1
|
Gao Z, Zhou X, Nie B, Lu H, Chen X, Wu J, Wang X, Li L. Synthesis of 3,4-Disubstituted Maleimide Derivatives via Phosphine-Catalyzed Isomerization of α-Succinimide-Substituted Allenoates Cascade γ'-Addition with Aryl Imines. Int J Mol Sci 2024; 25:6916. [PMID: 39000025 PMCID: PMC11241244 DOI: 10.3390/ijms25136916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/21/2024] [Accepted: 06/23/2024] [Indexed: 07/14/2024] Open
Abstract
3,4-disubstituted maleimides find wide applications in various pharmacologically active compounds. This study presents a highly effective approach for synthesizing derivatives of 3,4-disubstituted maleimides through the direct isomerization of α-succinimide-substituted allenoates, followed by a cascade γ'-addition and aryl imines using PR3 as a catalyst. The resulting series of 3,4-disubstituted maleimides exhibited excellent stereoselectivities, achieving yields of up to 86%. To our knowledge, the phosphine-mediated γ'-addition reaction of allenoates is seldom reported.
Collapse
Affiliation(s)
- Zhenzhen Gao
- School of Pharmaceutical Sciences, State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, Liaocheng University, Liaocheng 252059, China
| | - Xiaoming Zhou
- School of Pharmaceutical Sciences, State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, Liaocheng University, Liaocheng 252059, China
| | - Baoshen Nie
- School of Pharmaceutical Sciences, State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, Liaocheng University, Liaocheng 252059, China
| | - Hanchong Lu
- School of Pharmaceutical Sciences, State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, Liaocheng University, Liaocheng 252059, China
| | - Xiaotong Chen
- School of Pharmaceutical Sciences, State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, Liaocheng University, Liaocheng 252059, China
| | - Jiahui Wu
- School of Pharmaceutical Sciences, State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, Liaocheng University, Liaocheng 252059, China
| | - Xuekun Wang
- School of Pharmaceutical Sciences, State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, Liaocheng University, Liaocheng 252059, China
| | - Lei Li
- School of Pharmaceutical Sciences, State Key Laboratory for Macromolecule Drugs and Large-Scale Manufacturing, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
2
|
Shankar B, Singh T, Kumar B, Arora A, Kumar S, Singh BK. Solvent-free synthesis and in-silico molecular docking study of ( E)-3-(β- C-glycosylmethylidene)- N-aryl/alkyl succinimides. Org Biomol Chem 2023; 21:9398-9409. [PMID: 37982163 DOI: 10.1039/d3ob01252b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
Globally, human papillomavirus (HPV) infection is the leading cause of mortality associated with cervical cancer, oral cancer (oropharyngeal), and head and neck squamous cell carcinoma (HNSCC). It is essential to explore anti-cancer drugs against life-threatening HPV infections. Aiming to search for potentially better anticancer agents, a small library of β-C-glycosylated methylidene succinimides have been synthesized under bulk and mechanical grinding conditions using the Wittig olefination reaction. Thus, the reaction of different 2,3,4,6-tetra-O-benzyl-C-glycosyl aldehydes with N-aryl/alkyl maleimides in the presence of PPh3 at 25 °C under bulk and mechanical grinding conditions results in the formation of stereochemically defined (E)-3-(2,3,4,6-tetra-O-benzyl-C-glycosylmethylidene)-N-alkyl/phenyl succinimides, which upon debenzylation with 1 M BCl3 in DCM at -78 °C lead to the synthesis of (E)-3-(C-glycosylmethylidene)-N-alkyl/phenyl succinimides in good to excellent yields. The developed methodology is efficient and environmentally benign because there is no use of organic solvents, and the products are obtained in a stereochemically defined form and in high yields. The aqueous solubility of all synthesized β-C-glycosylated methylidene succinimides makes them potential candidates for the evaluation of their different biological activities. In the present work, the synthesized glycosylated alkylidine succinimides were subjected to an in-silico molecular docking study against the E6 oncoprotein of high-risk type HPV16, which is responsible for the inactivation of the tumor suppressor p53 protein. Analysis of the molecular docking data revealed that the synthesized compounds are effective inhibitors of HPV infection, which is the cause of oral, head and neck, and cervical cancer. In comparison with the positive control 5-FU, an anti-cancer drug used in chemotherapy, more than fifteen compounds were found to be better E6 protein inhibitors.
