1
|
Meißner R, Mokgokong P, Pretorius C, Winter S, Labuschagne K, Kotze A, Prost S, Horin P, Dalton D, Burger PA. Diversity of selected toll-like receptor genes in cheetahs (Acinonyx jubatus) and African leopards (Panthera pardus pardus). Sci Rep 2024; 14:3756. [PMID: 38355905 PMCID: PMC10866938 DOI: 10.1038/s41598-024-54076-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/08/2024] [Indexed: 02/16/2024] Open
Abstract
The anthropogenic impact on wildlife is ever increasing. With shrinking habitats, wild populations are being pushed to co-exist in proximity to humans leading to an increased threat of infectious diseases. Therefore, understanding the immune system of a species is key to assess its resilience in a changing environment. The innate immune system (IIS) is the body's first line of defense against pathogens. High variability in IIS genes, like toll-like receptor (TLR) genes, appears to be associated with resistance to infectious diseases. However, few studies have investigated diversity in TLR genes in vulnerable species for conservation. Large predators are threatened globally including leopards and cheetahs, both listed as 'vulnerable' by IUCN. To examine IIS diversity in these sympatric species, we used next-generation-sequencing to compare selected TLR genes in African leopards and cheetahs. Despite differences, both species show some TLR haplotype similarity. Historic cheetahs from all subspecies exhibit greater genetic diversity than modern Southern African cheetahs. The diversity in investigated TLR genes is lower in modern Southern African cheetahs than in African leopards. Compared to historic cheetah data and other subspecies, a more recent population decline might explain the observed genetic impoverishment of TLR genes in modern Southern African cheetahs. However, this may not yet impact the health of this cheetah subspecies.
Collapse
Affiliation(s)
- René Meißner
- Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstraße 1, 1160, Vienna, Austria
| | - Prudent Mokgokong
- South African National Biodiversity Institute, National Zoological Garden, 232 Boom Street, Pretoria, 0002, South Africa
| | - Chantelle Pretorius
- South African National Biodiversity Institute, National Zoological Garden, 232 Boom Street, Pretoria, 0002, South Africa
- WWF South African, Bridge House, Boundary Terraces, Mariendahl Ave, Newlands, 7725, Capetown, South Africa
| | - Sven Winter
- Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstraße 1, 1160, Vienna, Austria
| | - Kim Labuschagne
- South African National Biodiversity Institute, National Zoological Garden, 232 Boom Street, Pretoria, 0002, South Africa
| | - Antoinette Kotze
- South African National Biodiversity Institute, National Zoological Garden, 232 Boom Street, Pretoria, 0002, South Africa
- University of the Free State, Bloemfontein Campus, Bloemfontein, 9300, South Africa
| | - Stefan Prost
- South African National Biodiversity Institute, National Zoological Garden, 232 Boom Street, Pretoria, 0002, South Africa
- University of Oulu, Pentti Kaiteran Katu 1, 90570, Oulu, Finland
| | - Petr Horin
- Department of Animal Genetics, University of Veterinary Sciences, Brno, Czech Republic
- Central European Institute of Technology, University of Veterinary Sciences Brno (CEITEC Vetuni), Brno, Czech Republic
| | - Desire Dalton
- South African National Biodiversity Institute, National Zoological Garden, 232 Boom Street, Pretoria, 0002, South Africa.
- School of Health and Life Science, Teesside University, Middlesbrough, Tees Valley, TS1 3BX, UK.
| | - Pamela A Burger
- Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstraße 1, 1160, Vienna, Austria.
