Wang L, Zhai L, She W, Wang M, Zhang J, Wang B. Synthetic Strategies Toward Nitrogen-Rich Energetic Compounds Via the Reaction Characteristics of Cyanofurazan/Furoxan.
Front Chem 2022;
10:871684. [PMID:
35372281 PMCID:
PMC8968789 DOI:
10.3389/fchem.2022.871684]
[Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 02/21/2022] [Indexed: 11/19/2022] Open
Abstract
The structural units of amino-/cyano-substituted furazans and furoxans played significant roles in the synthesis of nitrogen-rich energetic compounds. This account focused on the synthetic strategies toward nitrogen-rich energetic compounds through the transformations based on cyanofurazan/furoxan structures, including 3-amino-4-cyanofurazan, 4-amino-3-cyano furoxan, 3,4-dicyanofurazan, and 3,4-dicyanofuroxan. The synthetic strategies toward seven kinds of nitrogen-rich energetic compounds, such as azo (azoxy)-bridged, ether-bridged, methylene-bridged, hybrid furazan/furoxan-tetrazole–based, tandem furoxan–based, hybrid furazan-isofurazan–based, hybrid furoxan-isoxazole–based and fused framework–based energetic compounds were fully reviewed, with the corresponding reaction mechanisms toward the nitrogen-rich aromatic frameworks and examples of using the frameworks to create high energetic substances highlighted and discussed. The energetic properties of typical nitrogen-rich energetic compounds had also been compared and summarized.
Collapse