a framework that combines phylogenomics, species delimitation and estimation of divergence times. The genome-wide phylogeny clarified the biogeographic history of pygmy perches, demonstrating multiple east-west events of divergence within the group across the Australian continent. These results also resolved discordance between nuclear and mitochondrial data from a previous study. In addition, we propose three cryptic species within a southwestern species complex. The finding of potentially new species demonstrates that pygmy perches may be even more susceptible to ecological and demographic threats than previously thought. Our results have substantial implications for improving conservation legislation of pygmy perch lineages, especially in southwestern Western Australia.
Collapse
Affiliation(s)
- Sean J. Buckley
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Fabricius M. C. B. Domingos
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
- Instituto de Ciências Biológicas e da Saúde, Universidade Federal de Mato Grosso, Pontal do Araguaia, MT 78698-000, Brazil
| | - Catherine R. M. Attard
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Chris J. Brauer
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Jonathan Sandoval-Castillo
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Ryan Lodge
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| | - Peter J. Unmack
- Institute for Applied Ecology, University of Canberra, Canberra, Australian Capital Territory 2601, Australia
| | - Luciano B. Beheregaray
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, South Australia 5001, Australia
| |
Collapse
|
9
|
Austin CM, Tan MH, Harrisson KA, Lee YP, Croft LJ, Sunnucks P, Pavlova A, Gan HM. De novo genome assembly and annotation of Australia's largest freshwater fish, the Murray cod (Maccullochella peelii), from Illumina and Nanopore sequencing read. Gigascience 2018; 6:1-6. [PMID: 28873963 PMCID: PMC5597895 DOI: 10.1093/gigascience/gix063] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 07/11/2017] [Indexed: 12/02/2022] Open
Abstract
One of the most iconic Australian fish is the Murray cod, Maccullochella peelii (Mitchell 1838), a freshwater species that can grow to ∼1.8 metres in length and live to age ≥48 years. The Murray cod is of a conservation concern as a result of strong population contractions, but it is also popular for recreational fishing and is of growing aquaculture interest. In this study, we report the whole genome sequence of the Murray cod to support ongoing population genetics, conservation, and management research, as well as to better understand the evolutionary ecology and history of the species. A draft Murray cod genome of 633 Mbp (N50 = 109 974bp; BUSCO and CEGMA completeness of 94.2% and 91.9%, respectively) with an estimated 148 Mbp of putative repetitive sequences was assembled from the combined sequencing data of 2 fish individuals with an identical maternal lineage; 47.2 Gb of Illumina HiSeq data and 804 Mb of Nanopore data were generated from the first individual while 23.2 Gb of Illumina MiSeq data were generated from the second individual. The inclusion of Nanopore reads for scaffolding followed by subsequent gap-closing using Illumina data led to a 29% reduction in the number of scaffolds and a 55% and 54% increase in the scaffold and contig N50, respectively. We also report the first transcriptome of Murray cod that was subsequently used to annotate the Murray cod genome, leading to the identification of 26 539 protein-coding genes. We present the whole genome of the Murray cod and anticipate this will be a catalyst for a range of genetic, genomic, and phylogenetic studies of the Murray cod and more generally other fish species of the Percichthydae family.