| |
Collapse
|
2
|
Fleischer R, Eibner GJ, Schwensow NI, Pirzer F, Paraskevopoulou S, Mayer G, Corman VM, Drosten C, Wilhelm K, Heni AC, Sommer S, Schmid DW. Immunogenetic-pathogen networks shrink in Tome's spiny rat, a generalist rodent inhabiting disturbed landscapes. Commun Biol 2024; 7:169. [PMID: 38341501 PMCID: PMC10858909 DOI: 10.1038/s42003-024-05870-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Anthropogenic disturbance may increase the emergence of zoonoses. Especially generalists that cope with disturbance and live in close contact with humans and livestock may become reservoirs of zoonotic pathogens. Yet, whether anthropogenic disturbance modifies host-pathogen co-evolutionary relationships in generalists is unknown. We assessed pathogen diversity, neutral genome-wide diversity (SNPs) and adaptive MHC class II diversity in a rodent generalist inhabiting three lowland rainforest landscapes with varying anthropogenic disturbance, and determined which MHC alleles co-occurred more frequently with 13 gastrointestinal nematodes, blood trypanosomes, and four viruses. Pathogen-specific selection pressures varied between landscapes. Genome-wide diversity declined with the degree of disturbance, while MHC diversity was only reduced in the most disturbed landscape. Furthermore, pristine forest landscapes had more functional important MHC-pathogen associations when compared to disturbed forests. We show co-evolutionary links between host and pathogens impoverished in human-disturbed landscapes. This underscores that parasite-mediated selection might change even in generalist species following human disturbance which in turn may facilitate host switching and the emergence of zoonoses.
Collapse
Affiliation(s)
- Ramona Fleischer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Georg Joachim Eibner
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
- Smithsonian Tropical Research Institute, Panamá, República de Panamá
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Nina Isabell Schwensow
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Fabian Pirzer
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Gerd Mayer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Victor Max Corman
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Robert Koch Institute, Nordufer 20, Berlin, 13353, Germany
| | - Christian Drosten
- Institute of Virology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Robert Koch Institute, Nordufer 20, Berlin, 13353, Germany
- German Centre for Infection Research (DZIF), Berlin, Germany
| | - Kerstin Wilhelm
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Alexander Christoph Heni
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
- Smithsonian Tropical Research Institute, Panamá, República de Panamá
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany.
| | - Dominik Werner Schmid
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| |
Collapse
|
3
|
Arbanasić H, Medrano-González L, Hrenar T, Mikelić A, Gomerčić T, Svetličić I, Pavlinec Ž, Đuras M, Galov A. Recent selection created distinctive variability patterns on MHC class II loci in three dolphin species from the Mediterranean Sea. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 150:105079. [PMID: 37832898 DOI: 10.1016/j.dci.2023.105079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
The major histocompatibility complex (MHC) includes highly polymorphic genes involved in antigen presentation, which is crucial for adaptive immune response. They represent fitness related genetic markers particularly informative for populations exposed to environmental challenges. Here we analyse the diversity and evolutionary traits of MHC class II DQA and DQB genes in the dolphins Stenella coeruleoalba and Grampus griseus from the Mediterranean Sea. We found substantial nucleotide and functional diversity, as well as strong evidence of balancing selection indicated by allele and supertype frequencies, Tajima's D statistics and dN/dS tests. The Risso's dolphin, considered the least abundant in the region, showed the effect of divergent allele advantage at the nucleotide and functional-peptide levels. An outstanding polymorphism was found in the striped dolphin, particularly intriguing in the DQA gene where the Ewens-Watterson test detected a selection sweep that occurred in recent history. We hypothesize that morbillivirus, which has recurrently invaded Mediterranean populations over the last decades, exerted the detected selective pressure.
Collapse
Affiliation(s)
- Haidi Arbanasić
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia.
| | - Luis Medrano-González
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| | - Tomica Hrenar
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia.
| | - Ana Mikelić
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia.
| | - Tomislav Gomerčić
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000, Zagreb, Croatia.
| | - Ida Svetličić
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia.
| | - Željko Pavlinec
- Croatian Academy of Sciences and Arts, Trg Nikole Šubića Zrinskog 11, 10000, Zagreb, Croatia.
| | - Martina Đuras
- Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10000, Zagreb, Croatia.
| | - Ana Galov
- Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia.
