1
|
Boutoub O, Jadhav S, Zheng X, El Ghadraoui L, Al Babili S, Fernie AR, Figueiredo AC, Miguel MG, Borghi M. Biochemical characterization of Euphorbia resinifera floral cyathia. JOURNAL OF PLANT PHYSIOLOGY 2024; 293:154184. [PMID: 38295538 DOI: 10.1016/j.jplph.2024.154184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/02/2024]
Abstract
Euphorbia resinifera O. Berg is a plant endemic to the Northern and Central regions of Morocco known since the ancient Roman and Greek times for secreting a poisonous latex containing resiniferatoxin. However, E. resinifera pseudo-inflorescences called cyathia are devoid of laticifers and, therefore, do not secrete latex. Instead, they exudate nectar that local honey bees collect and craft into honey. Honey and cyathium water extracts find a broad range of applications in the traditional medicine of Northern Africa as ointments and water decoctions. Moreover, E. resinifera monofloral honey has received the Protected Geographic Indication certification for its outstanding qualities. Given the relevance of E. resinifera cyathia for bee nutrition, honey production, and the health benefit of cyathium-derived products, this study aimed to screen metabolites synthesized and accumulated in its pseudo-inflorescences. Our analyses revealed that E. resinifera cyathia accumulate primary metabolites in considerable abundance, including hexoses, amino acids and vitamins that honey bees may collect from nectar and craft into honey. Cyathia also synthesize volatile organic compounds of the class of benzenoids and terpenes, which are emitted by flowers pollinated by honey bees and bumblebees. Many specialized metabolites, including carotenoids, flavonoids, and polyamines, were also detected, which, while protecting the reproductive organs against abiotic stresses, also confer antioxidant properties to water decoctions. In conclusion, our analyses revealed that E. resinifera cyathia are a great source of antioxidant molecules and a good food source for the local foraging honeybees, revealing the central role of the flowers from this species in mediating interactions with local pollinators and the conferral of medicinal properties to plant extracts.
Collapse
Affiliation(s)
- Oumaima Boutoub
- Department of Biology, Utah State University, Logan, UT, 84321-5305, USA; Faculty of Science and Technology, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal; Laboratory of Functional Ecology and Environment, Faculty of Science and Technology, BP 2202, University Sidi Mohamed Ben Abdallah, Fez, 20000, Morocco
| | - Sagar Jadhav
- Department of Biology, Utah State University, Logan, UT, 84321-5305, USA
| | - Xiongjie Zheng
- The Bioactives Lab, Biological and Environmental Sciences and Engineering Division, King Abdullahuniversity of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Lahsen El Ghadraoui
- Laboratory of Functional Ecology and Environment, Faculty of Science and Technology, BP 2202, University Sidi Mohamed Ben Abdallah, Fez, 20000, Morocco
| | - Salim Al Babili
- The Bioactives Lab, Biological and Environmental Sciences and Engineering Division, King Abdullahuniversity of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Ana Cristina Figueiredo
- Centro de Estudos do Ambiente e do Mar Lisboa (CESAM Ciências), Faculdade de Ciências da Universidade de Lisboa, Biotecnologia Vegetal (BV), DBV, C2, Campo Grande, 1749-016, Lisboa, Portugal
| | - Maria Graça Miguel
- Faculty of Science and Technology, University of Algarve, Campus of Gambelas, 8005-139, Faro, Portugal; Mediterranean Institute for Agriculture, Environment and Development, Campus de Gambelas, University of Algarve, 8005-139, Faro, Portugal
| | - Monica Borghi
- Department of Biology, Utah State University, Logan, UT, 84321-5305, USA.
| |
Collapse
|
2
|
Euphorbia-Derived Natural Products with Potential for Use in Health Maintenance. Biomolecules 2019; 9:biom9080337. [PMID: 31382529 PMCID: PMC6723572 DOI: 10.3390/biom9080337] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 12/18/2022] Open
Abstract
Euphorbia genus (Euphorbiaceae family), which is the third largest genus of angiosperm plants comprising ca. 2000 recognized species, is used all over the world in traditional medicine, especially in the traditional Chinese medicine. Members of this taxa are promptly recognizable by their specialized inflorescences and latex. In this review, an overview of Euphorbia-derived natural products such as essential oils, extracts, and pure compounds, active in a broad range of biological activities, and with potential usages in health maintenance, is described. The chemical composition of essential oils from Euphorbia species revealed the presence of more than 80 phytochemicals, mainly oxygenated sesquiterpenes and sesquiterpenes hydrocarbons, while Euphorbia extracts contain secondary metabolites such as sesquiterpenes, diterpenes, sterols, flavonoids, and other polyphenols. The extracts and secondary metabolites from Euphorbia plants may act as active principles of medicines for the treatment of many human ailments, mainly inflammation, cancer, and microbial infections. Besides, Euphorbia-derived products have great potential as a source of bioactive extracts and pure compounds, which can be used to promote longevity with more health.
Collapse
|
3
|
Elshamy AI, Abd‐ElGawad AM, El Gendy AEG, Assaeed AM. Chemical Characterization of
Euphorbia heterophylla
L. Essential Oils and Their Antioxidant Activity and Allelopathic Potential on
Cenchrus echinatus
L. Chem Biodivers 2019; 16:e1900051. [DOI: 10.1002/cbdv.201900051] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 03/15/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Abdelsamed I. Elshamy
- Department of Natural Compounds ChemistryNational Research Center 33 El Bohouth St., Dokki Giza 12622 Egypt
- Faculty of Pharmaceutical SciencesTokushima Bunri University Yamashiro-cho Tokushima 770-8514 Japan
| | - Ahmed M. Abd‐ElGawad
- Plant Production Department, College of Food & Agriculture SciencesKing Saud University P.O. Box 2460 Riyadh 11451 Saudi Arabia
- Department of BotanyFaculty of ScienceMansoura University Mansoura 35516 Egypt
| | - Abd El‐Nasser G. El Gendy
- Medicinal and Aromatic Plants Research DepartmentNational Research Center 33 El Bohouth St., Dokki Giza 12622 Egypt
| | - Abdulaziz M. Assaeed
- Plant Production Department, College of Food & Agriculture SciencesKing Saud University P.O. Box 2460 Riyadh 11451 Saudi Arabia
| |
Collapse
|