1
|
Zhu P, Wu Y, Du Z, Li S, Li J, Lu X, Jiang X. Identification of 3-methyl-1-(3-methylpyridin-2-yl)-1H-pyrazol-5-ol as promising neuroprotective agent. Bioorg Med Chem Lett 2024; 114:129983. [PMID: 39395634 DOI: 10.1016/j.bmcl.2024.129983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/19/2024] [Accepted: 10/06/2024] [Indexed: 10/14/2024]
Abstract
Pyrazolol derivatives are gaining significant attention for their diverse pharmacological effects, such as analgesic, anti-inflammatory, antioxidant, and anticancer activities. In this study, 20 pyrazolol derivatives were designed and synthesized to develop an anti-ischemic stroke formulation with free radical scavenging activity. Most of these synthesized compounds demonstrated antioxidant capabilities in DPPH, ABTS radical scavenging, and ORACFL assays. The methyl-substituted compound Y12, in particular, showed exceptional antioxidant capacity. Additionally, these compounds showed excellent neurocytoprotective effects in the SH-SY5Y cell injury model subjected to oxygen-glucose deprivation/reoxygenation (OGD/R). Notably, Y12 exhibited significant metal chelating activity with Cu2+. In vivo studies confirmed that compound Y12 has neuroprotective effects and can significantly reduce the infarct area in a mouse model of focal cerebral ischemia induced by transient middle cerebral artery occlusion (tMCAO).
Collapse
Affiliation(s)
- Peng Zhu
- Department of Medicinal Chemistry, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Yulu Wu
- Department of Medicinal Chemistry, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Zhikang Du
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China
| | - Siyi Li
- Department of Medicinal Chemistry, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jiaming Li
- Department of Medicinal Chemistry, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Xin Lu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou 225009, China
| | - Xueyang Jiang
- Department of Medicinal Chemistry, Anhui University of Chinese Medicine, Hefei 230012, China.
| |
Collapse
|
2
|
Gryaznova TV, Nikanshina EO, Fayzullin RR, Islamov DR, Tarasov MV, Kholin KV, Budnikova YH. EPR-electrochemical monitoring of P–C coupling: Towards one-step electrochemical phosphorylation of acridine. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Trofimov BA, Volkov PA, Telezhkin AA. Electron-Deficient Acetylenes as Three-Modal Adjuvants in S NH Reaction of Pyridinoids with Phosphorus Nucleophiles. Molecules 2021; 26:molecules26226824. [PMID: 34833916 PMCID: PMC8619330 DOI: 10.3390/molecules26226824] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
Publications covering a new easy metal-free functionalization of pyridinoids (pyridines, quinolines, isoquinolines, acridine) under the action of the system of electron-deficient acetylenes (acetylenecarboxylic acid esters, acylacetylenes)/P-nucleophiles (phosphine chalcogenides, H-phosphonates) are reviewed. Special attention is focused on a SNH reaction of the regioselective cross-coupling of pyridines with secondary phosphine chalcogenides triggered by acylacetylenes to give 4-chalcogenophosphorylpyridines. In these processes, acetylenes act as three-modal adjuvants (i) activating the pyridine ring towards P-nucleophiles, (ii) deprotonating the P-H bond and (iii) facilitating the nucleophilic addition of the P-centered anion to a heterocyclic moiety followed by the release of the selectively reduced acetylenes (E-alkenes).
Collapse
|
4
|
Lyapustin DN, Ulomsky EN, Balyakin IA, Shchepochkin AV, Rusinov VL, Chupakhin ON. Oxidative Aromatization of 4,7-Dihydro-6-nitroazolo[1,5-a]pyrimidines: Synthetic Possibilities and Limitations, Mechanism of Destruction, and the Theoretical and Experimental Substantiation. Molecules 2021; 26:4719. [PMID: 34443304 PMCID: PMC8401470 DOI: 10.3390/molecules26164719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/16/2022] Open
Abstract
The reaction tolerance of the multicomponent process between 3-aminoazoles, 1-morpholino-2-nitroalkenes, and aldehydes was studied. The main patterns of this reaction have been established. Conditions for the oxidation of 4,7-dihydro-6-nitroazolo[1,5-a]pyrimidines were selected. Previous claims that the 4,7-dihydro-6-nitroazolo[1,5-a]pyrimidines could not be aromatised have now been refuted. Compounds with an electron-donor substituent at position seven undergo decomposition during oxidation. The phenomenon was explained based on experimental data, electro-chemical experiment, and quantum-chemical calculation. The mechanism of oxidative degradation has been proposed.