Collapse
Affiliation(s)
- Christopher M Austin
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia.,Genomics Facility, Tropical Medicine and Biology Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia.,School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
| | - Mun Hua Tan
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia.,Genomics Facility, Tropical Medicine and Biology Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia.,School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
| | - Katherine A Harrisson
- School of Biological Sciences, Monash University, Clayton Campus, Clayton, Victoria, Australia
| | - Yin Peng Lee
- Genomics Facility, Tropical Medicine and Biology Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia.,School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
| | - Laurence J Croft
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia.,Malaysian Genomics Resource Centre Berhad, Boulevard Signature Office, Kuala Lumpur, Malaysia
| | - Paul Sunnucks
- School of Biological Sciences, Monash University, Clayton Campus, Clayton, Victoria, Australia
| | - Alexandra Pavlova
- School of Biological Sciences, Monash University, Clayton Campus, Clayton, Victoria, Australia
| | - Han Ming Gan
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220, Australia.,Genomics Facility, Tropical Medicine and Biology Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia.,School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
10
|
Attard CRM, Brauer CJ, Sandoval-Castillo J, Faulks LK, Unmack PJ, Gilligan DM, Beheregaray LB. Ecological disturbance influences adaptive divergence despite high gene flow in golden perch (Macquaria ambigua): Implications for management and resilience to climate change. Mol Ecol 2017; 27:196-215. [PMID: 29165848 DOI: 10.1111/mec.14438] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 10/31/2017] [Accepted: 11/04/2017] [Indexed: 01/01/2023]
Abstract
Populations that are adaptively divergent but maintain high gene flow may have greater resilience to environmental change as gene flow allows the spread of alleles that have already been tested elsewhere. In addition, populations naturally subjected to ecological disturbance may already hold resilience to future environmental change. Confirming this necessitates ecological genomic studies of high dispersal, generalist species. Here we perform one such study on golden perch (Macquaria ambigua) in the Murray-Darling Basin (MDB), Australia, using a genome-wide SNP data set. The MDB spans across arid to wet and temperate to subtropical environments, with low to high ecological disturbance in the form of low to high hydrological variability. We found high gene flow across the basin and three populations with low neutral differentiation. Genotype-environment association analyses detected adaptive divergence predominantly linked to an arid region with highly variable riverine flow, and candidate loci included functions related to fat storage, stress and molecular or tissue repair. The high connectivity of golden perch in the MDB will likely allow locally adaptive traits in its most arid and hydrologically variable environment to spread and be selected in localities that are predicted to become arid and hydrologically variable in future climates. High connectivity in golden perch is likely due to their generalist life history and efforts of fisheries management. Our study adds to growing evidence of adaptation in the face of gene flow and highlights the importance of considering ecological disturbance and adaptive divergence in biodiversity management.
Collapse
Affiliation(s)
- Catherine R M Attard
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Chris J Brauer
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Jonathan Sandoval-Castillo
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Leanne K Faulks
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, Australia.,Sugadaira Research Station, Mountain Science Center, University of Tsukuba, Nagano, Japan
| | - Peter J Unmack
- Institute for Applied Ecology, University of Canberra, Canberra, ACT, Australia
| | - Dean M Gilligan
- New South Wales Department of Primary Industries, Batemans Bay Fisheries Centre, Batemans Bay, NSW, Australia
| | - Luciano B Beheregaray
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| |
Collapse
|
11
|
Brauer CJ, Unmack PJ, Beheregaray LB. Comparative ecological transcriptomics and the contribution of gene expression to the evolutionary potential of a threatened fish. Mol Ecol 2017; 26:6841-6856. [DOI: 10.1111/mec.14432] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/23/2017] [Accepted: 10/25/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Chris J. Brauer
- Molecular Ecology Laboratory College of Science and Engineering Flinders University Adelaide SA Australia
| | - Peter J. Unmack
- Institute for Applied Ecology University of Canberra Canberra ACT Australia
| | - Luciano B. Beheregaray
- Molecular Ecology Laboratory College of Science and Engineering Flinders University Adelaide SA Australia
| |
Collapse
|
12
|
Pavlova A, Beheregaray LB, Coleman R, Gilligan D, Harrisson KA, Ingram BA, Kearns J, Lamb AM, Lintermans M, Lyon J, Nguyen TTT, Sasaki M, Tonkin Z, Yen JDL, Sunnucks P. Severe consequences of habitat fragmentation on genetic diversity of an endangered Australian freshwater fish: A call for assisted gene flow. Evol Appl 2017; 10:531-550. [PMID: 28616062 PMCID: PMC5469170 DOI: 10.1111/eva.12484] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/29/2017] [Indexed: 12/15/2022] Open
Abstract
Genetic diversity underpins the ability of populations to persist and adapt to environmental changes. Substantial empirical data show that genetic diversity rapidly deteriorates in small and isolated populations due to genetic drift, leading to reduction in adaptive potential and fitness and increase in inbreeding. Assisted gene flow (e.g. via translocations) can reverse these trends, but lack of data on fitness loss and fear of impairing population "uniqueness" often prevents managers from acting. Here, we use population genetic and riverscape genetic analyses and simulations to explore the consequences of extensive habitat loss and fragmentation on population genetic diversity and future population trajectories of an endangered Australian freshwater fish, Macquarie perch Macquaria australasica. Using guidelines to assess the risk of outbreeding depression under admixture, we develop recommendations for population management, identify populations requiring genetic rescue and/or genetic restoration and potential donor sources. We found that most remaining populations of Macquarie perch have low genetic diversity, and effective population sizes below the threshold required to retain adaptive potential. Our simulations showed that under management inaction, smaller populations of Macquarie perch will face inbreeding depression within a few decades, but regular small-scale translocations will rapidly rescue populations from inbreeding depression and increase adaptive potential through genetic restoration. Despite the lack of data on fitness loss, based on our genetic data for Macquarie perch populations, simulations and empirical results from other systems, we recommend regular and frequent translocations among remnant populations within catchments. These translocations will emulate the effect of historical gene flow and improve population persistence through decrease in demographic and genetic stochasticity. Increasing population genetic connectivity within each catchment will help to maintain large effective population sizes and maximize species adaptive potential. The approach proposed here could be readily applicable to genetic management of other threatened species to improve their adaptive potential.
