1
|
Pérez-González J, Carranza J, Anaya G, Broggini C, Vedel G, de la Peña E, Membrillo A. Comparative Analysis of Microsatellite and SNP Markers for Genetic Management of Red Deer. Animals (Basel) 2023; 13:3374. [PMID: 37958129 PMCID: PMC10650148 DOI: 10.3390/ani13213374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
The analysis of population genetic structure and individual multilocus heterozygosity are crucial for wildlife management and conservation. Microsatellite markers have traditionally been used to assess these genetic parameters. However, single-nucleotide polymorphisms (SNPs) are becoming increasingly popular. Our goal here was to determine to what extent SNPs can provide better insights than microsatellites into the overall genetic status and population genetic processes in the species. To this end, we genotyped 210 red deer (Cervus elaphus) in the Spanish wild population with both 11 microsatellites and 31,712 SNPs. We compared parameters related to population genetic structure and individual multilocus heterozygosity obtained with both types of markers. Our results showed correlations between parameters measured using both microsatellites and SNPs, particularly those related to the level of genetic diversity and genetic differentiation. However, we found notably lower precision of microsatellites in measuring the distribution of genetic diversity among individuals. We conclude that microsatellites can be used to monitor the overall genetic status and detect broad patterns in red deer populations. Nevertheless, the greater precision of SNPs in inferring genetic structure and multilocus heterozygosity leads us to encourage scientists and wildlife managers to prioritize their use whenever possible.
Collapse
Affiliation(s)
- Javier Pérez-González
- Biology and Ethology Unit, Veterinary Faculty, University of Extremadura, 10003 Caceres, Spain
| | - Juan Carranza
- Wildlife Research Unit (UIRCP), University of Córdoba, 14071 Cordoba, Spain; (J.C.); (G.A.); (C.B.); (G.V.); (E.d.l.P.); (A.M.)
| | - Gabriel Anaya
- Wildlife Research Unit (UIRCP), University of Córdoba, 14071 Cordoba, Spain; (J.C.); (G.A.); (C.B.); (G.V.); (E.d.l.P.); (A.M.)
- Department of Genetics, University of Cordoba, 14071 Cordoba, Spain
| | - Camilla Broggini
- Wildlife Research Unit (UIRCP), University of Córdoba, 14071 Cordoba, Spain; (J.C.); (G.A.); (C.B.); (G.V.); (E.d.l.P.); (A.M.)
| | - Giovanni Vedel
- Wildlife Research Unit (UIRCP), University of Córdoba, 14071 Cordoba, Spain; (J.C.); (G.A.); (C.B.); (G.V.); (E.d.l.P.); (A.M.)
| | - Eva de la Peña
- Wildlife Research Unit (UIRCP), University of Córdoba, 14071 Cordoba, Spain; (J.C.); (G.A.); (C.B.); (G.V.); (E.d.l.P.); (A.M.)
- Institute for Game and Wildlife Research (IREC), 13005 Ciudad Real, Spain
| | - Alberto Membrillo
- Wildlife Research Unit (UIRCP), University of Córdoba, 14071 Cordoba, Spain; (J.C.); (G.A.); (C.B.); (G.V.); (E.d.l.P.); (A.M.)
- Department of Specific Didactics, Faculty of Education Sciences, University of Cordoba, 14071 Cordoba, Spain
| |
Collapse
|
2
|
Moravčíková N, Kasarda R, Židek R, McEwan JC, Brauning R, Landete-Castillejos T, Chonco L, Ciberej J, Pokorádi J. Traces of Human-Mediated Selection in the Gene Pool of Red Deer Populations. Animals (Basel) 2023; 13:2525. [PMID: 37570333 PMCID: PMC10417186 DOI: 10.3390/ani13152525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/27/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
In this study, we analysed the effect of human-mediated selection on the gene pool of wild and farmed red deer populations based on genotyping-by-sequencing data. The farmed red deer sample covered populations spread across seven countries and two continents (France, Germany, Hungary, Latvia, New Zealand, Poland, and Slovakia). The Slovak and Spain wild red deer populations (the latter one in a large game estate) were used as control outgroups. The gene flow intensity, relationship and admixture among populations were tested by the Bayesian approach and discriminant analysis of principal components (DAPC). The highest gene diversity (He = 0.19) and the lowest genomic inbreeding (FHOM = 0.04) found in Slovak wild population confirmed our hypothesis that artificial selection accompanied by bottlenecks has led to the increase in overall genomic homozygosity. The Bayesian approach and DAPC consistently identified three separate genetic groups. As expected, the farmed populations were clustered together, while the Slovak and Spanish populations formed two separate clusters. Identified traces of genetic admixture in the gene pool of farmed populations reflected a strong contemporary migration rate between them. This study suggests that even if the history of deer farming has been shorter than traditional livestock species, it may leave significant traces in the genome structure.