| |
Collapse
|
4
|
Haikukutu L, Lyaku JR, Lyimo CM, Eiseb SJ, Makundi RH, Olayemi A, Wilhelm K, Müller-Klein N, Schmid DW, Fleischer R, Sommer S. Immunogenetics, sylvatic plague and its vectors: insights from the pathogen reservoir Mastomys natalensis in Tanzania. Immunogenetics 2023; 75:517-530. [PMID: 37853246 PMCID: PMC10651713 DOI: 10.1007/s00251-023-01323-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/08/2023] [Indexed: 10/20/2023]
Abstract
Yersinia pestis is a historically important vector-borne pathogen causing plague in humans and other mammals. Contemporary zoonotic infections with Y. pestis still occur in sub-Saharan Africa, including Tanzania and Madagascar, but receive relatively little attention. Thus, the role of wildlife reservoirs in maintaining sylvatic plague and spillover risks to humans is largely unknown. The multimammate rodent Mastomys natalensis is the most abundant and widespread rodent in peri-domestic areas in Tanzania, where it plays a major role as a Y. pestis reservoir in endemic foci. Yet, how M. natalensis' immunogenetics contributes to the maintenance of plague has not been investigated to date. Here, we surveyed wild M. natalensis for Y. pestis vectors, i.e., fleas, and tested for the presence of antibodies against Y. pestis using enzyme-linked immunosorbent assays (ELISA) in areas known to be endemic or without previous records of Y. pestis in Tanzania. We characterized the allelic and functional (i.e., supertype) diversity of the major histocompatibility complex (MHC class II) of M. natalensis and investigated links to Y. pestis vectors and infections. We detected antibodies against Y. pestis in rodents inhabiting both endemic areas and areas considered non-endemic. Of the 111 nucleotide MHC alleles, only DRB*016 was associated with an increased infestation with the flea Xenopsylla. Surprisingly, we found no link between MHC alleles or supertypes and antibodies of Y. pestis. Our findings hint, however, at local adaptations towards Y. pestis vectors, an observation that more exhaustive sampling could unwind in the future.
Collapse
Affiliation(s)
- Lavinia Haikukutu
- Department of Wildlife Management, Sokoine University of Agriculture, Morogoro, Tanzania.
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany.
- Africa Centre of Excellence for Innovative Rodent Pest Management and Biosensor Technology Development, Sokoine University of Agriculture, Morogoro, Tanzania.
| | - Japhet R Lyaku
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Namibia, Windhoek, Namibia
| | - Charles M Lyimo
- Department of Animal, Aquaculture and Range Sciences, Sokoine University of Agriculture, Chuo Kikuu, Morogoro, Tanzania
| | - Seth J Eiseb
- Department of Environmental Sciences, University of Namibia, Windhoek, Namibia
| | - Rhodes H Makundi
- Africa Centre of Excellence for Innovative Rodent Pest Management and Biosensor Technology Development, Sokoine University of Agriculture, Morogoro, Tanzania
| | - Ayodeji Olayemi
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
- Natural History Museum, Obafemi Awolowo University, Ile Ife, Osun State, Nigeria
| | - Kerstin Wilhelm
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Nadine Müller-Klein
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Dominik W Schmid
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Ramona Fleischer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Simone Sommer
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| |
Collapse
|
5
|
Pikus E, Dunn PO, Minias P. High MHC diversity confers no advantage for phenotypic quality and reproductive performance in a wild bird. J Anim Ecol 2022; 91:1707-1718. [PMID: 35521665 PMCID: PMC9542035 DOI: 10.1111/1365-2656.13737] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/24/2022] [Indexed: 11/28/2022]
Abstract
1. Genes of the major histocompatibility complex (MHC) encode antigen binding molecules and are an integral part of the acquired immune response of vertebrates. In general, high individual MHC diversity is expected to increase fitness by broadening the spectrum of pathogens recognized by the immune system, in accordance with the heterozygote advantage mechanism. On the other hand, the optimality hypothesis assumes that individuals with optimal (intermediate), rather than maximum diversity of the MHC will achieve the highest fitness because of inherent costs associated with expressing diverse MHC alleles. 2. Here, we tested for associations between individual diversity of the MHC class I and class II genes (binding antigens of intra- and extra-cellular pathogens, respectively) and a range of fitness-related traits (condition, ornament expression and reproduction) in an urban population of the Eurasian coot Fulica atra. 3. Contrary to our expectation, we found that high within-individual allelic diversity of MHC genes (both class I and II) was associated with poorer condition (lower blood haemoglobin concentrations), weaker expression of the putative ornament (smaller frontal shield), later onset of breeding and smaller clutches. An analysis of functional MHC allele clusters (supertypes) provided further support for negative associations of MHC diversity with phenotypic quality and reproductive performance, but most of these relationships could not be explained by the presence of specific maladaptive supertypes. Finally, we found little empirical support for the optimality hypothesis in the Eurasian coot. 4. Our results suggest that the costs of high MHC diversity outweighed any benefits associated with broad MHC repertoire, which could be driven by depauperate pathogen diversity in an urban landscape. To the best of our knowledge, this is one of the first studies providing consistent evidence for negative associations of MHC diversity with a range of fitness-related traits in a natural avian population.
