1
|
Zhang X, Dong Y, Liu X, Wang R, Lu J, Song F. New bisabolane-type sesquiterpenoid from Aspergillus sydowii BTBU20213012. Nat Prod Res 2024; 38:2792-2799. [PMID: 37480345 DOI: 10.1080/14786419.2023.2236764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/22/2023] [Accepted: 07/09/2023] [Indexed: 07/24/2023]
Abstract
A new bisabolane-type sesquiterpenoid, named (+)-8-dehydroxylaustrosene (1), along with ten known compounds, penicibisabolanes E (2) and G (3), (+)-austrosene (4), (S)-(+)-11-dehydrosydonic acid (5), sydonic acid (6), (7S,11S)-(+)-12-hydroxysydonic acid (7), (-)-(R)-hydroxysydonic acid (8), pseudaboydin A (9), (-)-(7 R,10R)-iso-10-hydroxysydowic acid (10), lumichrome (11), were identified from the fungus Aspergillus sydowii BTBU20213012 isolated from a marine sediment sample from the Western Pacific. The structures of the compounds were identified by HRESIMS and NMR data analysis. Compound 11 showed weak antimicrobial activity against Staphylococcus aureus with MIC value of 200 μg/mL.
Collapse
Affiliation(s)
- Xinjun Zhang
- Institute of Tibet Plateau Ecology, Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education of China, Tibet Agriculture & Animal Husbandry University, Nyingchi, Tibet, P. R. China
| | - Yifei Dong
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of China; School of Light Industry, Beijing Technology and Business University, Beijing, P. R. China
| | - Xinyu Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of China; School of Light Industry, Beijing Technology and Business University, Beijing, P. R. China
| | - Ruihong Wang
- Institute of Tibet Plateau Ecology, Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education of China, Tibet Agriculture & Animal Husbandry University, Nyingchi, Tibet, P. R. China
| | - Jie Lu
- Institute of Tibet Plateau Ecology, Key Laboratory of Forest Ecology in Tibet Plateau, Ministry of Education of China, Tibet Agriculture & Animal Husbandry University, Nyingchi, Tibet, P. R. China
| | - Fuhang Song
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education of China; School of Light Industry, Beijing Technology and Business University, Beijing, P. R. China
| |
Collapse
|
2
|
Ibrahim SRM, Mohamed SGA, Alsaadi BH, Althubyani MM, Awari ZI, Hussein HGA, Aljohani AA, Albasri JF, Faraj SA, Mohamed GA. Secondary Metabolites, Biological Activities, and Industrial and Biotechnological Importance of Aspergillus sydowii. Mar Drugs 2023; 21:441. [PMID: 37623723 PMCID: PMC10455642 DOI: 10.3390/md21080441] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/29/2023] [Accepted: 08/02/2023] [Indexed: 08/26/2023] Open
Abstract
Marine-derived fungi are renowned as a source of astonishingly significant and synthetically appealing metabolites that are proven as new lead chemicals for chemical, pharmaceutical, and agricultural fields. Aspergillus sydowii is a saprotrophic, ubiquitous, and halophilic fungus that is commonly found in different marine ecosystems. This fungus can cause aspergillosis in sea fan corals leading to sea fan mortality with subsequent changes in coral community structure. Interestingly, A. sydowi is a prolific source of distinct and structurally varied metabolites such as alkaloids, xanthones, terpenes, anthraquinones, sterols, diphenyl ethers, pyrones, cyclopentenones, and polyketides with a range of bioactivities. A. sydowii has capacity to produce various enzymes with marked industrial and biotechnological potential, including α-amylases, lipases, xylanases, cellulases, keratinases, and tannases. Also, this fungus has the capacity for bioremediation as well as the biocatalysis of various chemical reactions. The current work aimed at focusing on the bright side of this fungus. In this review, published studies on isolated metabolites from A. sydowii, including their structures, biological functions, and biosynthesis, as well as the biotechnological and industrial significance of this fungus, were highlighted. More than 245 compounds were described in the current review with 134 references published within the period from 1975 to June 2023.
Collapse
Affiliation(s)
- Sabrin R. M. Ibrahim
- Preparatory Year Program, Department of Chemistry, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | | | - Baiaan H. Alsaadi
- Department of Clinical Service, Pharmaceutical Care Services, King Salman Medical City, MOH, Al Madinah Al Munawwarah 11176, Saudi Arabia; (B.H.A.); (M.M.A.)
| | - Maryam M. Althubyani
- Department of Clinical Service, Pharmaceutical Care Services, King Salman Medical City, MOH, Al Madinah Al Munawwarah 11176, Saudi Arabia; (B.H.A.); (M.M.A.)