Collapse
Affiliation(s)
- Nina Moravčíková
- Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, 949 76 Nitra, Slovakia;
| | - Radovan Kasarda
- Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, 949 76 Nitra, Slovakia;
| | - Radoslav Židek
- Faculty of Agrobiology and Food Resources, Slovak University of Agriculture, 949 76 Nitra, Slovakia;
| | - John Colin McEwan
- AgResearch, Invermay Agricultural Research Centre, Mosgiel 9024, New Zealand; (J.C.M.); (R.B.)
| | - Rudiger Brauning
- AgResearch, Invermay Agricultural Research Centre, Mosgiel 9024, New Zealand; (J.C.M.); (R.B.)
| | - Tomás Landete-Castillejos
- Instituto de Recursos Cinegéticos-Instituto de Desarrollo Regional, University of Castilla-La Mancha, 02071 Albacete, Spain; (T.L.-C.); (L.C.)
| | - Louis Chonco
- Instituto de Recursos Cinegéticos-Instituto de Desarrollo Regional, University of Castilla-La Mancha, 02071 Albacete, Spain; (T.L.-C.); (L.C.)
| | - Juraj Ciberej
- Department of Breeding and Diseases of Game, Fish and Bees, Ecology and Cynology, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | | |
Collapse
|
3
|
Joshi BD, Singh SK, Singh VK, Jabin G, Ghosh A, Dalui S, Singh A, Priyambada P, Dolker S, Mukherjee T, Sharief A, Kumar V, Singh H, Thapa A, Sharma CM, Dutta R, Bhattacharjee S, Singh I, Mehar BS, Chandra K, Sharma LK, Thakur M. From poops to planning: A broad non-invasive genetic survey of large mammals from the Indian Himalayan Region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158679. [PMID: 36099955 DOI: 10.1016/j.scitotenv.2022.158679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Large forested landscapes often harbour significant amount of biodiversity and support mankind by rendering various livelihood opportunities and ecosystem services. Their periodic assessment for health and ecological integrity is essential for timely mitigation of any negative impact of human use due to over harvesting of natural resources or unsustainable developmental activities. In this context, monitoring of mega fauna may provide reasonable insights about the connectivity and quality of forested habitats. In the present study, we conducted a largest non-invasive genetic survey to explore mammalian diversity and genetically characterized 13 mammals from the Indian Himalayan Region (IHR). We analyzed 4806 faecal samples using 103 autosomal microsatellites and with three mitochondrial genes, we identified 37 species of mammal. We observed low to moderate level of genetic variability and most species exhibited stable demographic history. We estimated an unbiased population genetic account (PGAunbias) for 13 species that may be monitored after a fixed time interval to understand species performance in response to the landscape changes. The present study has been evident to show pragmatic permeability with the representative sampling in the IHR in order to facilitate the development of species-oriented conservation and management programmes.
Collapse
Affiliation(s)
- Bheem Dutt Joshi
- Zoological Survey of India, New Alipore, Kolkata 700053, West Bengal, India
| | - Sujeet Kumar Singh
- Zoological Survey of India, New Alipore, Kolkata 700053, West Bengal, India; Present address: Amity Institute of Forestry and Wildlife, Amity University, Noida 201303, Uttar Pradesh, India
| | - Vinaya Kumar Singh
- Zoological Survey of India, New Alipore, Kolkata 700053, West Bengal, India
| | - Gul Jabin
- Zoological Survey of India, New Alipore, Kolkata 700053, West Bengal, India
| | - Avijit Ghosh
- Zoological Survey of India, New Alipore, Kolkata 700053, West Bengal, India
| | - Supriyo Dalui
- Zoological Survey of India, New Alipore, Kolkata 700053, West Bengal, India
| | - Abhishek Singh
- Zoological Survey of India, New Alipore, Kolkata 700053, West Bengal, India
| | | | - Stanzin Dolker
- Zoological Survey of India, New Alipore, Kolkata 700053, West Bengal, India
| | - Tanoy Mukherjee
- Zoological Survey of India, New Alipore, Kolkata 700053, West Bengal, India
| | - Amira Sharief
- Zoological Survey of India, New Alipore, Kolkata 700053, West Bengal, India
| | - Vineet Kumar
- Zoological Survey of India, New Alipore, Kolkata 700053, West Bengal, India
| | - Hemant Singh
- Zoological Survey of India, New Alipore, Kolkata 700053, West Bengal, India
| | - Avantika Thapa
- Zoological Survey of India, New Alipore, Kolkata 700053, West Bengal, India
| | | | - Ritam Dutta
- Zoological Survey of India, New Alipore, Kolkata 700053, West Bengal, India
| | | | - Inder Singh
- Zoological Survey of India, New Alipore, Kolkata 700053, West Bengal, India
| | - Balram Singh Mehar
- Zoological Survey of India, New Alipore, Kolkata 700053, West Bengal, India
| | - Kailash Chandra
- Zoological Survey of India, New Alipore, Kolkata 700053, West Bengal, India
| | - Lalit Kumar Sharma
- Zoological Survey of India, New Alipore, Kolkata 700053, West Bengal, India
| | - Mukesh Thakur
- Zoological Survey of India, New Alipore, Kolkata 700053, West Bengal, India.