Collapse
Affiliation(s)
- Alexandra Pavlova
- School of Biological SciencesClayton Campus, Monash UniversityClaytonVICAustralia
| | | | - Rhys Coleman
- Applied ResearchMelbourne WaterDocklandsVICAustralia
| | - Dean Gilligan
- Freshwater Ecosystems ResearchNSW Department of Primary Industries – FisheriesBatemans BayNSWAustralia
| | - Katherine A. Harrisson
- School of Biological SciencesClayton Campus, Monash UniversityClaytonVICAustralia
- Department of Environment, Land Water and PlanningArthur Rylah Institute, Land, Fire and EnvironmentHeidelbergVICAustralia
- Department of Ecology Environment and EvolutionSchool of Life Sciences, La Trobe UniversityBundoora, Victoria3083Australia
| | - Brett A. Ingram
- Department of Economic DevelopmentJobs, Transport and ResourcesFisheries VictoriaAlexandraVICAustralia
| | - Joanne Kearns
- Department of Environment, Land Water and PlanningArthur Rylah Institute, Land, Fire and EnvironmentHeidelbergVICAustralia
| | - Annika M. Lamb
- School of Biological SciencesClayton Campus, Monash UniversityClaytonVICAustralia
| | - Mark Lintermans
- Institute for Applied EcologyUniversity of CanberraCanberraACTAustralia
| | - Jarod Lyon
- Department of Environment, Land Water and PlanningArthur Rylah Institute, Land, Fire and EnvironmentHeidelbergVICAustralia
| | - Thuy T. T. Nguyen
- Agriculture VictoriaAgriBio, Centre for AgriBioscienceBundooraVICAustralia
| | - Minami Sasaki
- School of Biological SciencesFlinders UniversityAdelaideSAAustralia
| | - Zeb Tonkin
- Department of Environment, Land Water and PlanningArthur Rylah Institute, Land, Fire and EnvironmentHeidelbergVICAustralia
| | - Jian D. L. Yen
- School of Physics and AstronomyClayton Campus, Monash UniversityClaytonVICAustralia
| | - Paul Sunnucks
- School of Biological SciencesClayton Campus, Monash UniversityClaytonVICAustralia
| |
Collapse
|
13
|
Lean J, Hammer MP, Unmack PJ, Adams M, Beheregaray LB. Landscape genetics informs mesohabitat preference and conservation priorities for a surrogate indicator species in a highly fragmented river system. Heredity (Edinb) 2017; 118:374-384. [PMID: 27876805 PMCID: PMC5345605 DOI: 10.1038/hdy.2016.111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 09/27/2016] [Accepted: 09/27/2016] [Indexed: 11/09/2022] Open
Abstract
Poor dispersal species represent conservative benchmarks for biodiversity management because they provide insights into ecological processes influenced by habitat fragmentation that are less evident in more dispersive organisms. Here we used the poorly dispersive and threatened river blackfish (Gadopsis marmoratus) as a surrogate indicator system for assessing the effects of fragmentation in highly modified river basins and for prioritizing basin-wide management strategies. We combined individual, population and landscape-based approaches to analyze genetic variation in samples spanning the distribution of the species in Australia's Murray-Darling Basin, one of the world's most degraded freshwater systems. Our results indicate that G. marmoratus displays the hallmark of severe habitat fragmentation with notably scattered, small and demographically isolated populations with very low genetic diversity-a pattern found not only between regions and catchments but also between streams within catchments. By using hierarchically nested population sampling and assessing relationships between genetic uniqueness and genetic diversity across populations, we developed a spatial management framework that includes the selection of populations in need of genetic rescue. Landscape genetics provided an environmental criterion to identify associations between landscape features and ecological processes. Our results further our understanding of the impact that habitat quality and quantity has on habitat specialists with similarly low dispersal. They should also have practical applications for prioritizing both large- and small-scale conservation management actions for organisms inhabiting highly fragmented ecosystems.
