1
|
Salvatore MM, Andolfi A, Nicoletti R. Mycotoxin Contamination in Hazelnut: Current Status, Analytical Strategies, and Future Prospects. Toxins (Basel) 2023; 15:99. [PMID: 36828414 PMCID: PMC9965003 DOI: 10.3390/toxins15020099] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023] Open
Abstract
Hazelnuts represent a potential source of mycotoxins that pose a public health issue due to their increasing consumption as food ingredients worldwide. Hazelnuts contamination by mycotoxins may derive from fungal infections occurring during fruit development, or in postharvest. The present review considers the available data on mycotoxins detected in hazelnuts, on fungal species reported as infecting hazelnut fruit, and general analytical approaches adopted for mycotoxin investigation. Prompted by the European safety regulation concerning hazelnuts, many analytical methods have focused on the determination of levels of aflatoxin B1 (AFB1) and total aflatoxins. An overview of the available data shows that a multiplicity of fungal species and further mycotoxins have been detected in hazelnuts, including anthraquinones, cyclodepsipeptides, ochratoxins, sterigmatocystins, trichothecenes, and more. Hence, the importance is highlighted in developing suitable methods for the concurrent detection of a broad spectrum of these mycotoxins. Moreover, control strategies to be employed before and after harvest in the aim of controlling the fungal contamination, and in reducing or inactivating mycotoxins in hazelnuts, are discussed.
Collapse
Affiliation(s)
- Maria Michela Salvatore
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
- Institute for Sustainable Plant Protection, National Research Council, 80055 Portici, Italy
| | - Anna Andolfi
- Department of Chemical Sciences, University of Naples Federico II, 80126 Naples, Italy
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, 80055 Portici, Italy
| | - Rosario Nicoletti
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
- Council for Agricultural Research and Economics, Research Center for Olive, Fruit, and Citrus Crops, 81100 Caserta, Italy
| |
Collapse
|
2
|
Santos AL, Ionta M, Horvath RO, Soares MG, Silva DO, Kawafune ES, Ferreira MJP, Sartorelli P. Dereplication of Cytochalasans and Octaketides in Cytotoxic Extracts of Endophytic Fungi from Casearia arborea (Salicaceae). Metabolites 2022; 12:metabo12100903. [PMID: 36295805 PMCID: PMC9611219 DOI: 10.3390/metabo12100903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/16/2022] Open
Abstract
Endophytes have been shown to be a source of novel drug prototypes. The Casearia genus is known for presenting cytotoxic clerodane diterpenes; however, there are few reports on secondary metabolites produced by its fungal microbiota. Thus, in the present study endophytic fungi obtained from the fresh leaves of C. arborea were grown in potato dextrose broth and rice to perform a secondary metabolite prospection study. The cytotoxic profile of the crude extracts at 10 µg/mL was determined by a colorimetric assay on tumor cell lines. The endophytes producing cytotoxic extracts were identified through phylogenetic analysis and belong to Diaporthe and Colletotrichum species. Metabolites present in these extracts were organized in molecular networking format based on HRMS-MS, and a dereplication process was performed to target compounds for chromatographic purification. Metabolic classes, such as lipids, peptides, alkaloids, and polyketides were annotated, and octaketide and cytochalasin derivatives were investigated. Cytochalasin H was purified from the cytotoxic Diaporthe sp. CarGL8 extract and its cytotoxic activity was determined on human cancer cell lines A549, MCF-7, and HepG2. The data collected in the present study showed that molecular networking is useful to understand the chemical profile of complex matrices to target compounds, minimizing the cost and time spent in purification processes.
Collapse
Affiliation(s)
- Augusto L. Santos
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, São Paulo 09972-270, Brazil
| | - Marisa Ionta
- Institute of Biomedical Science, Federal University of Alfenas, Minas Gerais 37130-000, Brazil
| | - Renato O. Horvath
- Institute of Biomedical Science, Federal University of Alfenas, Minas Gerais 37130-000, Brazil
| | - Marisi G. Soares
- Institute of Chemistry, Federal University of Alfenas, Minas Gerais 37130-000, Brazil
| | - Daniele O. Silva
- Institute of Chemistry, Federal University of Alfenas, Minas Gerais 37130-000, Brazil
| | - Eunizinis S. Kawafune
- Botany Department, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil
| | - Marcelo J. P. Ferreira
- Botany Department, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil
- Correspondence: (M.J.P.F.); (P.S.)