Collapse
Affiliation(s)
- Bhawani Shankar
- Department of Chemistry, Deshbandhu College, University of Delhi, Delhi-110019, India.
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Tejveer Singh
- Department of Zoology, Hansraj College, University of Delhi, Delhi-110007, India
| | - Banty Kumar
- Department of Chemistry, Rajdhani College, University of Delhi, Delhi-110015, India
| | - Aditi Arora
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Sumit Kumar
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Brajendra K Singh
- Bioorganic Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| |
Collapse
|
3
|
Cooney LN, O’Shea KD, Winfield HJ, Cahill MM, Pierce LT, McCarthy FO. Bisindolyl Maleimides and Indolylmaleimide Derivatives-A Review of Their Synthesis and Bioactivity. Pharmaceuticals (Basel) 2023; 16:1191. [PMID: 37764999 PMCID: PMC10534823 DOI: 10.3390/ph16091191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 09/29/2023] Open
Abstract
The evolution of bisindolyl maleimides and indolyl maleimide derivatives and their unique biological activities have stimulated great interest in medicinal chemistry programs. Bisindolylmaleimide (BIM)-type compounds arise from natural sources such as arcyriarubin and are biosynthetically related to indolocarbazoles. BIMs are commonly the immediate synthetic precursors of indolocarbazoles, lacking a central bond between the two aromatic units and making them more flexible and drug-like. Synthetic endeavours within this class of compounds are broad and have led to the development of both remarkably potent and selective protein kinase inhibitors. Clinical BIM examples include ruboxistaurin and enzastaurin, which are highly active inhibitors of protein kinase C-β. While BIMs are widely recognised as protein kinase inhibitors, other modes of activity have been reported, including the inhibition of calcium signalling and antimicrobial activity. Critically, structural differences can be used to exploit new bioactivity and therefore it is imperative to discover new chemical entities to address new targets. BIMs can be highly functionalised or chemically manipulated, which provides the opportunity to generate new derivatives with unique biological profiles. This review will collate new synthetic approaches to BIM-type compounds and their associated bioactivities with a focus on clinical applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Florence O. McCarthy
- School of Chemistry and ABCRF, University College Cork, Western Road, T12K8AF Cork, Ireland; (L.N.C.); (K.D.O.); (H.J.W.); (M.M.C.); (L.T.P.)
| |
Collapse
|
4
|
Aksenov NA, Aksenov DA, Ganusenko DD, Kurenkov IA, Leontiev AV, Aksenov AV. Synthesis of 2-carboxyaniline-substituted maleimides from 2'-nitrochalcones. Org Biomol Chem 2023; 21:3156-3166. [PMID: 36945887 DOI: 10.1039/d3ob00197k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
A practical, one-pot approach to 3-anilino-4-(het)arylmaleimides by simple heating of aqueous DMSO solution of 2'-nitrochalcones with potassium cyanide in the presence of formic acid has been developed. This new reaction provides effective access to a variety of β-substituted α-aminomaleimides which have recently become a subject of growing interest as small, easily modified and environmentally responsive fluorescent probes.
