1
|
Rucins M, Smits R, Sipola A, Vigante B, Domracheva I, Turovska B, Muhamadejev R, Pajuste K, Plotniece M, Sobolev A, Duburs G, Plotniece A. Pleiotropic Properties of Amphiphilic Dihydropyridines, Dihydropyridones, and Aminovinylcarbonyl Compounds. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:8413713. [PMID: 33488932 PMCID: PMC7790557 DOI: 10.1155/2020/8413713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/09/2020] [Accepted: 11/10/2020] [Indexed: 11/18/2022]
Abstract
Three groups of synthetic lipids are chosen for studies: (1) 1,4-dihydropyridines (1,4-DHPs) containing two cationic moieties and their analogues; (2) 3,4-dihydro-2(1H)-pyridones containing a cationic moiety; and (3) acyclic, open-chain analogues, i.e., 2-amino-3-alkoxycarbonylalkylammonium derivatives. 1,4-DHPs possessing dodecyl alkyl chains in the ester groups in positions 3 and 5 and cationic nitrogen-containing groups in positions 2 and 6 have high cytotoxicity in cancer cells HT-1080 (human lung fibrosarcoma) and MH-22A (mouse hepatoma), but low cytotoxicity in the noncancerous NIH3T3 cells (mouse embryonic fibroblast). On the contrary, similar compounds having short (methyl, ethyl, or propoxyethyl) chains in the ester groups in positions 3 and 5 lack cytotoxicity in the cancer cells HT-1080 and MH-22A even at high doses. Inclusion of fluorine atoms in the alkyl chains in positions 3 and 5 of the DHP cycle decreases the cytotoxicity of the mentioned compounds. Structurally related dihydropyridones with a polar head group are substantially more toxic to normal and cancerous cells than the DHP analogues. Open-chain analogues of DHP lipids comprise the same conjugated aminovinylcarbonyl moiety and possess anticancer activity, but they also have high basal cytotoxicity. Electrochemical oxidation data demonstrate that oxidation potentials of selected compounds are in the range of 1.6-1.7 V for cationic 1,4-DHP, 2.0-2.4 V for cationic 3,4-dihydropyridones, and 1.2-1.5 V for 2-amino-3-alkoxycarbonylalkylammonium derivatives. Furthermore, the tested cationic 1,4-DHP amphiphiles possess antiradical activity. Molecular topological polar surface area values for the tested compounds were defined in accordance with the main fragments of compound structures. The determined logP values were highest for dodecyl ester groups in positions 3 and 5 of the 1,4-DHP and lowest for short alkyl chain-containing amphiphiles.
Collapse
Affiliation(s)
- Martins Rucins
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia
| | - Rufus Smits
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia
| | - Anda Sipola
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia
| | - Brigita Vigante
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia
| | - Ilona Domracheva
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia
| | - Baiba Turovska
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia
| | - Ruslan Muhamadejev
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia
| | - Karlis Pajuste
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia
| | - Mara Plotniece
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Riga Stradiņš University, Dzirciema 16, Riga LV-1007, Latvia
| | - Arkadij Sobolev
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia
| | - Gunars Duburs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia
| | - Aiva Plotniece
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV-1006, Latvia
| |
Collapse
|
2
|
Synthesis of 5-carboxy-6-methyl-3,4-dihydro-2(1H)-pyridone derivatives and their electrochemical oxidation to 2-pyridones. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.02.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
3
|
Nakaike Y, Nishiwaki N, Ariga M, Tobe Y. Synthesis of 4-Substituted 3,5-Dinitro-1,4-dihydropyridines by the Self-Condensation of β-Formyl-β-nitroenamine. J Org Chem 2014; 79:2163-9. [DOI: 10.1021/jo5000187] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yumi Nakaike
- Division
of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Nagatoshi Nishiwaki
- School
of Environmental Science and Engineering, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan
| | - Masahiro Ariga
- Department
of Chemistry, Osaka Kyoiku University, 4-698-1 Asahigaoka, Kashiwara, Osaka, 582-8582, Japan
| | - Yoshito Tobe
- Division
of Frontier Materials Science, Graduate School of Engineering Science, Osaka University, Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| |
Collapse
|
4
|
Baumane L, Krauze A, Krasnova L, Belyakov S, Duburs G, Stradiņš J. Role of Steric Factors in Intramolecular H-Bond Formation and Peculiarities of Electrochemical Oxidation of Ethyl 6-Alkylsulfanyl-5-Cyano-2-Methyl-4-Phenyl-1,4-Dihydropyridine-3-Carboxylates. Chem Heterocycl Compd (N Y) 2014. [DOI: 10.1007/s10593-014-1413-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Shchepochkin AV, Chupakhin ON, Charushin VN, Petrosyan VA. Direct nucleophilic functionalization of C(sp2)–H-bonds in arenes and hetarenes by electrochemical methods. RUSSIAN CHEMICAL REVIEWS 2013. [DOI: 10.1070/rc2013v082n08abeh004386] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Salazar R, Navarrete-Encina P, Squella J, Barrientos C, Pardo-Jiménez V, Núñez-Vergara LJ. Study on the oxidation of C4-phenolic-1,4-dihydropyridines and its reactivity towards superoxide radical anion in dimethylsulfoxide. Electrochim Acta 2010. [DOI: 10.1016/j.electacta.2010.09.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Núñez-Vergara LJ, Salazar R, Camargo C, Carbajo J, Conde B, Navarrete-Encina PA, Squella JA. Oxidation of C4-hydroxyphenyl 1,4-dihydropyridines in dimethylsulfoxide and its reactivity towards alkylperoxyl radicals in aqueous medium. Bioorg Med Chem 2007; 15:4318-26. [PMID: 17446078 DOI: 10.1016/j.bmc.2007.03.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 03/12/2007] [Accepted: 03/14/2007] [Indexed: 11/21/2022]
Abstract
This work reports the electrochemical oxidation of three newly synthesized C4-hydroxyphenyl-substituted 1,4-dihydropyridine derivatives in dimethylsulfoxide. The reactivity of the compounds with ABAP-derived alkylperoxyl radicals in aqueous buffer pH 7.4, was also studied. The oxidation mechanism involves the formation of the unstable dihydropyridyl radical, which was confirmed by controlled-potential electrolysis (CPE) and ESR experiments. The final product of the CPE, that is, pyridine derivative, was identified by GC-MS technique for the three derivatives. A direct reactivity of the synthesized compounds toward ABAP-derived alkylperoxyl radicals was found. The pyridine derivative was identified by GC-MS as the final product of the reaction. Results reveal that this type of 1,4-DHPs significantly reacts with the radicals, even compared with commercial 1,4-DHP drugs with a well-known antioxidant ability.
Collapse
Affiliation(s)
- Luis J Núñez-Vergara
- Laboratory of Biolectrochemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago, Chile.
| | | | | | | | | | | | | |
Collapse
|