| |
Collapse
|
4
|
Hagemann J, Conejero C, Stillfried M, Mentaberre G, Castillo-Contreras R, Fickel J, López-Olvera JR. Genetic population structure defines wild boar as an urban exploiter species in Barcelona, Spain. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155126. [PMID: 35405223 DOI: 10.1016/j.scitotenv.2022.155126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/27/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
Urban wildlife ecology is gaining relevance as metropolitan areas grow throughout the world, reducing natural habitats and creating new ecological niches. However, knowledge is still scarce about the colonisation processes of such urban niches, the establishment of new communities, populations and/or species, and the related changes in behaviour and life histories of urban wildlife. Wild boar (Sus scrofa) has successfully colonised urban niches throughout Europe. The aim of this study is to unveil the processes driving the establishment and maintenance of an urban wild boar population by analysing its genetic structure. A set of 19 microsatellite loci was used to test whether urban wild boars in Barcelona, Spain, are an isolated population or if gene flow prevents genetic differentiation between rural and urban wild boars. This knowledge will contribute to the understanding of the effects of synurbisation and the associated management measures on the genetic change of large mammals in urban ecosystems. Despite the unidirectional gene flow from rural to urban areas, the urban wild boars in Barcelona form an island population genotypically differentiated from the surrounding rural ones. The comparison with previous genetic studies of urban wild boar populations suggests that forest patches act as suitable islands for wild boar genetic differentiation. Previous results and the genetic structure of the urban wild boar population in Barcelona classify wild boar as an urban exploiter species. These wild boar peri-urban island populations are responsible for conflict with humans and thus should be managed by reducing the attractiveness of urban areas. The management of peri-urban wild boar populations should aim at reducing migration into urban areas and preventing phenotypic changes (either genetic or plastic) causing habituation of wild boars to humans and urban environments.
Collapse
Affiliation(s)
- Justus Hagemann
- Leibniz-Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315 Berlin, Germany; University of Potsdam, Evolutionary Adaptive Genomics, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Carles Conejero
- Wildlife Ecology & Health group (WE&H) and Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
| | - Milena Stillfried
- Leibniz-Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315 Berlin, Germany
| | - Gregorio Mentaberre
- Wildlife Ecology & Health group (WE&H) and Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain; Departament de Ciència Animal, Escola Tècnica Superior d'Enginyeria Agraria (ETSEA), Universitat de Lleida (UdL), 25098 Lleida, Spain
| | - Raquel Castillo-Contreras
- Wildlife Ecology & Health group (WE&H) and Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain
| | - Jörns Fickel
- Leibniz-Institute for Zoo and Wildlife Research, Alfred-Kowalke-Str. 17, D-10315 Berlin, Germany; University of Potsdam, Molecular Ecology and Evolution, Institute for Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Jorge Ramón López-Olvera
- Wildlife Ecology & Health group (WE&H) and Servei d'Ecopatologia de Fauna Salvatge (SEFaS), Departament de Medicina i Cirurgia Animals, Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
5
|
Mesas A, Cuéllar-Soto E, Romero K, Zegers T, Varas V, González BA, Johnson WE, Marín JC. Assessing patterns of genetic diversity and connectivity among guanacos (Lama guanicoe) in the Bolivian Chaco: implications for designing management strategies. STUDIES ON NEOTROPICAL FAUNA AND ENVIRONMENT 2021. [DOI: 10.1080/01650521.2021.1914294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Andrés Mesas
- Laboratorio de Genómica y Biodiversidad, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bio-Bío, Chillán, Chile
| | - Erika Cuéllar-Soto
- Department of Biology, College of Science, Sultan Qaboos University, Seeb, Sultanate of Oman
| | - Karina Romero
- Laboratorio de Genómica y Biodiversidad, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bio-Bío, Chillán, Chile
| | - Trinidad Zegers
- Private Consultant on Wildlife Management and Tourism, Santiago, Chile
| | - Valeria Varas
- Laboratorio de Genómica y Biodiversidad, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bio-Bío, Chillán, Chile
- Programa de Doctorado en Ciencias mención Ecología y Evolución, Escuela de Graduados, Facultad de Ciencias, Universidad Austral de Chile, Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Benito A. González