Collapse
Affiliation(s)
- Nicolai A Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russian Federation.
| | - Dmitrii A Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russian Federation.
| | - Daniil D Ganusenko
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russian Federation.
| | - Igor A Kurenkov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russian Federation.
| | - Alexander V Leontiev
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russian Federation.
| | - Alexander V Aksenov
- Department of Chemistry, North Caucasus Federal University, 1a Pushkin St., Stavropol 355009, Russian Federation.
| |
Collapse
|
5
|
Xue L, Yu D, Sun J, Guan L, Xie C, Wang L, Jia Y, Tian J, Fan H, Sun H. Rapid GSH detection and versatile peptide/protein labelling to track cell penetration using coumarin-based probes. Analyst 2023; 148:532-538. [PMID: 36349786 DOI: 10.1039/d2an01510b] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Biothiols play essential roles in balancing the redox state and modulating cellular functions. Fluorescent probes for monitoring/labelling biothiols often suffer from slow reaction rates, strong background fluorescence and cytotoxic byproduct release. Thus, developing facile and versatile probes to overcome the challenges is still in high demand. Here, we report four coumarin-maleimides as fast responding and fluorogenic probes to detect GSH or label peptides/proteins. The probes quantitatively and selectively react with GSH via Michael addition within 1-2 min, achieving an 11-196-fold increase in fluorescence quantum yield via blockage of the photoinduced electron transfer (PET) process. Optimized probe 4 is applied for the detection of GSH in vitro (A549 cells) and in vivo (zebrafish embryos). Taking advantage of the fast Michael addition between the maleimide moiety and the sulfhydryl group, we expand the application of our method for fluorescent labelling of peptides/proteins and for tracking their cellular uptake process. The labelling strategy works for both Cys-bearing and Cys-free proteins after the introduction of a sulfhydryl group using Traut's reagent. Fluorescence assay reveals that the TAT-peptide can efficiently enter cells, but H3 protein, part of nucleosomes, prefers to bind on the cell membrane by electrostatic interactions, shedding light on the cellular uptake activity of nucleosomes and affording a potential membrane staining strategy. Overall, our study illustrates the broad potential of coumarin-maleimide based dual-functional probes for GSH detection and versatile protein labelling in biochemical research.
Collapse
Affiliation(s)
- Li Xue
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China. .,School of Pharmacy, Jinzhou Medical University, Jinzhou, Liaoning 121001, P. R. China
| | - Dehao Yu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Jing Sun
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Liangyu Guan
- BayRay Innovation Center, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518132, P. R. China
| | - Chengzhi Xie
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Luo Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Yuanyuan Jia
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Junyu Tian
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Heli Fan
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| | - Huabing Sun
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Medical University; Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, P. R. China.
| |
Collapse
|
6
|
Sarkar P, Saha P, Ghosh P, Mukhopadhyay C. Metal-free, I 2-promoted direct synthesis of 2-cyano-substituted maleimides via a unique 3,3-dicyano-2-arylacrylic acid intermediate. Org Biomol Chem 2023; 21:789-796. [PMID: 36594563 DOI: 10.1039/d2ob01725c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A robust, I2-mediated cyclization reaction was developed for the synthesis of 2-cyano-substituted maleimides from arylethylidene malononitriles and amines via unique a 3,3-dicyano-2-arylacrylic acid intermediate. The reaction duration was short and devoid of an expensive transition-metal catalyst, ligands or toxic carbon monoxide. We executed an I2/DMSO-mediated desirable oxidation of the C(sp3)-H bond of the carbonyl precursor followed by the formation of a 3,3-dicyano-2-arylacrylic acid intermediate. Use of readily available starting materials under mild and operationally simple reaction conditions are the major advantages of this strategy.