Collapse
Affiliation(s)
- Ewa Pikus
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland
| | - Peter O Dunn
- Behavioral and Molecular Ecology Group, Department of Biological Sciences, University of Wisconsin-, Milwaukee
| | - Piotr Minias
- Department of Biodiversity Studies and Bioeducation, Faculty of Biology and Environmental Protection, University of Łódź, Banacha 1/3, 90-237, Łódź, Poland
| |
Collapse
|
6
|
Bracamonte SE, Hofmann MJ, Lozano-Martín C, Eizaguirre C, Barluenga M. Divergent and non-parallel evolution of MHC IIB in the Neotropical Midas cichlid species complex. BMC Ecol Evol 2022; 22:41. [PMID: 35365100 PMCID: PMC8974093 DOI: 10.1186/s12862-022-01997-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/21/2022] [Indexed: 01/09/2023] Open
Abstract
Background Ecological diversification is the result of divergent natural selection by contrasting habitat characteristics that favours the evolution of distinct phenotypes. This process can happen in sympatry and in allopatry. Habitat-specific parasite communities have the potential to drive diversification among host populations by imposing selective pressures on their host's immune system. In particular, the hyperdiverse genes of the major histocompatibility complex (MHC) are implicated in parasite-mediated host divergence. Here, we studied the extent of divergence at MHC, and discuss how it may have contributed to the Nicaraguan Midas cichlid species complex diversification, one of the most convincing examples of rapid sympatric parallel speciation. Results We genotyped the MHC IIB for individuals from six sympatric Midas cichlid assemblages, each containing species that have adapted to exploit similar habitats. We recovered large allelic and functional diversity within the species complex. While most alleles were rare, functional groups of alleles (supertypes) were common, suggesting that they are key to survival and that they were maintained during colonization and subsequent radiations. We identified lake-specific and habitat-specific signatures for both allelic and functional diversity, but no clear pattern of parallel divergence among ecomorphologically similar phenotypes. Conclusions Colonization and demographic effects of the fish could have contributed to MHC evolution in the Midas cichlid in conjunction with habitat-specific selective pressures, such as parasites associated to alternative preys or environmental features. Additional ecological data will help evaluating the role of host–parasite interactions in the Midas cichlid radiations and aid in elucidating the potential role of non-parallel features differentiating crater lake species assemblages. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-022-01997-9.
Collapse
Affiliation(s)
- Seraina E Bracamonte
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Melinda J Hofmann
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Carlos Lozano-Martín
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Christophe Eizaguirre
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Marta Barluenga
- Museo Nacional de Ciencias Naturales, CSIC, José Gutiérrez Abascal 2, 28006, Madrid, Spain.