Collapse
Affiliation(s)
- J Lean
- Molecular Ecology Laboratory, School of Biological Sciences, Flinders University, Adelaide, South Australia, Australia
| | - M P Hammer
- Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia, Australia
- Curator of Fishes, Museum and Art Gallery of the Northern Territory, Darwin, Northern Territory, Australia
| | - P J Unmack
- Institute for Applied Ecology and Collaborative Research Network for Murray-Darling Basin Futures, University of Canberra, Canberra, Australian Capital Territory, Australia
| | - M Adams
- Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, South Australia, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - L B Beheregaray
- Molecular Ecology Laboratory, School of Biological Sciences, Flinders University, Adelaide, South Australia, Australia
| |
Collapse
|
14
|
Sandoval-Castillo J, Attard CRM, Marri S, Brauer CJ, Möller LM, Beheregaray LB. swinger: a user-friendly computer program to establish captive breeding groups that minimize relatedness without pedigree information. Mol Ecol Resour 2016; 17:278-287. [PMID: 27754599 DOI: 10.1111/1755-0998.12609] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 10/13/2016] [Accepted: 10/13/2016] [Indexed: 11/30/2022]
Abstract
Captive breeding programmes are often a necessity for the continued persistence of a population or species. They typically have the goal of maintaining genetic diversity and minimizing inbreeding. However, most captive breeding programmes have been based on the assumption that the founding breeders are unrelated and outbred, even though in situ anthropogenic impacts often mean these founders may have high relatedness and substantial inbreeding. In addition, polygamous group-breeding species in captivity often have uncertain pedigrees, making it difficult to select the group composition for subsequent breeding. Molecular-based estimates of relatedness and inbreeding may instead be used to select breeding groups (≥two individuals) that minimize relatedness and filter out inbred individuals. swinger constructs breeding groups based on molecular estimates of relatedness and inbreeding. The number of possible combinations of breeding groups quickly becomes intractable by hand. swinger was designed to overcome this major issue in ex situ conservation biology. The user can specify parameters within swinger to reach breeding solutions that suit the mating system of the target species and available resources. We provide evidence of the efficiency of the software with an empirical example and using simulations. The only data required are a typical molecular marker data set, such as a microsatellite or SNP data set, from which estimates of inbreeding and pairwise relatedness may be obtained. Such molecular data sets are becoming easier to gather from non-model organisms with next-generation sequencing technology. swinger is an open-source software with a user-friendly interface and is available at http://www.molecularecology.flinders.edu.au/molecular-ecology-lab/software/swinger/swinger/ and https://github.com/Yuma248/Swinger.
Collapse
Affiliation(s)
- Jonathan Sandoval-Castillo
- Molecular Ecology Lab, School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - Catherine R M Attard
- Molecular Ecology Lab, School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia.,Cetacean Ecology, Behaviour and Evolution Lab, School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - Shashikanth Marri
- Flinders Genomics Facility, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - Chris J Brauer
- Molecular Ecology Lab, School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - Luciana M Möller
- Molecular Ecology Lab, School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia.,Cetacean Ecology, Behaviour and Evolution Lab, School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| | - Luciano B Beheregaray
- Molecular Ecology Lab, School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, SA, 5001, Australia
| |
Collapse
|
15
|
Attard CRM, Brauer CJ, Van Zoelen JD, Sasaki M, Hammer MP, Morrison L, Harris JO, Möller LM, Beheregaray LB. Multi-generational evaluation of genetic diversity and parentage in captive southern pygmy perch (Nannoperca australis). CONSERV GENET 2016. [DOI: 10.1007/s10592-016-0873-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|