Collapse
Affiliation(s)
- Prabhat Sarkar
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India.
| | - Pinaki Saha
- Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata-700103, India
| | - Prasanta Ghosh
- Department of Chemistry, R. K. Mission Residential College, Narendrapur, Kolkata-700103, India
| | - Chhanda Mukhopadhyay
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata-700009, India.
| |
Collapse
|
7
|
Vandyshev DY, Shikhaliev KS. Recyclization of Maleimides by Binucleophiles as a General Approach for Building Hydrogenated Heterocyclic Systems. Molecules 2022; 27:5268. [PMID: 36014507 PMCID: PMC9416709 DOI: 10.3390/molecules27165268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
The building of heterocyclic systems containing hydrogenated fragments is an important step towards the creation of biologically-active compounds with a wide spectrum of pharmacological activity. Among the numerous methods for creating such systems, a special place is occupied by processes using N-substituted maleimides as the initial substrate. This molecule easily reacts in Diels-Alder/retro-Diels-Alder reactions, Michael additions with various nucleophiles, and co-polymerization processes, as have been described in numerous detailed reviews. However, information on the use of maleimides in cascade heterocyclization reactions is currently limited. This study is devoted to a review and analysis of existing literature data on the processes of recyclization of N-substituted maleimides with various C,N-/N,N-/S,N-di- and polynucleophilic agents, such as amidines, guanidines, diamines, aliphatic ketazines, aminouracils, amino- and mercaptoazoles, aminothiourea, and thiocarbomoyl pyrazolines, among others. The significant structural diversity of the recyclization products described in this study illustrates the powerful potential of maleimides as a building block in the organic synthesis of biologically-active compounds with hydrogenated heterocyclic fragments.
Collapse
Affiliation(s)
- Dmitriy Yu. Vandyshev
- Department of Organic Chemistry, Faculty of Chemistry, Voronezh State University, Universitetskaya Sq. 1, 394018 Voronezh, Russia
| | - Khidmet S. Shikhaliev
- Department of Organic Chemistry, Faculty of Chemistry, Voronezh State University, Universitetskaya Sq. 1, 394018 Voronezh, Russia
- TekhnoKhim, 50 Let Sovetskoi Vlasti Str. 8, 394050 Voronezh, Russia
| |
Collapse
|
8
|
Kumar S, Reddy Sannapureddi RK, Todankar CS, Ramanathan R, Biswas A, Sathyamoorthy B, Pradeepkumar PI. Bisindolylmaleimide Ligands Stabilize c-MYC G-Quadruplex DNA Structure and Downregulate Gene Expression. Biochemistry 2022; 61:1064-1076. [PMID: 35584037 DOI: 10.1021/acs.biochem.2c00116] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
G-Quadruplex (G4) structures play a pivotal role in diverse biological functions, including essential processes, such as telomere maintenance and gene regulation. G4 structures formed in functional regions of genomes are actively pursued toward therapeutics and are targeted by small-molecule ligands that alter their structure and/or stability. Herein, we report the synthesis of bisindolylmaleimide-based (BIM) ligands, which preferentially stabilize parallel G4 structures of c-MYC and c-KIT oncogenes over the telomeric h-RAS1 G4 and duplex DNAs. The preferential stabilization of parallel G4s with BIM ligands is further validated by the DNA polymerase stop assay, where stop products were only observed for templates containing the c-MYC G4 sequence. Nuclear magnetic resonance (NMR) titration studies indicate that the lead ligand BIM-Pr1 forms a 2:1 complex with c-MYC G4 DNA with a KD of 38 ± 5 μM. The BIM ligand stacks at the 5' and 3' quartets, with molecular modeling and dynamics studies supporting the proposed binding mode. The ligand is cytotoxic to HeLa cells and downregulates c-MYC gene expression. Collectively, the results present bisindolylmaleimide scaffolds as novel and powerful G4 targeting agents.