| | - Patricia Sartorelli
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo, São Paulo 09972-270, Brazil
- Correspondence: (M.J.P.F.); (P.S.)
| |
Collapse
|
3
|
Khattab AR, Farag MA. Marine and terrestrial endophytic fungi: a mine of bioactive xanthone compounds, recent progress, limitations, and novel applications. Crit Rev Biotechnol 2021; 42:403-430. [PMID: 34266351 DOI: 10.1080/07388551.2021.1940087] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Endophytic fungi are a kind of fungi that colonizes living plant tissues presenting a myriad of microbial adaptations that have been developed in such a hidden environment. Owing to its large diversity and particular habituation, they present a golden mine for research in the field of drug discovery. Endophytic fungal communities possess unique biocatalytic machinery that furnishes a myriad of complex natural product scaffolds. Xanthone compounds are examples of endophytic secondary metabolic products with pronounced biological activity to include: antioxidant, antimicrobial, anti-inflammatory, antithrombotic, antiulcer, choleretic, diuretic, and monoamine oxidase inhibiting activity.The current review compiles the recent progress made on the microbiological production of xanthones using fungal endophytes obtained from both marine and terrestrial origins, with comparisons being made among both natural resources. The biosynthesis of xanthones in endophytic fungi is outlined along with its decoding enzymes. Biotransformation reactions reported to be carried out using different endophytic microbial models are also outlined for xanthones structural modification purposes and the production of novel molecules.A promising application of novel computational tools is presented as a future direction for the goal of optimizing microbial xanthones production to include establishing metabolic pathway databases and the in silico analysis of microbial interactions. Metagenomics methods and related bioinformatics platforms are highlighted as unexplored tools for the biodiversity analysis of endophytic microbial communities that are difficult to be cultured.
Collapse
Affiliation(s)
- Amira R Khattab
- Pharmacognosy Department, College of Pharmacy, Arab Academy for Science, Technology and Maritime Transport, Alexandria, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Cairo, Egypt.,Chemistry Department, School of Sciences & Engineering, The American University in Cairo, New Cairo, Egypt
| |
Collapse
|
4
|
Xu TC, Lu YH, Wang JF, Song ZQ, Hou YG, Liu SS, Liu CS, Wu SH. Bioactive Secondary Metabolites of the Genus Diaporthe and Anamorph Phomopsis from Terrestrial and Marine Habitats and Endophytes: 2010-2019. Microorganisms 2021; 9:217. [PMID: 33494367 PMCID: PMC7912663 DOI: 10.3390/microorganisms9020217] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
The genus Diaporthe and its anamorph Phomopsis are distributed worldwide in many ecosystems. They are regarded as potential sources for producing diverse bioactive metabolites. Most species are attributed to plant pathogens, non-pathogenic endophytes, or saprobes in terrestrial host plants. They colonize in the early parasitic tissue of plants, provide a variety of nutrients in the cycle of parasitism and saprophytism, and participate in the basic metabolic process of plants. In the past ten years, many studies have been focused on the discovery of new species and biological secondary metabolites from this genus. In this review, we summarize a total of 335 bioactive secondary metabolites isolated from 26 known species and various unidentified species of Diaporthe and Phomopsis during 2010-2019. Overall, there are 106 bioactive compounds derived from Diaporthe and 246 from Phomopsis, while 17 compounds are found in both of them. They are classified into polyketides, terpenoids, steroids, macrolides, ten-membered lactones, alkaloids, flavonoids, and fatty acids. Polyketides constitute the main chemical population, accounting for 64%. Meanwhile, their bioactivities mainly involve cytotoxic, antifungal, antibacterial, antiviral, antioxidant, anti-inflammatory, anti-algae, phytotoxic, and enzyme inhibitory activities. Diaporthe and Phomopsis exhibit their potent talents in the discovery of small molecules for drug candidates.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shao-Hua Wu
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China; (T.-C.X.); (Y.-H.L.); (J.-F.W.); (Z.-Q.S.); (Y.-G.H.); (S.-S.L.); (C.-S.L.)