- Laboratorio de Ecología de Vida Silvestre, Facultad de Ciencias Forestales, Universidad de Chile, Santiago, Chile
- South American Camelid Specialist Group, International Union for Conservation of Nature, Gland, Switzerland
| | - Warren E. Johnson
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA, USA
- The Walter Reed Biosystematics Unit, Museum Support Center MRC-534, Smithsonian Institution, Suitland, MD, USA
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Juan C. Marín
- Laboratorio de Genómica y Biodiversidad, Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad del Bio-Bío, Chillán, Chile
| |
Collapse
|
6
|
Mesas A, Baldi R, González BA, Burgi V, Chávez A, Johnson WE, Marín JC. Past and Recent Effects of Livestock Activity on the Genetic Diversity and Population Structure of Native Guanaco Populations of Arid Patagonia. Animals (Basel) 2021; 11:ani11051218. [PMID: 33922526 PMCID: PMC8146674 DOI: 10.3390/ani11051218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 11/25/2022] Open
Abstract
Simple Summary Determining the impacts of human activities on natural populations is important for biodiversity conservation. In this paper, we study the past and more recent effects of urbanization and livestock activity on the genetic diversity and population structure of endemic guanaco populations of the arid Monte and Patagonian Steppe of central Argentina. Our results reveal that urbanization, the installation of fences, and the competition from sheep grazing coincided with the isolation of several guanaco populations, especially in areas with the highest intensity of livestock activity. However, our genetic analyses suggest that a more recent increase in connectivity among groups is occurring. Our results highlight the importance of implementing conservation management plans for natural populations in arid and human-intervened environments. Abstract Extensive livestock production and urbanization entail modifications of natural landscapes, including installation of fences, development of agriculture, urbanization of natural areas, and construction of roads and infrastructure that, together, impact native fauna. Here, we evaluate the diversity and genetic structure of endemic guanacos (Lama guanicoe) of the Monte and Patagonian Steppe of central Argentina, which have been reduced and displaced by sheep ranching and other impacts of human activities. Analyses of genetic variation of microsatellite loci and d-loop revealed high levels of genetic variation and latitudinal segregation of mitochondrial haplotypes. There were indications of at least two historical populations in the Monte and the Patagonian Steppe based on shared haplotypes and shared demographic history among localities. Currently, guanacos are structured into three groups that were probably reconnected relatively recently, possibly facilitated by a reduction of sheep and livestock in recent decades and a recovery of the guanaco populations. These results provide evidence of the genetic effects of livestock activity and urbanization on wild herbivore populations, which were possibly exacerbated by an arid environment with limited productive areas. The results highlight the importance of enacting conservation management plans to ensure the persistence of ancestral and ecologically functional populations of guanacos.
Collapse
Affiliation(s)
- Andrés Mesas
- Laboratorio de Genómica y Biodiversidad, Departamento de Ciencias Básicas, Universidad del Bio-Bío, Chillán 3780000, Chile; (A.M.); (A.C.)
| | - Ricardo Baldi
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Centro Nacional Patagónico, CONICET, Puerto Madryn U9120 ACD, Argentina; (R.B.); (V.B.)
- Wildlife Conservation Society, Buenos Aires C1426 AKC, Argentina
- South American Camelids Specialist Group, SSC, IUCN, Santiago 8330015, Chile;
| | - Benito A. González
- South American Camelids Specialist Group, SSC, IUCN, Santiago 8330015, Chile;
- Laboratorio de Ecología de Vida Silvestre, Facultad de Ciencias Forestales y de la Conservación de la Naturaleza, Universidad de Chile, Santiago 8330015, Chile
| | - Virginia Burgi
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales, Centro Nacional Patagónico, CONICET, Puerto Madryn U9120 ACD, Argentina; (R.B.); (V.B.)
- Wildlife Conservation Society, Buenos Aires C1426 AKC, Argentina
- South American Camelids Specialist Group, SSC, IUCN, Santiago 8330015, Chile;
| | - Alexandra Chávez
- Laboratorio de Genómica y Biodiversidad, Departamento de Ciencias Básicas, Universidad del Bio-Bío, Chillán 3780000, Chile; (A.M.); (A.C.)
| | - Warren E. Johnson
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, 1500 Remount Road, Front Royal, VA 22630, USA;
| | - Juan C. Marín
- Laboratorio de Genómica y Biodiversidad, Departamento de Ciencias Básicas, Universidad del Bio-Bío, Chillán 3780000, Chile; (A.M.); (A.C.)