Collapse
Affiliation(s)
- Satendra Kumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | - Chaitra S Todankar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - R Ramanathan
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Annyesha Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Bharathwaj Sathyamoorthy
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal 462066, India
| | - P I Pradeepkumar
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
9
|
Kostin RK, Marshavin AS. Pyrazoles, isoxazoles, and 1,2,3-triazoles as analogs of the natural cytostatic combretastatin A-4: efficient routes of synthesis, tubulin inhibition, and cytotoxicity. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-021-03025-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Podshibyakin VА, Shepelenko ЕN, Yu. Karlutova O, Kuzmina LG, Dubonosov AD, Bren VA, Minkin VI. An efficient approach to diarylethene-amino acid photochromic fluorescent hybrids. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Thakur R, Jaiswal Y, Kumar A. Primary amides: Sustainable weakly coordinating groups in transition metal-catalyzed C–H bond functionalization reactions. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
12
|
Dhumad AM, Jassem AM, Alharis RA, Almashal FA. Design, cytotoxic effects on breast cancer cell line (MDA-MB 231), and molecular docking of some maleimide-benzenesulfonamide derivatives. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100055] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
13
|
Simonov AY, Panov AA, Trenin AS, Korolev AM, Lavrenov SN. Optimization of the Synthesis of New Antibacterial Compounds with Tris(1-Alkylindol-3-YL)Methylium Fragments. Pharm Chem J 2021. [DOI: 10.1007/s11094-021-02352-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Chambers GE, Sayan AE, Brown RCD. The synthesis of biologically active indolocarbazole natural products. Nat Prod Rep 2021; 38:1794-1820. [PMID: 33666619 DOI: 10.1039/d0np00096e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Covering: up to 2020The indolocarbazoles, in particular indolo[2,3-a]pyrrolo[3,4-c]carbazole derivatives, are an important class of natural products that exhibit a wide range of biological activities. There has been a plethora of synthetic approaches to this family of natural products, leading to advances in chemical methodology, as well as affording access to molecular scaffolds central to protein kinase drug discovery programmes. In this review, we compile and summarise the synthetic approaches to the indolo[2,3-a]pyrrolo[3,4-c]carbazole derivatives, spanning the period from their isolation in 1980 up to 2020. The selected natural products include indolocarbazoles not functionalised at indolic nitrogen, pyranosylated indolocarbazoles, furanosylated indolocarbazoles and disaccharideindolocarbazoles.
Collapse
Affiliation(s)
- George E Chambers
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| | - A Emre Sayan
- University of Southampton Cancer Sciences Division, University of Southampton, Southampton SO17 1BJ, UK
| | - Richard C D Brown
- School of Chemistry, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
15
|
Gutiérrez-Hernández A, Richaud A, Chacón-García L, Cortés-García CJ, Méndez F, Contreras-Celedón CA. Deep Eutectic Solvent Choline Chloride/ p-toluenesulfonic Acid and Water Favor the Enthalpy-Driven Binding of Arylamines to Maleimide in Aza-Michael Addition. J Org Chem 2021; 86:223-234. [PMID: 33232142 DOI: 10.1021/acs.joc.0c02039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Deep eutectic solvents (DESs) have been considered "the organic reaction medium of the century" because they can be used as solvents and active catalysts in chemical reactions. However, experimental and theoretical studies are still needed to provide information on the structures of DESs, the kinetics and thermodynamics properties, the interactions between the DESs and the substrates, the effect of water on the DES supramolecular network and its physicochemical properties, and so forth. This information is very useful to understand the essence of the processes that take place in the catalysis of chemical reactions and, therefore, to help in the design of a DES for a specific reaction and sample. This article shows a systematic study of the impact of DES choline chloride/p-toluenesulfonic acid and DES choline chloride/p-toluenesulfonic acid-water in the aza-Michael addition of arylamines to maleimide to obtain aminopyrrolidine-2,5-dione derivatives. The derivatives are obtained under very mild reaction conditions with good yield. The global reaction is exothermic, spontaneous, permitted by enthalpy, and prohibited for entropy. The calculated potential energy surface shows a reaction mechanism of six steps controlled by enthalpy (except the last step that is controlled by entropy). The water incorporated in the supramolecular DES complex stabilizes the transition states and favors the enthalpy-driven binding. A set of H/D exchange NMR experiments validates the transition state existing in the fourth stage of the mechanism.