| |
Collapse
|
5
|
Hu SS, Liang MJ, Mi QL, Chen W, Ling J, Chen X, Li J, Yang GY, Hu QF, Wang WG, Guo YD. Two New Diphenyl Ether Derivatives from the Fermentation Products of the Endophytic Fungus Phomopsis asparagi. Chem Nat Compd 2019. [DOI: 10.1007/s10600-019-02828-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Yang HY, Duan YQ, Yang YK, Liu X, Ye L, Mi QL, Kong WS, Zhou M, Yang GY, Hu QF, Li XM, Li J. Two New Diphenyl Ether Derivatives from the Fermentation Products of an Endophytic Fungus Phomopsis fukushii. Chem Nat Compd 2019. [DOI: 10.1007/s10600-019-02706-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
7
|
Gao YH, Zheng R, Li J, Kong WS, Liu X, Ye L, Mi QL, Kong WS, Zhou M, Yang GY, Hu QF, Du G, Yang HY, Li XM. Three new diphenyl ether derivatives from the fermentation products of an endophytic fungus Phomopsis fukushii. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2019; 21:316-322. [PMID: 29338435 DOI: 10.1080/10286020.2017.1421177] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 12/20/2017] [Indexed: 06/07/2023]
Abstract
Three new diphenyl ethers (1-3), together with four known isopentylated diphenyl ethers derivatives (4-7), were isolated from the fermentation products of an endophytic fungus Phomopsis fukushii. Their structures were elucidated by spectroscopic methods, including extensive 1D and 2D NMR techniques. Compounds 1-3 were evaluated for their anti-methicillin-resistant Staphylococcus aureus (anti-MRSA) activity. The results revealed that compounds 1 and 2 showed strong inhibitions with inhibition zone diameters (IZD) of 20.2 ± 2.5 mm and 17.9 ± 2.2 mm, respectively. Compound 3 also showed good inhibition with IZD 15.2 ± 1.8 mm. The IZD data of compound 1 is close to that of positive control with IZD 21.9 ± 2.1 mm.
Collapse
Affiliation(s)
- Yu-Hong Gao
- a Department of Clinical Laboratories , The First People's Hospital of Yunnan Province , Kunming 650032 , China
| | - Rui Zheng
- a Department of Clinical Laboratories , The First People's Hospital of Yunnan Province , Kunming 650032 , China
| | - Jing Li
- c Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming 650231 , China
| | - Wei-Song Kong
- c Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming 650231 , China
| | - Xin Liu
- c Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming 650231 , China
| | - Lin Ye
- c Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming 650231 , China
| | - Qi-Li Mi
- c Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming 650231 , China
| | - Wei-Song Kong
- c Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming 650231 , China
| | - Min Zhou
- b Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education , Yunnan Minzu University , Kunming 650031 , China
| | - Guang-Yu Yang
- c Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming 650231 , China
| | - Qiu-Fen Hu
- b Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education , Yunnan Minzu University , Kunming 650031 , China
| | - Gang Du
- b Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education , Yunnan Minzu University , Kunming 650031 , China
| | - Hai-Ying Yang
- b Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education , Yunnan Minzu University , Kunming 650031 , China
| | - Xue-Mei Li
- c Key Laboratory of Tobacco Chemistry of Yunnan Province , China Tobacco Yunnan Industrial Co., Ltd , Kunming 650231 , China
| |
Collapse
|
8
|
Li SJ, Zhang X, Wang XH, Zhao CQ. Novel natural compounds from endophytic fungi with anticancer activity. Eur J Med Chem 2018; 156:316-343. [PMID: 30015071 DOI: 10.1016/j.ejmech.2018.07.015] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 11/30/2022]
Abstract
Plant endophytes are microorganisms that live in healthy plant tissues in part or all of their life history without causing obvious symptoms of infection in the host plants. Endophytes, a new type of microbial resource that can produce a variety of biological constituents, have great values for research and broad prospects for development. This article reviewed the research and development progress of endophytic fungi with cytotoxic activity between 2014 and 2017, including endophytic fungi sources, microbial taxonomy, compound classification and cytotoxic activity. The results showed that the 109 strains of endophytic fungi belong to 3 phyla, 7 classes and 50 genera. The secondary metabolites mainly contained alkaloids, terpenes, steroids, polyketides, quinones, isocoumarins, esters etc. The results of this study provide references for the development of new antitumor drugs and endophytes resources.
