1
|
Gu C, Wang YQ, Su BJ, Hu YJ, Liao HB, Liang D. Triterpenoids and triterpenoid saponins from Vitex negundo and their anti-inflammatory activities. PHYTOCHEMISTRY 2024; 222:114068. [PMID: 38554895 DOI: 10.1016/j.phytochem.2024.114068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Seven undescribed polyoxygenated ursane-type triterpenoids (vitnegundins A-G), three undescribed triterpenoid saponins (vitnegundins H-J), and 17 known ones were isolated from an EtOH extract of the aerial parts of Vitex negundo L. The structures of the undescribed compounds were established by extensive spectroscopic analysis. The absolute configurations of vitnegundins A, B, and E were determined by single-crystal X-ray diffraction data. Vitnegundins B-D are pentacyclic triterpenoids possessing rare cis-fused C/D rings and vitnegundins C-H represent undescribed ursane-type triterpenoids with 12,19-epoxy moiety. In the biological activity assay, vitnegundin A, vitnegundin E, and swinhoeic acid displayed inhibitory effects against LPS-induced NO release in BV-2 microglial cells, with IC50 values of 11.8, 44.2, and 19.6 μM, respectively.
Collapse
Affiliation(s)
- Chao Gu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Ya-Qi Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Bao-Jun Su
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Ya-Jie Hu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Hai-Bing Liao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China
| | - Dong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China.
| |
Collapse
|
2
|
Yang LY, Yi P, Chen JL, Li YH, Qiu JL, Wang ZY, Fu M, Yuan CM, Huang LJ, Hao XJ, Gu W. Chemical Constituents of Primulina eburnea (Gesneriaceae) and Their Cytotoxic Activities. Chem Biodivers 2023; 20:e202300248. [PMID: 37080916 DOI: 10.1002/cbdv.202300248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/22/2023]
Abstract
Two new ursane-type triterpenes, eburnealactones A and B (1 and 2), one new flavonoid, eburneatin A (6), and one new phenylethanoid glycoside, chiritoside D (7), along with 9 known compounds (3-5, 8-13) were isolated from the whole plant of Primulina eburnea. Their structures were elucidated by comprehensive spectroscopic data analysis (IR, UV, NMR, and HR-ESI-MS). All the compounds were evaluated for their cytotoxic activities. Compound 1 showed significant cytotoxic activities against MKN-45 cell lines and 5637 cell lines with the IC50 values of 9.57 μM and 8.30 μM, respectively. Compound 1 exhibited moderate cytotoxic activities against A549 and PATU8988T cell lines with the IC50 values of 30.70 μM and 38.22 μM, respectively. Compound 6 exhibited moderate cytotoxic activities against MKN-45, HCT116, PATU8988T, 5637 and A-673 cell lines with the IC50 values of 19.69 μM, 16.44 μM, 18.07 μM, 11.51 μM and 18.15 μM, respectively. Compound 5 showed moderate cytotoxic activities against A549 cell lines with the IC50 values of 24.06 μM.
Collapse
Affiliation(s)
- Li-Yuan Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
- School of pharmaceutical Sciences, Guizhou Medical University, Guiyang, 550014, China
| | - Ping Yi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Jun-Lei Chen
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Yu-Huan Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Institute of Medicinal Biotechnology Chinese Academy of Medical Sciences, Beijing, 100050, China
| | - Jue-Lin Qiu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Zhao-Yang Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Mao Fu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Chun-Mao Yuan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Lie-Jun Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| | - Xiao-Jiang Hao
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Research Unit of Chemical Biology of Natural Anti-virus Products, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Wei Gu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- The Key Laboratory of Chemistry for Natural Products of Guizhou Province and Chinese Academy of Sciences, Guiyang, 550014, China
| |
Collapse
|
3
|
Fu X, Chen J, Xie R, Zhou L, Wei Y, Yuan C, Huang L, Hu Z, Hao X, Gu W. Phytochemical and chemotaxonomic studies on Paraboea rufescens (Gesneriaceae). BIOCHEM SYST ECOL 2022. [DOI: 10.1016/j.bse.2022.104414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Zhou P, Li J, Chen Q, Wang L, Yang J, Wu A, Jiang N, Liu Y, Chen J, Zou W, Zeng J, Wu J. A Comprehensive Review of Genus Sanguisorba: Traditional Uses, Chemical Constituents and Medical Applications. Front Pharmacol 2021; 12:750165. [PMID: 34616302 PMCID: PMC8488092 DOI: 10.3389/fphar.2021.750165] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/06/2021] [Indexed: 12/12/2022] Open
Abstract
Genus Sanguisorba (family: Rosaceae) comprises nearly 148 species, distributed widely across the temperate and subtropical regions of the Northern Hemisphere. Sanguisorba officinalis L. (S. officinalis) has been used as a hemostatic and scald treating medicine in China for a long time. Numerous studies have demonstrated that plant extracts or monomers from S. officinalis exhibit several pharmacological effects, such as anti-cancer, anti-virus, anti-inflammation, anti-bacteria, neuroprotective and hepatoprotective effects. The other species of genus Sanguisorba are also being studied by researchers worldwide. Sanguisorba minor Scop. (S. minor), as an edible wild plant, is a common ingredient of the Mediterranean diet, and its young shoots and leaves are often mixed with traditional vegetables and consumed as salad. Reports on genus Sanguisorba available in the current literature were collected from Google Scholar, Web of Science, Springer, and PubMed. The Plant List (http://www.theplantlist.org./tpl1.1/search?q=Sanguisorba), International Plant Name Index (https://www.ipni.org/?q=Sanguisorba) and Kew Botanical Garden (http://powo.science.kew.org/) were used for obtaining the scientific names and information on the subspecies and cultivars. In recent years, several in vivo and in vitro experiments have been conducted to reveal the active components and effective monomers of S. officinalis and S. minor. To date, more than 270 compounds have been isolated and identified so far from the species belonging to genus Sanguisorba. Numerous reports on the chemical constituents, pharmacologic effects, and toxicity of genus Sanguisorba are available in the literature. This review provides a comprehensive understanding of the current traditional applications of plants, which are supported by a large number of scientific experiments. Owing to these promising properties, this species is used in the treatment of various diseases, including influenza virus infection, inflammation, Alzheimer’s disease, type 2 diabetes and leukopenia caused by bone marrow suppression. Moreover, the rich contents and biological effects of S. officinalis and S. minor facilitate these applications in dietary supplements and cosmetics. Therefore, the purpose of this review is to summarize the recent advances in the traditional uses, chemical constituents, pharmacological effects and clinical applications of genus Sanguisorba. The present comprehensive review may provide new insights for the future research on genus Sanguisorba.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Chinese Materia Medica, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingyan Li
- School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Qi Chen
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, China.,Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Jing Yang
- School of Pharmacy, Southwest Medical University, Luzhou, China.,Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Anguo Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China.,Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| | - Nan Jiang
- School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Yuanzhi Liu
- School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Jianping Chen
- School of Chinese Medicine, The University of Hong Kong, Hong Kong, Hong Kong, SAR China
| | - Wenjun Zou
- Department of Chinese Materia Medica, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Zeng
- School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Jianming Wu
- School of Pharmacy, Southwest Medical University, Luzhou, China.,Education Ministry Key Laboratory of Medical Electrophysiology, Sichuan Key Medical Laboratory of New Drug Discovery and Druggability Evaluation, Luzhou Key Laboratory of Activity Screening and Druggability Evaluation for Chinese Materia Medica, Southwest Medical University, Luzhou, China
| |
Collapse
|