- Correspondence:
| |
Collapse
|
7
|
Reiner G, Klein C, Lang M, Willems H. Human-driven genetic differentiation in a managed red deer population. EUR J WILDLIFE RES 2021. [DOI: 10.1007/s10344-021-01472-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractNineteen red deer areas in a densely populated region with a huge network of fenced motorways and the division into administrative management units (AMUs) with restricted ecological connectivity were investigated. In the season 2018/2019, a total of 1291 red deer samples (on average 68 per area) were collected and genotyped using 16 microsatellite markers. The results show a clear genetic differentiation between most of the AMUs. Fourteen AMUs may be combined into four regions with a considerable internal genetic exchange. Five areas were largely isolated or showed only a limited gene flow with neighbouring areas. Ten of the 19 AMUs had an effective population size below 100. Effective population sizes greater than 500–1000, required to maintain the evolutionary potential and a long-term adaptation potential, were not achieved by any of the studied AMUs, even when AMUs with an appreciable genetic exchange were aggregated. Substantial genetic differentiation between areas can be associated with the presence of landscape barriers hindering gene flow, but also with the maintenance of ‘red deer–free’ areas. Efforts to sustainably preserve the genetic diversity of the entire region should therefore focus on measures ensuring genetic connectivity. Opportunities for this goal arise from the establishment of game bridges over motorways and from the protection of young male stags migrating through the statutory ‘red deer–free’ areas.
Collapse
|
8
|
Schell CJ, Stanton LA, Young JK, Angeloni LM, Lambert JE, Breck SW, Murray MH. The evolutionary consequences of human-wildlife conflict in cities. Evol Appl 2021; 14:178-197. [PMID: 33519964 PMCID: PMC7819564 DOI: 10.1111/eva.13131] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 07/03/2020] [Accepted: 08/13/2020] [Indexed: 12/25/2022] Open
Abstract
Human-wildlife interactions, including human-wildlife conflict, are increasingly common as expanding urbanization worldwide creates more opportunities for people to encounter wildlife. Wildlife-vehicle collisions, zoonotic disease transmission, property damage, and physical attacks to people or their pets have negative consequences for both people and wildlife, underscoring the need for comprehensive strategies that mitigate and prevent conflict altogether. Management techniques often aim to deter, relocate, or remove individual organisms, all of which may present a significant selective force in both urban and nonurban systems. Management-induced selection may significantly affect the adaptive or nonadaptive evolutionary processes of urban populations, yet few studies explicate the links among conflict, wildlife management, and urban evolution. Moreover, the intensity of conflict management can vary considerably by taxon, public perception, policy, religious and cultural beliefs, and geographic region, which underscores the complexity of developing flexible tools to reduce conflict. Here, we present a cross-disciplinary perspective that integrates human-wildlife conflict, wildlife management, and urban evolution to address how social-ecological processes drive wildlife adaptation in cities. We emphasize that variance in implemented management actions shapes the strength and rate of phenotypic and evolutionary change. We also consider how specific management strategies either promote genetic or plastic changes, and how leveraging those biological inferences could help optimize management actions while minimizing conflict. Investigating human-wildlife conflict as an evolutionary phenomenon may provide insights into how conflict arises and how management plays a critical role in shaping urban wildlife phenotypes.
Collapse
Affiliation(s)
- Christopher J. Schell
- School of Interdisciplinary Arts and SciencesUniversity of Washington TacomaTacomaWAUSA
| | - Lauren A. Stanton
- Department of Zoology and PhysiologyUniversity of WyomingLaramieWYUSA
- Program in EcologyUniversity of WyomingLaramieWYUSA
| | - Julie K. Young
- USDA‐WS‐National Wildlife Research Center‐Predator Research FacilityMillvilleUTUSA
| | | | - Joanna E. Lambert
- Program in Environmental Studies and Department of Ecology and Evolutionary BiologyUniversity of Colorado‐BoulderBoulderCOUSA
| | - Stewart W. Breck
- USDA‐WS‐National Wildlife Research CenterFort CollinsCOUSA
- Department of Fish, Wildlife, and Conservation BiologyFort CollinsCOUSA
| | - Maureen H. Murray
- Urban Wildlife Institute and Davee Center for Epidemiology and EndocrinologyChicagoILUSA
| |
Collapse
|