Collapse
Affiliation(s)
- Shou-Jie Li
- Beijing Key Laboratory of Gene Engineering Drugs & Biological Technology, College of Life Science, Beijing Normal University, Beijing, 100875, PR China
| | - Xuan Zhang
- Beijing Key Laboratory of Gene Engineering Drugs & Biological Technology, College of Life Science, Beijing Normal University, Beijing, 100875, PR China
| | - Xiang-Hua Wang
- Beijing Key Laboratory of Gene Engineering Drugs & Biological Technology, College of Life Science, Beijing Normal University, Beijing, 100875, PR China
| | - Chang-Qi Zhao
- Beijing Key Laboratory of Gene Engineering Drugs & Biological Technology, College of Life Science, Beijing Normal University, Beijing, 100875, PR China.
| |
Collapse
|
9
|
Li ZJ, Yang HY, Li J, Liu X, Ye L, Kong WS, Tang SY, Du G, Liu ZH, Zhou M, Yang GY, Hu QF, Li XM. Isopentylated diphenyl ether derivatives from the fermentation products of an endophytic fungus Phomopsis fukushii. J Antibiot (Tokyo) 2018; 71:359-362. [PMID: 29348531 DOI: 10.1038/s41429-017-0006-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 10/08/2017] [Accepted: 10/11/2017] [Indexed: 11/09/2022]
Abstract
Three new isopentylated diphenyl ethers, (1-3), together with two known isopentylated diphenyl ethers derivatives (4 and 5) were isolated from the fermentation products of an endophytic fungus Phomopsis fukushii. Their structures were elucidated by spectroscopic methods, including extensive 1D- and 2D NMR techniques. Compounds 1-3 were evaluated for their anti-methicillin-resistant Staphylococcus aureus (anti-MRSA) activity. The results showed that compounds 1-3 showed strong activity with diameter of inhibition zone (IZD) of 21.8 ± 2.4 mm, 16.8 ± 2.2 mm, and 15.6 ± 2.0 mm, respectively.
Collapse
Affiliation(s)
- Zhen-Jie Li
- Key Laboratory of Tobacco Chemistry of Yunnan Province, China Tobacco Yunnan Industrial Co.Ltd, Kunming, 650231, China
| | - Hai-Ying Yang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650031, China
| | - Jing Li
- Key Laboratory of Tobacco Chemistry of Yunnan Province, China Tobacco Yunnan Industrial Co.Ltd, Kunming, 650231, China
| | - Xin Liu
- Key Laboratory of Tobacco Chemistry of Yunnan Province, China Tobacco Yunnan Industrial Co.Ltd, Kunming, 650231, China
| | - Lin Ye
- Key Laboratory of Tobacco Chemistry of Yunnan Province, China Tobacco Yunnan Industrial Co.Ltd, Kunming, 650231, China
| | - Wei-Song Kong
- Key Laboratory of Tobacco Chemistry of Yunnan Province, China Tobacco Yunnan Industrial Co.Ltd, Kunming, 650231, China
| | - Shi-Yun Tang
- Key Laboratory of Tobacco Chemistry of Yunnan Province, China Tobacco Yunnan Industrial Co.Ltd, Kunming, 650231, China
| | - Gang Du
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650031, China
| | - Zhi-Hua Liu
- Key Laboratory of Tobacco Chemistry of Yunnan Province, China Tobacco Yunnan Industrial Co.Ltd, Kunming, 650231, China
| | - Min Zhou
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650031, China
| | - Guang-Yu Yang
- Key Laboratory of Tobacco Chemistry of Yunnan Province, China Tobacco Yunnan Industrial Co.Ltd, Kunming, 650231, China.,Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650031, China
| | - Qiu-Fen Hu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University, Kunming, 650031, China.
| | - Xue-Mei Li
- Key Laboratory of Tobacco Chemistry of Yunnan Province, China Tobacco Yunnan Industrial Co.Ltd, Kunming, 650231, China.
| |
Collapse
|
10
|
Yuan L, Huang W, Du G, Gao X, Yang H, Hu Q, Ma Y. Isolation of Xanthones from the Fermentation Products of the Endophytic Fungus of Phomopsis amygdali. Chem Nat Compd 2015. [DOI: 10.1007/s10600-015-1315-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|