| | - Zainab I. Awari
- Pharmaceutical Care Services, King Salman Medical City, MOH, Al Madinah Al Munawwarah 11176, Saudi Arabia;
| | - Hazem G. A. Hussein
- Preparatory Year Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia;
| | - Abrar A. Aljohani
- Pharmaceutical Care Services, Medina Cardiac Center, MOH, Al Madinah Al Munawwarah 11176, Saudi Arabia;
| | - Jumanah Faisal Albasri
- Pharmacy Department, Home Health Care, MOH, Al Madinah Al Munawwarah 11176, Saudi Arabia;
| | - Salha Atiah Faraj
- Pharmacy Department, King Salman Medical City, MOH, Almadinah Almunawarah 11176, Saudi Arabia;
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| |
Collapse
|
3
|
Niu S, Yang L, Zhang G, Chen T, Hong B, Pei S, Shao Z. Phenolic bisabolane and cuparene sesquiterpenoids with anti-inflammatory activities from the deep-sea-derived Aspergillus sydowii MCCC 3A00324 fungus. Bioorg Chem 2020; 105:104420. [DOI: 10.1016/j.bioorg.2020.104420] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/20/2020] [Accepted: 10/20/2020] [Indexed: 12/31/2022]
|
4
|
Niu S, Yang L, Chen T, Hong B, Pei S, Shao Z, Zhang G. New Monoterpenoids and Polyketides from the Deep-Sea Sediment-Derived Fungus Aspergillus sydowii MCCC 3A00324. Mar Drugs 2020; 18:E561. [PMID: 33212800 PMCID: PMC7696626 DOI: 10.3390/md18110561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/11/2020] [Accepted: 11/14/2020] [Indexed: 12/18/2022] Open
Abstract
Chemical study of the secondary metabolites of a deep-sea-derived fungus Aspergillus sydowii MCCC 3A00324 led to the isolation of eleven compounds (1-11), including one novel (1) and one new (2) osmane-related monoterpenoids and two undescribed polyketides (3 and 4). The structures of the metabolites were determined by comprehensive analyses of the NMR and HRESIMS spectra, in association with quantum chemical calculations of the 13C NMR, ECD, and specific rotation data for the configurational assignment. Compound 1 possessed a novel monoterpenoid skeleton, biogenetically probably derived from the osmane-type monoperpenoid after the cyclopentane ring cleavage and oxidation reactions. Additionally, compound 3 was the first example of the α-pyrone derivatives bearing two phenyl units at C-3 and C-5, respectively. The anti-inflammatory activities of 1-11 were tested. As a result, compound 6 showed potent inhibitory nitric oxide production in lipopolysaccharide (LPS)-activated BV-2 microglia cells with an inhibition rate of 94.4% at the concentration of 10 µM. In addition, a plausible biosynthetic pathway for 1 and 2 was also proposed.
Collapse
Affiliation(s)
- Siwen Niu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (S.P.); (Z.S.)
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (L.Y.); (T.C.)
| | - Longhe Yang
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (L.Y.); (T.C.)
| | - Tingting Chen
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (L.Y.); (T.C.)
| | - Bihong Hong
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China; (L.Y.); (T.C.)
| | - Shengxiang Pei
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (S.P.); (Z.S.)
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (S.P.); (Z.S.)
| | - Gaiyun Zhang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, 184 Daxue Road, Xiamen 361005, China; (S.P.); (Z.S.)
| |
Collapse
|
5
|
Antimicrobial Secondary Metabolites from the Seawater-Derived Fungus Aspergillus sydowii SW9. Molecules 2019; 24:molecules24244596. [PMID: 31888157 PMCID: PMC6943586 DOI: 10.3390/molecules24244596] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/05/2019] [Accepted: 12/11/2019] [Indexed: 11/16/2022] Open
Abstract
Marine-derived fungi are considered to be valuable producers of bioactive secondary metabolites used as lead compounds with medicinal importance. In this study, chemical investigation of the seawater-derived fungus Aspergillus sydowii SW9 led to the isolation and identification of one new quinazolinone alkaloid, 2-(4-hydroxybenzyl)-4-(3-acetyl)quinazolin-one (1), one new aromatic bisabolene-type sesquiterpenoid, (2) and one new chorismic acid analogue (3), as well as two known alkaloids (compounds 4 and 5). Their structures were determined by extensive 1D/2D NMR and mass spectrometric data, and the absolute configurations of 2 and 3 were assigned by the analysis of ECD spectra aided by quantum chemical computations. Compounds 1, 2, and 4 exhibited selective inhibitory activities against the human pathogenic bacteria Escherichia coli, Staphylococcus aureus, S. epidermidis, and Streptococcus pneumoniae, with MIC values ranging from 2.0 to 16 μg/mL.
Collapse
|
6
|
Abstract
Covering: January to December 2017This review covers the literature published in 2017 for marine natural products (MNPs), with 740 citations (723 for the period January to December 2017) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, mangroves and other intertidal plants and microorganisms. The emphasis is on new compounds (1490 in 477 papers for 2017), together with the relevant biological activities, source organisms and country of origin. Reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. Geographic distributions of MNPs at a phylogenetic level are reported.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia. and Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Rohan A Davis
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Robert A Keyzers
- Centre for Biodiscovery, School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|