Collapse
Affiliation(s)
- Abelardo Gutiérrez-Hernández
- Departamento de Síntesis Orgánica, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edif. B-1, Ciudad Universitaria, Francisco J. Mújica, s/n, Morelia 58030, Michoacán, Mexico
| | - Arlette Richaud
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-534, México D. F. 09340, Mexico.,Loire Valley Institute for Advanced Studies, Orléans & Tours, France CEMHTI, 1 Avenue de la Recherche Scientifique, Orléans 45000, France
| | - Luis Chacón-García
- Departamento de Síntesis Orgánica, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edif. B-1, Ciudad Universitaria, Francisco J. Mújica, s/n, Morelia 58030, Michoacán, Mexico
| | - Carlos J Cortés-García
- Departamento de Síntesis Orgánica, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edif. B-1, Ciudad Universitaria, Francisco J. Mújica, s/n, Morelia 58030, Michoacán, Mexico
| | - Francisco Méndez
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, A.P. 55-534, México D. F. 09340, Mexico.,Loire Valley Institute for Advanced Studies, Orléans & Tours, France CEMHTI, 1 Avenue de la Recherche Scientifique, Orléans 45000, France
| | - Claudia Araceli Contreras-Celedón
- Departamento de Síntesis Orgánica, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edif. B-1, Ciudad Universitaria, Francisco J. Mújica, s/n, Morelia 58030, Michoacán, Mexico
| |
Collapse
|
16
|
N-(Hydroxyalkyl) Derivatives of tris(1 H-indol-3-yl)methylium Salts as Promising Antibacterial Agents: Synthesis and Biological Evaluation. Pharmaceuticals (Basel) 2020; 13:ph13120469. [PMID: 33339219 PMCID: PMC7765952 DOI: 10.3390/ph13120469] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/11/2020] [Accepted: 12/15/2020] [Indexed: 01/25/2023] Open
Abstract
The wide spread of pathogens resistance requires the development of new antimicrobial agents capable of overcoming drug resistance. The main objective of the study is to elucidate the effect of substitutions in tris(1H-indol-3-yl)methylium derivatives on their antibacterial activity and toxicity to human cells. A series of new compounds were synthesized and tested. Their antibacterial activity in vitro was performed on 12 bacterial strains, including drug resistant strains, that were clinical isolates or collection strains. The cytotoxic effect of the compounds was determined using an test with HPF-hTERT (human postnatal fibroblasts, immortalized with hTERT) cells. The activity of the obtained compounds depended on the carbon chain length. Derivatives with C5–C6 chains were more active. The minimum inhibitory concentration (MIC) of the most active compound on Gram-positive bacteria, including MRSA, was 0.5 μg/mL. Compounds with C5–C6 chains also revealed high activity against Staphylococcus epidermidis (1.0 and 0.5 μg/mL, respectively) and moderate activity against Gram-negative bacteria Escherichia coli (8 μg/mL) and Klebsiella pneumonia (2 and 8 μg/mL, respectively). However, they have no activity against Salmonella cholerasuis and Pseudomonas aeruginosa. The most active compounds revealed higher antibacterial activity on MRSA than the reference drug levofloxacin, and their ratio between antibacterial and cytotoxic activity exceeded 10 times. The data obtained provide a basis for further study of this promising group of substances.