| |
Collapse
|
7
|
Plasil M, Futas J, Jelinek A, Burger PA, Horin P. Comparative Genomics of the Major Histocompatibility Complex (MHC) of Felids. Front Genet 2022; 13:829891. [PMID: 35309138 PMCID: PMC8924298 DOI: 10.3389/fgene.2022.829891] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 02/15/2022] [Indexed: 12/25/2022] Open
Abstract
This review summarizes the current knowledge on the major histocompatibility complex (MHC) of the family Felidae. This family comprises an important domestic species, the cat, as well as a variety of free-living felids, including several endangered species. As such, the Felidae have the potential to be an informative model for studying different aspects of the biological functions of MHC genes, such as their role in disease mechanisms and adaptation to different environments, as well as the importance of genetic diversity for conservation issues in free-ranging or captive populations. Despite this potential, the current knowledge on the MHC in the family as a whole is fragmentary and based mostly on studies of the domestic cat and selected species of big cats. The overall structure of the domestic cat MHC is similar to other mammalian MHCs following the general scheme "centromere-MHC class I-MHC class III-MHC class II" with some differences in the gene contents. An unambiguously defined orthologue of the non-classical class I HLA-E gene has not been identified so far and the class II DQ and DP genes are missing or pseudogenized, respectively. A comparison with available genomes of other felids showed a generally high level of structural and sequence conservation of the MHC region. Very little and fragmentary information on in vitro and/or in vivo biological functions of felid MHC genes is available. So far, no association studies have indicated effects of MHC genetic diversity on a particular disease. No information is available on the role of MHC class I molecules in interactions with Natural Killer (NK) cell receptors or on the putative evolutionary interactions (co-evolution) of the underlying genes. A comparison of complex genomic regions encoding NK cell receptors (the Leukocyte Receptor Complex, LRC and the Natural Killer Cell Complex, NKC) in the available felid genomes showed a higher variability in the NKC compared to the LRC and the MHC regions. Studies of the genetic diversity of domestic cat populations and/or specific breeds have focused mainly on DRB genes. Not surprisingly, higher levels of MHC diversity were observed in stray cats compared to pure breeds, as evaluated by DRB sequencing as well as by MHC-linked microsatellite typing. Immunogenetic analysis in wild felids has only been performed on MHC class I and II loci in tigers, Namibian leopards and cheetahs. This information is important as part of current conservation tasks to assess the adaptive potential of endangered wild species at the human-wildlife interface, which will be essential for preserving biodiversity in a functional ecosystem.
Collapse
Affiliation(s)
- Martin Plasil
- Research Group Animal Immunogenomics, Ceitec Vetuni, University of Veterinary Sciences Brno, Brno, Czech Republic
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Jan Futas
- Research Group Animal Immunogenomics, Ceitec Vetuni, University of Veterinary Sciences Brno, Brno, Czech Republic
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - April Jelinek
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
| | - Pamela A. Burger
- Research Institute of Wildlife Ecology, University of Veterinary Medicine Vienna, VIA, Vienna, Austria
| | - Petr Horin
- Research Group Animal Immunogenomics, Ceitec Vetuni, University of Veterinary Sciences Brno, Brno, Czech Republic
- Department of Animal Genetics, Faculty of Veterinary Medicine, University of Veterinary Sciences Brno, Brno, Czech Republic
| |
Collapse
|
8
|
Cheng Y, Grueber C, Hogg CJ, Belov K. Improved high-throughput MHC typing for non-model species using long-read sequencing. Mol Ecol Resour 2021; 22:862-876. [PMID: 34551192 PMCID: PMC9293008 DOI: 10.1111/1755-0998.13511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/26/2021] [Accepted: 09/06/2021] [Indexed: 11/29/2022]
Abstract
The major histocompatibility complex (MHC) plays a critical role in the vertebrate immune system. Accurate MHC typing is critical to understanding not only host fitness and disease susceptibility, but also the mechanisms underlying host‐pathogen co‐evolution. However, due to the high degree of gene duplication and diversification of MHC genes, it is often technically challenging to accurately characterise MHC genetic diversity in non‐model species. Here we conducted a systematic review to identify common issues associated with current widely used MHC typing approaches. Then to overcome these challenges, we developed a long‐read based MHC typing method along with a new analysis pipeline. Our approach enables the sequencing of fully phased MHC alleles spanning all key functional domains and the separation of highly similar alleles as well as the removal of technical artefacts such as PCR heteroduplexes and chimeras. Using this approach, we performed population‐scale MHC typing in the Tasmanian devil (Sarcophilus harrisii), revealing previously undiscovered MHC functional diversity in this endangered species. Our new method provides a better solution for addressing research questions that require high MHC typing accuracy. Since the method is not limited by species or the number of genes analysed, it will be applicable for studying not only the MHC but also other complex gene families.