Collapse
Affiliation(s)
- Daniil N. Lyapustin
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Mira St. 19, 620002 Ekaterinburg, Russia; (D.N.L.); (E.N.U.); (O.N.C.)
| | - Evgeny N. Ulomsky
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Mira St. 19, 620002 Ekaterinburg, Russia; (D.N.L.); (E.N.U.); (O.N.C.)
- Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskaya Str., 22, 620041 Ekaterinburg, Russia;
| | - Ilya A. Balyakin
- NANOTECH Centre, Ural Federal University, 620002 Ekaterinburg, Russia;
- Institute of Metallurgy, Ural Branch of the Russian Academy of Sciences, 620016 Ekaterinburg, Russia
| | - Alexander V. Shchepochkin
- Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskaya Str., 22, 620041 Ekaterinburg, Russia;
| | - Vladimir L. Rusinov
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Mira St. 19, 620002 Ekaterinburg, Russia; (D.N.L.); (E.N.U.); (O.N.C.)
- Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskaya Str., 22, 620041 Ekaterinburg, Russia;
| | - Oleg N. Chupakhin
- Department of Organic and Biomolecular Chemistry, Ural Federal University, Mira St. 19, 620002 Ekaterinburg, Russia; (D.N.L.); (E.N.U.); (O.N.C.)
- Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, S. Kovalevskaya Str., 22, 620041 Ekaterinburg, Russia;
| |
Collapse
|
5
|
Volkov PA, Telezhkin AA, Khrapova KO, Ivanova NI, Albanov AI, Gusarova NK, Trofimov BA. Metal-free SHN cross-coupling of pyridines with phosphine chalcogenides: polarization/deprotonation/oxidation effects of electron-deficient acetylenes. NEW J CHEM 2021. [DOI: 10.1039/d1nj00245g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Terminal acylacetylenes act as trimodal auxiliaries in SHN cross-coupling of pyridines with phosphine chalcogenides. The reaction proceeds via phosphorylation of the pyridine 2 position followed by 2 → 4-migration of phosphoryl moieties.
Collapse
Affiliation(s)
- Pavel A. Volkov
- A.E. Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Anton A. Telezhkin
- A.E. Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Kseniya O. Khrapova
- A.E. Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Nina I. Ivanova
- A.E. Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Alexander I. Albanov
- A.E. Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Nina K. Gusarova
- A.E. Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| | - Boris A. Trofimov
- A.E. Favorsky Irkutsk Institute of Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 664033 Irkutsk
- Russian Federation
| |
Collapse
|
6
|
Haider K, Haider MR, Neha K, Yar MS. Free radical scavengers: An overview on heterocyclic advances and medicinal prospects. Eur J Med Chem 2020; 204:112607. [PMID: 32721784 DOI: 10.1016/j.ejmech.2020.112607] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/08/2020] [Accepted: 06/19/2020] [Indexed: 12/22/2022]
Abstract
In the present scenario, there has been a lot of consideration toward the field of free radical chemistry. Free radicals responsive oxygen species are produced by different endogenous frameworks, exposure to various physicochemical conditions, radiation, toxins, metabolized drug by-product, and pathological states. On the off chance that free radical overpowers the body's capacity, it generates a condition known as oxidative stress, which can alter physiological conditions of the body and results in several diseases. For appropriate physiological function, it is necessary to have a proper balance between free radicals and antioxidants. Antioxidants chemically inhibit the oxidation process; they are also known as free radical scavengers. For tackling the problem of oxidative stress application of an external source of antioxidant is helpful. A lot of antioxidants of natural, semi-synthetic and synthetic origin are in use, with time search of more effective, nontoxic, safe antioxidant is intensified. The present review, discuss different synthetic derivatives bearing various heterocyclic scaffolds as radical scavengers.
Collapse
Affiliation(s)
- Kashif Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Md Rafi Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Kumari Neha
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - M Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|