Collapse
|
17
|
New maleimide 1,2,3-triazole hybrids: design, synthesis, anticancer, and antimicrobial activities. MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02685-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
18
|
Zenkov RG, Ektova LV, Vlasova OА, Belitskiy GА, Yakubovskaya MG, Kirsanov KI. Indolo[2,3-a]carbazoles: diversity, biological properties, application in antitumor therapy. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02714-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Synthesis of Pharmacologically Relevant New Derivatives of Maleimides via Ligand-Free Pd-Catalyzed Suzuki–Miyaura Cross-Coupling Reactions. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04450-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Baghel AS, Jaiswal Y, Kumar A. Pd(II)-Catalyzed One-Pot Multiple C-C Bond Formation: En Route Synthesis of Succinimide-Fused Unsymmetrical 9,10-Dihydrophenanthrenes from Aryl Iodides and Maleimides. Org Lett 2020; 22:1908-1913. [PMID: 32065754 DOI: 10.1021/acs.orglett.0c00255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An expeditious approach has been developed for the synthesis of succinimide-fused unsymmetrical 9,10-dihydrophenanthrenes from simple aryl iodides and maleimides. The developed transformation, overall proceeding with high regioselectivity via a cascade approach through palladium(II)-catalyzed Micheal-type addition/C-H activation/intramolecular cross-dehydrogenative coupling (ICDC)/C-H activation, allows formation of four fundamental carbon-carbon bonds in one-pot fashion. The reactions tolerate broad functional groups and satisfy the parameters of atom and step economy. Detailed mechanistic studies were carried out to support the proposed synthetic pathway.
Collapse
Affiliation(s)
- Akanksha Singh Baghel
- Department of Chemistry, Indian Institute of Technology Patna, Bihta 801106, Bihar, India
| | - Yogesh Jaiswal
- Department of Chemistry, Indian Institute of Technology Patna, Bihta 801106, Bihar, India
| | - Amit Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Bihta 801106, Bihar, India
| |
Collapse
|
21
|
Jaiswal Y, Mandal S, Das P, Kumar A. One-Pot Synthesis of Orange-Red Fluorescent Dimeric 2H-Pyrrolo[2,3-c]isoquinoline-2,5(3H)-diones from Benzamides and Maleimides via Ru(II)-Catalyzed Sequential C–C/C–N/C–C Bond Formation. Org Lett 2020; 22:1605-1610. [DOI: 10.1021/acs.orglett.0c00194] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yogesh Jaiswal
- Department of Chemistry, Indian Institute of Technology Patna, Bihta 801106, Bihar, India
| | - Saptarshi Mandal
- Department of Chemistry, Indian Institute of Technology Patna, Bihta 801106, Bihar, India
| | - Prolay Das
- Department of Chemistry, Indian Institute of Technology Patna, Bihta 801106, Bihar, India
| | - Amit Kumar
- Department of Chemistry, Indian Institute of Technology Patna, Bihta 801106, Bihar, India
| |
Collapse
|
22
|
Panov AA, Lavrenov SN, Simonov AY, Mirchink EP, Isakova EB, Trenin AS. Synthesis and antimicrobial activity of 3,4-bis(arylthio)maleimides. J Antibiot (Tokyo) 2018; 72:122-124. [PMID: 30482908 DOI: 10.1038/s41429-018-0122-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/10/2018] [Accepted: 10/28/2018] [Indexed: 01/20/2023]
Abstract
A series of 3,4-bis(arylthio)maleimides were synthesized and their antimicrobial activity was evaluated against Gram-positive and Gram-negative bacteria, including multidrug resistant (MDR) strains and some fungi. Most compounds turned out to be highly active, activity being dependent on substituents on phenyl rings.
Collapse
Affiliation(s)
- Alexey A Panov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, Russia, 119021.
| | - Sergey N Lavrenov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, Russia, 119021
| | - Alexander Y Simonov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, Russia, 119021
| | - Elena P Mirchink
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, Russia, 119021
| | - Elena B Isakova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, Russia, 119021
| | - Alexey S Trenin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, Russia, 119021
| |
Collapse
|
23
|
Xu JX, Wu XF. Palladium-Catalyzed Carbonylative Cyclization of Terminal Alkynes and Anilines to 3-Substituted Maleimides. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800672] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jian-Xing Xu
- Leibniz-Institut für Katalyse an der Universität Rostock e. V.; Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse an der Universität Rostock e. V.; Albert-Einstein-Straße 29a 18059 Rostock Germany
- Department of Chemistry; Zhejiang Sci-Tech University; Xiasha Campus Hangzhou 310018 People's Republic of China
| |
Collapse
|