Collapse
Affiliation(s)
- Yuanyuan Cheng
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Catherine Grueber
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia.,San Diego Zoo Wildlife Alliance, San Diego, California, USA
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Smallbone W, Ellison A, Poulton S, van Oosterhout C, Cable J. Depletion of MHC supertype during domestication can compromise immunocompetence. Mol Ecol 2020; 30:736-746. [PMID: 33274493 PMCID: PMC7898906 DOI: 10.1111/mec.15763] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/27/2022]
Abstract
The major histocompatibility complex (MHC) plays an important role in infectious disease resistance. The presence of certain MHC alleles and functionally similar groups of MHC alleles (i.e., supertypes) has been associated with resistance to particular parasite species. Farmed and domesticated fish stocks are often depleted in their MHC alleles and supertype diversity, possibly as a consequence of artificial selection for desirable traits, inbreeding (loss of heterozygosity), genetic drift (loss of allelic diversity) and/or reduced parasite biodiversity. Here we quantify the effects of depletion of MHC class II genotype and supertype variation on resistance to the parasite Gyrodactylus turnbulli in guppies (Poecilia reticulata). Compared to the descendants of wild‐caught guppies, ornamental fish had a significantly reduced MHC variation (i.e., the numbers of MHC alleles and supertypes per individual, and per population). In addition, ornamental fish were significantly more susceptible to G. turnbulli infections, accumulating peak intensity 10 times higher than that of their wildtype counterparts. Four out of 13 supertypes were associated with a significantly reduced parasite load, and the presence of some supertypes had a dramatic effect on the intensity of infection. Remarkably, the ornamental and wildtype fish differed in the supertypes that were associated with parasite resistance. Analysis with a genetic algorithm showed that resistance‐conferring supertypes of the wildtype and ornamental fish shared two unique amino acids in the peptide‐binding region of the MHC that were not found in any other alleles. These data show that the supertype demarcation captures some, but not all, of the variation in the immune function of the alleles. This study highlights the importance of managing functional MHC diversity in livestock, and suggests there might be some immunological redundancy among MHC supertypes.
Collapse
Affiliation(s)
| | - Amy Ellison
- School of Biosciences, Cardiff University, Cardiff, UK
| | - Simon Poulton
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Cock van Oosterhout
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Joanne Cable
- School of Biosciences, Cardiff University, Cardiff, UK
| |
Collapse
|
10
|
Qurkhuli T, Schwensow N, Brändel SD, Tschapka M, Sommer S. Can extreme MHC class I diversity be a feature of a wide geographic range? The example of Seba's short-tailed bat (Carollia perspicillata). Immunogenetics 2019; 71:575-587. [PMID: 31520134 PMCID: PMC7079943 DOI: 10.1007/s00251-019-01128-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/14/2019] [Indexed: 12/19/2022]
Abstract
The major histocompatibility complex (MHC) is one of the most diverse genetic regions under pathogen-driven selection because of its central role in antigen binding and immunity. The highest MHC variability, both in terms of the number of individual alleles and gene copies, has so far been found in passerine birds; this is probably attributable to passerine adaptation to both a wide geographic range and a diverse array of habitats. If extraordinary high MHC variation and duplication rates are adaptive features under selection during the evolution of ecologically and taxonomically diverse species, then similarly diverse MHC architectures should be found in bats. Bats are an extremely species-rich mammalian group that is globally widely distributed. Many bat species roost in multitudinous groups and have high contact rates with pathogens, conspecifics, and allospecifics. We have characterized the MHC class I diversity in 116 Panamanian Seba's short-tailed bats (Carollia perspicillata), a widely distributed, generalist, neotropical species. We have detected a remarkable individual and population-level diversity of MHC class I genes, with between seven and 22 alleles and a unique genotype in each individual. This diversity is comparable with that reported in passerine birds and, in both taxonomic groups, further variability has evolved through length polymorphisms. Our findings support the hypothesis that, for species with a geographically broader range, high MHC class I variability is particularly adaptive. Investigation of the details of the underlying adaptive processes and the role of the high MHC diversity in pathogen resistance are important next steps for a better understanding of the role of bats in viral evolution and as carriers of several deadly zoonotic viruses.
Collapse
Affiliation(s)
- Tamar Qurkhuli
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Nina Schwensow
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany
| | - Stefan Dominik Brändel
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Panamá, República de Panamá
| | - Marco Tschapka
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany
- Smithsonian Tropical Research Institute, Apartado, 0843-03092, Panamá, República de Panamá
| | - Simone Sommer
- Institute for Evolutionary Ecology and Conservation Genomics, University of Ulm, Albert-Einstein Allee 11, 89081, Ulm, Germany.
| |
Collapse
|
11
|
Hoelzel AR, Bruford MW, Fleischer RC. Conservation of adaptive potential and functional diversity. CONSERV GENET 2019. [DOI: 10.1007/s10592-019-01151-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|